
Open Source Integrated 3D Footstep Planning Framework for

Humanoid Robots

Alexander Stumpf∗, Stefan Kohlbrecher∗, David C. Conner† and Oskar von Stryk∗

Abstract— Humanoid robots benefit from their anthropomor-
phic shape when operating in human-made environments. In
order to achieve human-like capabilities, robots must be able to
perceive, understand and interact with the surrounding world.
Humanoid locomotion in uneven terrain is a challenging task
as it requires sophisticated world model generation, motion
planning and control algorithms and their integration. In
recent years, much progress in world modeling and motion
control has been achieved. This paper presents one of the very
first open source frameworks for full 3D footstep planning
available for ROS which integrates perception and locomo-
tion systems of humanoid bipedal robots. The framework is
designed to be used for different type of humanoid robots
having different perception and locomotion capabilities with
minimal implementation effort. In order to integrate with
almost any humanoid walking controller, the system can easily
be extended with additional functionality that may be needed
by low-level motion algorithms. It also considers sophisticated
human-robot interaction that enables to direct the planner to
generate improved solutions, provides monitoring data to the
operator and debugging feedback for developers. The provided
software package consists of three major blocks that address
world generation, planning and interfacing low-level motion
algorithms. The framework has been successfully applied to
four different full-size humanoid robots.

I. INTRODUCTION

In the last decades significant progress has been achieved

in the field of humanoid robots. However, the capabilities

of today’s humanoid robots are still far from meeting the

requirements of real world applications such as disaster

response or reliable assistance at work or in the home. As

the complexity of real world scenarios goes beyond what

autonomous humanoid robots may be able to solve in the

future, a remote human supervisor should be able to assist

the humanoid robot in perception and planning to leverage

human intelligence and cognitive abilities whenever needed.

The control of robots should not overburden human oper-

ators. Consequently, the interdependence of human operators

and humanoid robots must be considered for any complex

system to enable appropriate human-robot-interaction where

each member of the human-robot team can contribute to the

mission when required [1].

Human-made environments are filled with ground level

changes, door thresholds, stairs, etc. Therefore, a crucial

capability for the use of humanoids is the ability to traverse

inclined terrain and narrow corridors in possibly harsh envi-

ronments with minimal risk of failure.

∗Department of Computer Science, Technische Universität Darmstadt
stumpf,kohlbrecher,stryk@sim.tu-darmstadt.de

†Christopher Newport University david.conner@cnu.edu

This paper presents a new open source footstep plan-

ning framework (Sect. III) which integrates environment

perception (Sect. III-G) and is usable by different types of

humanoid robots with only minimal required adjustments.

It adopts state of the art search-based planning algorithms

(e.g. ARA*) and provides crucial methods and tools for au-

tomatic generation of feasible sequences of full 3D footstep

placements over uneven terrain among obstacles. Different

levels of interactivity (Sect. IV) allow the human supervisor

to direct the planner how to solve the current locomotion

planning task properly. In the other direction, the footstep

planning system assists the user to keep all footstep place-

ments valid and safe to execute for the robot.

Apart from the difficulties in human robot interaction, the

development of a (semi-)autonomous humanoid robot system

itself is already a tremendous challenge. Modularity and

reusability of basic building blocks for the highly complex

humanoid robot capabilities are key to advancements in

research and development. Therefore, the existing footstep

planner [2] has been developed into an open source frame-

work that enables uncompromising and seamless integration

with many humanoid robot systems as presented in Sect.

V. This demanding goal is achieved by unique features

such as a comprehensive plugin management (Sect. III-B)

and parameter system (Sect. III-C). These tools provide the

required flexibility to adapt to almost any bipedal humanoid

robot with few lines of code. Additional toolboxes can handle

common tasks such as world model generation, step queue

management (Sect. III-F) or interfacing low-level motion

algorithms. A core strength of our approach is not only to

adapt planning policies but step data representation as well.

The presented work can be either used as a 3D planner out

of the box, as research tool in bipedal search-based planning

or for benchmarking walking controllers in difficult terrain.

It also allows for a number of extensions (Sect. V-E).

The implementation of the presented footstep planning

framework is based on an extension of Team ViGIR’s ap-

proach to the DRC [3][4] and is available on GitHub open

source. Full documentation and tutorials can be found at the

ROS Wiki1.

II. RELATED WORK

The number of available full-size humanoid robots is

steadily increasing with significant progress towards bipedal

locomotion. Improved control policies allow for more au-

tonomous navigation, in particular for traversing rough ter-

1http://wiki.ros.org/vigir footstep planning

This is a preprint of a paper that appeared in the Proceedings of
IEEE-RAS International Conference on Humanoid Robots, pp. 938-945, Nov 15-17, 2016

http://wiki.ros.org/vigir_footstep_planning

rain. Although footstep planning has been investigated in-

tensively in the last years, only few approaches consider

footstep height [5] and even fewer consider full six degree of

freedoms (DoF) foot placements [6]. While many interesting

results have been achieved, there is still a lack of publications

of reusable and extensible open source implementations of

such approaches.

In terms of migration effort, the most portable approaches

for footstep planning are contact-before-motion methods that

decouple the planning and motion layer from each other.

Prior work has investigated various contact-before-motion

approaches such as whole-body-planning [7][8][9], walk

pattern generation [10][11], convex optimization [6][12] or

dynamic programming [13][14][15].

Many of the previously published research approaches to

humanoid locomotion planning are, to the best of our best

knowledge, not available as software in public. However,

there are a few software solutions available open source.

Coleman et. al. present a proof of concept for motion plan-

ning for HRP2 as extension for the MoveIt! framework2. The

prototype version is able to generate whole-body-motions

plans for HRP2 which includes footstep planning as well, but

requires on the other side a whole-body-motion controller to

execute them. Therefore this approach is not well suited for

pure walking controllers as the planned whole-body-motions

may likely not be executed properly.

Recently the Humanoid Path Planner (HPP) [16] was

released. The authors describe HPP as an answer to the

lack of a standard framework for complex motion planning

problems, such as constrained navigation among movable

objects. In general, the authors claim that HPP is easy to

use and extendable by overloading abstract classes. Although

HPP solves a large set of humanoid motion planning tasks,

it addresses neither operator interaction nor perception.

In general only few planning frameworks for humanoid

locomotion are available and therefore many human re-

sources are wasted in implementation of humanoid navi-

gation systems. This motivates our open source footstep

planning framework that can be deployed quickly with any

humanoid system especially for ROS [17]. We intend to

establish a community similar to MoveIt!3 in manipulation

and ROSControl4 in controller domain already do.

Fortunately Hornung et. al. have already implemented

an open source 2D footstep planner [18] for ROS. It is

very easy to use due to standardized ROS messages, but

provides limited adaptability. In order to consider robot

specific constraints, the base code as well as messages have

to be changed directly such as we did in previous work [2].

We noticed the lack of a versatile solution that causes a huge

implementation overhead when migrating the software to

other robot platforms. This inconvenient situation motivated

our follow-up work presented in this paper.

2https://github.com/davetcoleman/moveit hrp2
3http://moveit.ros.org
4http://wiki.ros.org/ros control

III. FOOTSTEP PLANNING FRAMEWORK

A. Introduction

A software framework is a generic abstraction of particular

functionality as part of a larger software platform. The

framework provides sufficient options to be extended to

an application-specific software by changing functionality

with additional user-written code. Thus, our main objective

is to provide a capable footstep planning framework that

integrates environmental perception and may be deployed

easily into an existing ROS setup. For this, the planner has

to provide a complete set of basic functionalities, but also has

to be extendable for new application-specific features (like

alternative planning policies or robot specific footstep data).

Based on this structure, any new user of the framework can

build upon the already implemented and proven algorithms

and needs to focus only on implementation of robot specific

elements. This decreases the likelihood of errors and greatly

reduces development time by saving a lot of implementation

effort.

The folllowing paragraphs describe the basic blocks in

order to achieve this goal by implementing a parameter5 and

plugin6 management system. Although these packages are

introduced in the context of footstep planning, they can be

freely used in any other project as well.

B. Plugin Management

The vigir pluginlib is the key asset to manage heteroge-

neous types of plugins. Our solution is based on pluginlib7

which already provides the basic capability to load classes

(plugins) from shared libraries via user-written code by using

the ROS build infrastructure.

Plugins are the basic units to inject efficiently user specific

code into a framework while all existing code is preserved.

The idea of using plugins as small code packets follows the

divide and conquer software paradigm. Each plugin solves a

problem partially, but they can be composed to a plugin set

forming a solution of a complex problem.

The plugin manager can easily determine the provided

functionality of a plugin by checking its inheritance tree. This

ability can be used by the developer to gather all relevant

plugins from a heterogeneous plugin database needed for

a specific part of the framework or algorithm (a generic

example is given in Fig. 1). This allows the use of any kind

of plugin in transparent manner, whereby implementation de-

tails are hidden. The manager itself sets up all ROS services

and action servers automatically that facilitate generic access

to all management functionality as used by the accompanied

graphical user interface.

C. Parameter Management

In real world applications, different terrain scenarios have

to be addressed (e.g. flat surface, narrow floors, stairs or

sloped terrain). The footstep planner can perform best if a

5http://wiki.ros.org/vigir generic params
6http://wiki.ros.org/vigir pluginlib
7http://wiki.ros.org/pluginlib

https://github.com/davetcoleman/moveit_hrp2
http://moveit.ros.org
http://wiki.ros.org/ros_control
http://wiki.ros.org/vigir_generic_params
http://wiki.ros.org/vigir_pluginlib
http://wiki.ros.org/pluginlib

Fig. 1: Generic example inheritance tree for plugins in

a heterogeneous plugin database. When the user requests

“Drawable” plugins, the plugin manager will automatically

resolve this request by returning all instantiated “Circle”,

“Rectangle” and “Image” plugins.

dedicated parameter set has been defined for each kind of

scenario.

The vigir generic params solves the conflicting issue of

having a fixed ROS message structure at build time and the

varying content of parameter sets due to individual composi-

tions of plugins during run time. It is designed as substitution

for the classical ROS Parameter Server while using the

same YAML syntax for configuration files and providing

the same interfaces for accessing parameters. This design

consideration makes it very convenient to use for ROS-

familiar developers. The vigir generic params implements

additional features such as a flexible structure for parameter

sets that can be shared via ROS messages and a parameter set

management to allow quick software reconfiguration by just

providing multiple configuration files. In addition a generic

graphical user interface allows modifying those parameter

sets online.

D. Footstep Planning Library

The parameter and plugin system delivers the adaptability

needed to cope with different humanoid systems and there-

fore form the basic infrastructure of the proposed footstep

planning framework. In order to apply the plugin system, the

footstep planner pipeline has been investigated for injection

points where a user might want to affect the behavior of the

planner. For each such injection point, a plugin type has been

defined:

• CollisionCheckPlugin: Collision checks of a given state

and/or transition.

• HeuristicPlugin: Computes heuristic value (estimated

remaining cost) to the goal state.

• PostProcessPlugin: Post-processing of a generated sin-

gle step or step plan.

• ReachabilityPlugin: Defines the set of valid step transi-

tions.

• StateGeneratorPlugin: Determines the next state(s) to

visit.

• StepCostEstimatorPlugin: Estimates cost and risk for

given step transition.

Fig. 2: Plugins embedded into footstep planning pipeline.

• StepPlanMsgPlugin (singleton): Marshalling interface

for robot specific data carried in each single step and

step plan.

• TerrainModelPlugin (singleton): Provides 3D terrain

model of environment.

The last two plugin types are defined as singleton, thus

the plugin manager allows only a single instance of this

plugin type to be loaded while other plugin types may exist

multiple times or even as different implementations in the

plugin database. Each plugin of the same type contributes

individual computational results, e.g. the results of all active

StepCostEstimatorPlugins are summed up to a total step cost.

Fig. 2 shows when each plugin type takes effect on the

planner pipeline. For a quick deployment of the framework,

plugin implementations for common cases already exist for

mandatory plugin types. Furthermore plugins do not live in

isolation, which should be taken into account because they

can also access and use each other as well. The most common

case is the StepPlanMsgPlugin that allows custom plugins to

access robot specific variables encoded into the step plan.

One of our main goals is keeping the overhead of the plu-

gin system low in order to maintain high planning efficiency.

It is clearly inefficient to request needed plugins from the

manager for each single iteration during planning. For this

reason, the planner retrieves all plugins once at the beginning

of each planning request and initializes them with the given

parameters for this request.

E. Framework Extension

Next, we provide an example how to extend our frame-

work, demonstrating that only a few steps have to be per-

formed.

In order to refine the step cost estimation for each single

step, the developer has first to add a new implementa-

tion of the plugin type StepCostEstimatorPlugin named e.g.

“my step cost estimator” according to the instruction at the

related ROS Wiki8. Afterwards this new plugin and its

containing code can be used immediately by the planner by

8http://wiki.ros.org/vigir pluginlib

http://wiki.ros.org/vigir_pluginlib

modifying the used plugin set. It also allows the user to

assign values to parameters used by this plugin. An example

plugin set configuration file follows:

plugin_sets:

default:

[...]

StateGeneratorPlugin

reachability_state_generator: none

StepPlanMsgPlugin

step_plan_msg_plugin: none

ReachabilityPlugins

reachability_polygon: none

StepCostEstimatorPlugins

const_step_cost_estimator: none

euclidean_step_cost_estimator: none

my_step_cost_estimator:

params:

my_param: 42

HeuristicPlugins

step_cost_heuristic: none

euclidean_heuristic: none

[...]

It is notable that changing the plugin set does not require

recompilation of the software. A modification of the plugin

set can also be performed while the software is running,

allowing for highly dynamic behavior changes when needed.

This example demonstrates how the plugin system allows to

add individual code into any stage of planning with minimal

effort.

F. Step Controller

While working on different humanoid robots, the authors

noticed that many low-level controllers provide very capable

but different interfaces that enable complex locomotion ex-

ecution such as continuous walking over rough terrain. In

order to use the walking controller most effectively, step

queue management is required that allows the system to

update already queued steps as well as add new steps to

the step plan.

For this reason we developed a step controller tool9 for

our footstep planning library which is designed to directly

interface with a low-level walking controller. The basic

implementation consists of a state machine that flushes single

steps to the walking controller when required and a step

queue which is capable of seamless integration of step plan

updates like step plan stitching. Hereby, step plan stitching

denotes a method to transform two step plans according

to a common pivot step, thus they can be merged cleanly.

The implementation of the step controller follows the same

paradigms as the footstep planner. The behavior can thus be

adapted by implementing a robot specific StepControllerPlu-

gin.

9http://wiki.ros.org/vigir step control

For human supervision, the step controller also frequently

reports the internal state machine and step execution feed-

back that is also visualized by the accompanied user inter-

face.

G. Terrain Modeling

3D footstep planning requires terrain height and surface

normal data of the surrounding environment that must be

efficiently accessible in order to enable short planning times.

Although there is already preceding work such as OctoMap

[19] available, these approaches are focused on mapping or

surface reconstruction. OctoMap is a very capable proba-

bilistic mapping system, but requires a lot of computational

resources for high resolution grid maps that are crucial for

rough terrain tasks. In addition the included surface normal

estimation is based on marching cubes, lacking in precision.

Therefore, we decided to implement a light-weight ap-

proach allowing to generate the required terrain data for 3D

footstep planning online. In order to enable efficient data

access during planning we split the terrain model into two

parts: A grid-based elevation map and a 3D octree-based

data structure storing all captured point cloud data and the

associated estimated normals. Updating both data structures

can be performed efficiently and enables a very efficient two

level lookup to determine the full 3D pose of each foot

placement: For each 2D position the corresponding z-value

is first looked up in the elevation map and afterwards used

to obtain the surface orientation stored in the octree.

In our previous work [2] we already chose PCA in

combination with a kd-tree-based data structure to estimate

surface normals that is according to Klasing et. al. [20]

the best approach for quick and accurate normal surface

estimation using noisy point clouds. The computation is

speed up by cropping each laser scan by the region of interest

before updating the elevation map and surface normals.

Using scans from a spinning laser scanner, this procedure

can be performed in real-time as demonstrated in Fig. 3. In

general, this approach enables terrain model generation on

any robot system that provides point clouds given in global

reference frame.

IV. OPERATOR INTERACTION

For supervised robot operation, different abstraction layers

for accessing the footstep planner capabilities are available.

Although the planner is able to generate feasible plans, in

practical application, there always remains a possibility that

the resulting plan contains undesirable steps due to noisy

sensor data. For this reason, the footstep planning system

was extended to provide multiple services to manage footstep

plans in an interactive and coactive manner [1] allowing

for human intelligence to assist in perception and planning.

For instance, these services enable the human supervisor to

assist the planner by quickly adjusting single steps while

the planner automatically aligns the 3D foot pose with

respect to the underlying surface orientation and reports

back immediately if the modified step sequence is still safe

to execute. In a more high level manner, the operator can

http://wiki.ros.org/vigir_step_control

Fig. 3: Online terrain generation while robot walks among

obstacles (left). In the middle the aggregated point cloud with

surface normal estimate (red) is viusalized. The generated

height map is shown on the right. The corresponding video

can be watched online in full length at http://youtu.be/

S-hhHFB77Co.

also build up complex sequences of footsteps by stitching

multiple smaller step plans together. The interactive planning

mode significantly improves mission performance during

locomotion tasks, which is demonstrated in Fig. 4. A video

presentation of interactive planning is available under http:

//youtu.be/kX4rNbo5UYk which illustrates how the operator

is able to direct the planner to improve the footstep plan. An

example of the planner’s assistance capability can be seen

at the 0:26 mark in the video when the footstep planner

clearly notifies the operator that he moved the step too far

away from the successor step which would result in unsafe

footstep execution.

When working with robots, situational awareness becomes

crucial for an operator. The operator must be aware of the

environment as well as the internal state of the robot. In

scenarios with many obstacles or difficult terrain, the planner

will take more time than usual to deliver suitable results. In

this case it is desirable to get continuous feedback from the

planner to ensure that the planning process is still working

properly. Fig. 5 demonstrates how our footstep planning

system frequently reports the current planning status back

to the operator. The operator is actually able to comprehend

the current planning progress and even able to detect if the

planner is stuck or struggles at certain obstacles. Then the

operator is able to preempt the current planning process

anytime and direct the planner by changing parameters

or improving planning policies. Further debug options are

available by visualizing the state expansions of the used

ARA* algorithm (see Fig. 5) which helps to shape better

planning policies.

V. RESULTS

The requirements for the footstep planning framework

are minimal and all advanced features can be accessed

incrementally. For footstep planning and execution on flat

(a) The operator is not satisfied with placement of step 4 as it is
too close in front of the cinder block.

(b) Operator selects step 4 for editing. Terrain model has been
hidden for a better visibility of interactive marker.

(c) Step 4 has been slightly moved away from the cinder block by
the operator.

(d) Final result of modified footstep plan which is ready for
execution now.

Fig. 4: Example of interactive footstep planning where the

operator modifies a single step of a pre-generated plan. The

steps are automatically colored by the planner in a range

from green to red to indicate risk level of execution.

Fig. 5: Realtime feedback reported frequently by the plan-

ner shows the current planning progress. White dots show

recently expanded states by the A* algorithm.

surfaces only a walking controller suitable for flat terrain is

needed. Collision avoidance can be considered as soon an

occupancy grid map is provided to the footstep planner. For

uneven terrain the robot has to provide incremental 3D point

cloud data given in a global reference frame for the terrain

model generator and requires a suitable walking controller

to perform the individual steps needed to cross the terrain.

In all cases the planning system assumes that the walking

algorithm is requesting foot placements as input.

The presented entire software stack is fully ROS-enabled

to facilitate the usage for the ROS community and is avail-

able at GitHub open source.

http://youtu.be/S-hhHFB77Co
http://youtu.be/S-hhHFB77Co
http://youtu.be/kX4rNbo5UYk
http://youtu.be/kX4rNbo5UYk

A. Robots Using The Framework and Software

The presented software has currently been deployed on

four different robots, each delivered with its own walking

control software: Team ViGIR’s Atlas, Team VALOR’s ES-

CHER and Team Hector’s THORMANG 1 and 3 (Fig. 6).

In the case of Atlas, we interfaced BDI as well as IHMC

control software [21] which sums up to five different walking

controllers that have been interfaced successfully so far.

(a) Atlas (DRC Finals) (b) ESCHER

(c) Johnny #5 (DRC Finals) (d) Johnny #5 (2016)

Fig. 6: Robots used for evaluation.

Atlas is the only hydraulically driven humanoid robot

which requires different control approaches compared to

electrically driven ones. The resulting varied walking capa-

bilities and constraints motivate the implementation of an

adaptable footstep planning system that can handle each

robot individually. This applies for footstep data representa-

tion as well as footstep planning policies. For instance the 3D

foot trajectory generation of the underlying walk algorithms

require footstep data in different formats. BDI’s walking

algorithm demands only for a lift height and a swing height

while IHMC’s approach accepts intermediate travel points

for the foot as well as the convex hull of expected ground

contact. Both scenarios could be handled by our framework

seamlessly. An example for different planning policies is

given in the following section.

B. Portability

The plugin system enables the adaptability needed to

support different humanoid robots and allows for quick pro-

totyping as well as highly dynamic behavior modifications

due to different code that can be executed dynamically. When

only using parameters, this behavior can only be achieved by

enormous implementation effort. As an example, the plan-

ning policies can be quickly changed by swapping plugins

as demonstrated in Fig. 7. The usual omnidirectional walk

(see Fig. 7a) can be easily constrained to a rotate-translate-

rotate (RTR) movement (see Fig. 7b) which was required by

the first generation Johnny #5 robot due to limited walking

capabilities. Although the RTR plan looks smoother than

the omnidirectional plan, it uses a higher number of steps,

resulting in longer travel time. This drawback is mitigated by

using the non-constrained planner generating omnidirectional

plans.

(a) Omnidirectional movement (b) RTR movement

Fig. 7: Different planning policies can be achieved by just

swapping plugins. Here, the omnidirectional planner (a) has

been constrained to RTR movements (b).

Another benefit of the plugin system is interchangeability.

In general, approaches or algorithms implemented as plugins

can be used in different projects as long they do not depend

on robot specific sources. This easily allows everyone to

share and contribute their own implementations across the

community and reduces the need for reimplementation. This

paradigm encourages code stability as existing code remains

unchanged when new plugins are added to the system.

Therefore, the footstep planning system provides a tool for

research in search-based planning policies especially for

difficult terrain scenarios.

Our contribution to Team VALOR shows that one of our

main goals have been clearly achieved. We have been able

to contribute high level perception and footstep planning

software to another team whose research focus has been more

on other aspects like design and control. The deployment of

our footstep planning system enabled them to benchmark

their control approach in humanoid locomotion on real

terrain quicker and even to use it in the DRC Finals. For

more details we refer to [22]. This case study shows how

our footstep planning framework can speed up evaluation

and usage of robot systems, especially when projects are

focused on actuation and control design.

As already introduced Johnny #5 is currently based on 3rd

generation of THORMANG and is supplied by ROBOTIS

with a walking engine. We have recently implemented a

basic integration to the newly released ROBOTIS framework

that is available at GitHub10,11. The code shows the minimal

effort spent to deploy the footstep planning system in a new

robot system. In this particular case, only robot specific con-

figuration files and the ThorMangStepPlanMsgPlugin which

is based on StepPlanMsgPlugin is needed to translate robot

specific data to get our framework running properly. Fur-

thermore, we also provide a plugin for the step controller12

which enables the full potential of the step controller while

providing only robot specific code. Latest results can be

seen in the video recorded from the Humanoids@Rescue

demonstration at RoboCup 201613. Here, all walked steps

have been planned by the presented footstep planner and

executed via the step controller. Especially at the 1:17 mark

the robot was successfully able to follow a large sequence

of footstep placement generated by our footstep planner.

In the following section we demonstrate the high capabil-

ity of our planning framework with Atlas as it had the best

locomotion capabilities available to us until now.

C. Perception

Fig. 8: Atlas stepping up successfully on a cinder block based

on previously online generated terrain data (see Fig. 3).

Online terrain generation is worthwhile because then up-

to-date terrain data is always available, even when the robot

is walking. Depending on the accuracy of the robot state

estimation, the robot is able to continue walking over rough

terrain without waiting to gather sufficient terrain data. In

case of Atlas the accuracy condition is met very well and

after a short walk in front of the cinder block (see Fig. 3)

the robot is immediately able to step up on it flawlessly (see

Fig. 8).

D. Planning

While the implementation of the previous footstep planner

[2] experienced heavy refactoring into the new framework,

the planning efficiency has always been considered. As

explained in Section III-D, the overhead of the plugin system

has been reduced to a minimum by design. On the other

hand, all unique features from the first footstep planner

version such as ground contact estimation for overhanging

steps have been preserved in the new framework.

To evaluate planning time we set up the pitch ramp and

chevron hurdle from DRC Trials. We ran tests isolated (Fig.

9+10) and combined (Fig. 11).

10https://github.com/thor-mang/thor mang footstep planning plugins
11https://github.com/thor-mang/thor mang footstep planner
12https://github.com/thor-mang/ROBOTIS-THORMANG-MPC/blob/

indigo-devel/thormang3 step control module/src/robotis online walking
plugin.cpp

13http://youtu.be/uoyYznea0Pk

Fig. 9: Step plan crossing the pitch ramp.

Fig. 10: Step plan crossing the chevron hurdle.

Fig. 11: Atlas walks non-stop over mixed terrain following

the footstep placements generated by our footstep planning

framework. The upper left image shows the terrain model

and planned footstep placements projected into the robot’s

camera view. The full video is available online at http://

youtu.be/Fd2D-XG9VOg.

In all tests the footstep planner is able to generate suitable

sequences of footstep placement in short amount of time

(see TABLE I). Although the numbers show that the new

planner is slower, here the travel distance must be taken into

account. The goal distances are almost doubled compared to

the DRC Trials plans. Considering that planning complexity

rises exponentially with the distance to the goal position, this

is still a good and comparable result. The combined test must

be highlighted here as in spite of increased terrain complexity

the planner is able to generate a solution almost in the same

time as only the chevron hurdles takes. In every test case the

Atlas robot is also able to cross the obstacles by executing

the planned steps as shown in Fig. 11.

E. Advanced Extensions

Although the presented work is focused on pure footstep

placement generation, the framework allows to extend the

https://github.com/thor-mang/thor_mang_footstep_planning_plugins
https://github.com/thor-mang/thor_mang_footstep_planner
https://github.com/thor-mang/ROBOTIS-THORMANG-MPC/blob/indigo-devel/thormang3_step_control_module/src/robotis_online_walking_plugin.cpp
https://github.com/thor-mang/ROBOTIS-THORMANG-MPC/blob/indigo-devel/thormang3_step_control_module/src/robotis_online_walking_plugin.cpp
https://github.com/thor-mang/ROBOTIS-THORMANG-MPC/blob/indigo-devel/thormang3_step_control_module/src/robotis_online_walking_plugin.cpp
http://youtu.be/uoyYznea0Pk
http://youtu.be/Fd2D-XG9VOg
http://youtu.be/Fd2D-XG9VOg

Terrain DRC Trials[2] Post DRC Finals

Pitch Ramp 0.7s 8 steps 3.9s 10 steps

Chevron Hurdle 1.8s 8 steps 4.3s 13 steps

Mixed N/A N/A 4.4s 14 steps

TABLE I: Planning times based on experiments illustrated

in Figures 9-11.

approach to more complex scenarios such as multi-contact

planning. For this purpose a StateGeneratorPlugin can ex-

tend the currently used state by e.g. hand poses. In order to

consider the full new state during planning, the new state

generator has at least to be accompanied by proper cost,

heuristic, collision checking plugins. These plugins can also

interface and use external whole body frameworks.

VI. CONCLUSION

In this work, an open source footstep planning framework

is described. It integrates perception, world modeling, full

3D planning, step execution tracking, human supervision and

coactive planning, while being modular and extensible.

A versatile plugin library system is presented that allows

the user to add new code into the planning framework with

few line of code. This powerful tool enables to provide

a modular footstep planning library that can be adapted

to almost any humanoid robot. Furthermore, the footstep

planning library allows for better collaboration between

humanoid locomotion projects due to the interchangeability

of plugins and standardized interface that simplifies sharing

of algorithms and code. We demonstrated how the presented

work can be either used as a 3D planner, as research tool,

or for benchmarking walking controllers.

In future work, we would like to extend the standard

plugin library by state of the art methods as well as novel

approaches. We are also working on getting the interactive

planning capability available for RViz which grants more

convenient access to the high level coactive planning func-

tionality out of the box.

VII. ACKNOWLEDGMENT

The authors would like to thank all members of Team

ViGIR and Team Hector for their contribution and support

which enabled the realization of this work. This work has

been funded by Defense Advanced Research Projects Agency

(DARPA) under Air Force Research Lab (AFRL) contract

FA8750-12-C-0337; The views expressed in this paper are

those of the authors.

REFERENCES

[1] M. Johnson, J. M. Bradshaw, P. J. Feltovich, C. M. Jonker,
B. Van Riemsdijk, and M. Sierhuis, “The fundamental principle of
coactive design: Interdependence must shape autonomy,” in Coordi-

nation, organizations, institutions, and norms in agent systems VI.
Springer, 2011, pp. 172–191.

[2] A. Stumpf, S. Kohlbrecher, D. C. Conner, and O. von Stryk, “Super-
vised footstep planning for humanoid robots in rough terrain tasks
using a black box walking controller,” in IEEE-RAS International

Conference on Humanoid Robots (Humanoids), 2014, pp. 287–294.

[3] S. Kohlbrecher, A. Romay, A. Stumpf, A. Gupta, O. Von Stryk,
F. Bacim, D. A. Bowman, A. Goins, R. Balasubramanian, and D. C.
Conner, “Human-robot teaming for rescue missions: Team ViGIR’s
approach to the 2013 DARPA Robotics Challenge Trials,” Journal of

Field Robotics, vol. 32, no. 3, pp. 352–377, 2015.
[4] S. Kohlbrecher, A. Stumpf, A. Romay, P. Schillinger, O. Von Stryk,

and D. C. Conner, “A comprehensive software framework for complex
locomotion and manipulation tasks applicable to different types of
humanoid robots,” Frontiers in Robotics and AI, vol. 3, p. 31, 2016.

[5] D. Maier, C. Lutz, and M. Bennewitz, “Integrated perception, map-
ping, and footstep planning for humanoid navigation among 3d ob-
stacles,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2013, pp. 2658–2664.
[6] R. Deits and R. Tedrake, “Footstep planning on uneven terrain

with mixed-integer convex optimization,” in IEEE-RAS International

Conference on Humanoid Robots (Humanoids), 2014, pp. 279–286.
[7] K. Bouyarmane and A. Kheddar, “Multi-contact stances planning for

multiple agents,” in IEEE International Conference on Robotics and

Automation (ICRA), 2011, pp. 5246–5253.
[8] K. Bouyarmane, J. Vaillant, F. Keith, and A. Kheddar, “Exploring

humanoid robots locomotion capabilities in virtual disaster response
scenarios,” in IEEE-RAS International Conference on Humanoid

Robots (Humanoids), 2012, pp. 337–342.
[9] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,

“A versatile and efficient pattern generator for generalized legged
locomotion,” in IEEE International Conference on Robotics and

Automation (ICRA), 2015.
[10] K. Harada, S. Hattori, H. Hirukawa, M. Morisawa, S. Kajita, and

E. Yoshida, “Motion planning for walking pattern generation of hu-
manoid,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2007, pp. 4227–4233.
[11] A.-C. Hildebrandt, D. Wahrmann, R. Wittmann, D. Rixen, and

T. Buschmann, “Real-time pattern generation among obstacles for
biped robots,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2015, pp. 2780–2786.
[12] M. F. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald,

and R. Tedrake, “Continuous humanoid locomotion over uneven
terrain using stereo fusion,” in IEEE-RAS International Conference

on Humanoid Robots (Humanoids), 2015, pp. 881–888.
[13] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami, “Planning

biped navigation strategies in complex environments,” in IEEE-RAS

International Conference on Humanoid Robots (Humanoids), 2003.
[14] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and

T. Kanade, “Footstep planning for the honda ASIMO humanoid,” in
IEEE International Conference on Robotics and Automation (ICRA),
2005, pp. 629–634.

[15] A. Hornung, D. Maier, and M. Bennewitz, “Search-based footstep
planning,” in ICRA Workshop Progress & Open Problems in Motion

Planning & Navigation for Humanoids. IEEE, 2013.
[16] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppala, and M. Campana,

“HPP: A new software for constrained motion planning,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2016.

[17] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: An open-source robot operating
system,” in ICRA Workshop on Open Source Software. IEEE, 2009.

[18] J. Garimort and A. Hornung, “Humanoid navigation with dynamic
footstep plans,” in IEEE International Conference on Robotics and

Automation (ICRA), 2011, pp. 3982–3987.
[19] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-

gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[20] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of
surface normal estimation methods for range sensing applications,” in
IEEE International Conference on Robotics and Automation (ICRA),
2009, pp. 3206–3211.

[21] T. Koolen, S. Bertrand, G. Thomas, T. De Boer, T. Wu, J. Smith,
J. Englsberger, and J. Pratt, “Design of a momentum-based control
framework and application to the humanoid robot Atlas,” International

Journal of Humanoid Robotics, vol. 13, no. 01, 2016.
[22] C. Knabe, R. Griffin, J. Burton, G. Cantor-Cooke, L. Dantanarayana,

G. Day, O. Ebeling-Koning, E. Hahn, M. Hopkins, J. Neal, et al.,
“Designing for compliance: ESCHER, Team VALOR’s compliant
biped,” Journal of Field Robotics, submitted.

	Introduction
	Related Work
	Footstep Planning Framework
	Introduction
	Plugin Management
	Parameter Management
	Footstep Planning Library
	Framework Extension
	Step Controller
	Terrain Modeling

	Operator Interaction
	Results
	Robots Using The Framework and Software
	Portability
	Perception
	Planning
	Advanced Extensions

	Conclusion
	Acknowledgment
	References

