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Abstract— In recent years, the numbers of life-size hu-
manoids as well as their mobility capabilities have steadily
grown. Stable walking motion and control for humanoid robots
are already well investigated research topics. This raises the
question how navigation problems in complex and unstruc-
tured environments can be solved utilizing a given black
box walking controller with proper perception and modeling
of the environment provided. In this paper we present a
complete system for supervised footstep planning including
perception, world modeling, 3D planner and operator interface
to enable a humanoid robot to perform sequences of steps
to traverse uneven terrain. A proper height map and surface
normal estimation are directly obtained from point cloud data.
A search-based planning approach (ARA*) is extended to
sequences of footsteps in full 3D space (6 DoF). The planner
utilizes a black box walking controller without knowledge of
its implementation details. Results are presented for an Atlas
humanoid robot during participation of Team ViGIR in the
2013 DARPA Robotics Challenge Trials.

I. INTRODUCTION

There has been significant progress in humanoid robotics
research in recent years. Advances both in hard- and software
raise the question how humanoids can be used to assist or
replace humans in hazardous environments. Motivated in part
by the lack of suitable robotic response technologies at the
Fukushima Daiichi nuclear disaster, the DARPA Robotics
Challenge (DRC)1 for disaster response scenarios aims at
answering this question. A crucial capability for the use of
humanoids in disaster environments is the ability to traverse
different types of terrain in harsh environments. Examples
of such terrain are uneven ground, narrow doorways and
ladders, all of which are also part of the capabilities that
are tested within the DRC. The first evaluation of the
participating teams was done at the DRC Trials in December
2013 with real robots where the presented approach was
already used.

The unpredictability of disaster scenarios implies that they
are among the robotic applications that benefit the most from
the cognitive abilities of a human operator. For this reason,
an approach that leverages the complementary abilities of a
human operator and a robotic system is likely to perform
best in such situations.

Towards this end, we present a footstep planning sys-
tem that allows supervised locomotion and navigation in
uneven environments including perception, world modeling,
3D planning and operator interaction. The system uses the
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perception system of the robot to generate a 3D world
model and 3D step sequences. Operators can thus select
target poses for the robot system without having to care
about terrain geometry or even single footstep placement.
The implementation of the presented planning system is part
of the Team ViGIR’s approach [1] to the DRC Trials 2013.

II. RELATED WORK

Humanoid locomotion is still a challenging task even
though walking capabilities of humanoid robots have in-
creased significantly in the recent years. While walking
over flat surfaces is relatively easy, the requirements for
unstructured terrain are much higher. The walking controller
has to face many external disturbance and the robot is
more likely to slip on non-flat surfaces. In [2][3] this issue
is addressed by implementing dynamic pattern generators.
However, both implementations do not cover navigation. This
problem might be mitigated by using a 3D planner that
provides suitable foot positions for the walking controller to
follow. In this way the walking controller can be informed
about the underlying terrain in advance.

The Covariant Hamiltonian Optimization for Motion Plan-
ning (CHOMP) [4] is a trajectory planner which optimizes
a given initial trajectory with respect to a cost function and
avoiding collisions. Another approach by Schulman et al. [5]
uses sequential convex optimization for optimal trajectory
generation. For this purpose each criterion, such as ZMP-
stability, can be modeled as as a constraint for optimization.
All approaches are capable to solve rough terrain tasks
with respect to robot kinematics, but they need an accurate
robot model including kinematics and masses and solving
the optimization problem may be computationally expensive.
Furthermore they can not use existing walking controllers
well because they overfit the solution towards a given robot
model, which is likely not the same as the used model by
the existing black box walking controllers.

Another category are contact-before-motion approaches
which decouple the planning and motion layer. Bouyarmane
et. al. introduce a multi-contact-planning approach in [6][7]
which is designed to be used with whole-body-control
(WBC). This approach generates a sequence of contact
configurations which have to be executed by the WBC. It
requires significant computational resources and so far is not
feasible for use in tasks such as encountered in the DRC, as
they do not allow for extended computation time.

As human resources and development time during the
DRC competition are very limited, we require an approach
which can be integrated in our systems easily and uses
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existing software. Thus, it should have a Robot Operation
System (ROS)2 interface and be able utilize existing walking
controllers. Finally we decided to use a graph-based footstep
planner similar to one that was already used successfully for
Asimo in the past [8]. This approach generates a sequence of
footsteps which can be used by walking controllers. Hornung
et. al. [9][10] implemented an open-source version which is
available for ROS, enabling quick integration in our system.

In [11][12] a first extension of previous implementation
of Hornung et. al. footstep planner [9][10] is shown. In [12]
they introduce how to generate a height map online using
an onboard stereo camera system and a collision checking
method using pre-generated inverse height maps of each
action. Although they generate a 3D world model, their
approach is only extended by special actions for step up and
step down motions. This enables 3D planning on flat ground
using predefined actions but is not sufficient for real world
application due to missing capability for planning on sloped
or random terrain.

Another open question is how to use the robot walking
controller capabilities in rough terrain tasks. This question
was addressed by the Learning Locomotion Project hosted
by DARPA. All participating teams implemented similar
approaches using a graph-based planner with learned or
optimized cost functions [13][14][15][16] which shows that
learning cost functions is a valid option.

In contrast to search-based planning approaches, MIT
recently presented their footstep planning system [17] which
generates a footstep plan by continuous optimization. For
this purpose they implemented a mixed-integer quadratically-
constrained quadratic program (MIQCQP). They demon-
strate that their planning system is able to solve complex
terrain scenarios but world modeling itself is still a weakness
in their approach. In the presented work the operator has to
define obstacle free regions manually by placing polygons.

Summarizing, only a few authors address terrain modeling
in their work e.g. generation of height maps from stereo
camera data [18][12]. Most approaches are based on external
motion tracking systems or assume a known world model.
This aspect may not be neglected if the robot should walk
in real-world environments, which motivates our work.

III. EXPERIMENTAL PLATFORM

The proposed approach is designed for humanoid robots
providing a walking controller. Thus, the presented work is
evaluated with the Atlas robot without limitation to gen-
erality. Atlas is a 1.88m tall with a weight of 150kg near
anthropomorphic robot developed by Boston Dynamics Inc.
(BDI) as the direct successor to PETMAN [19]. The main
external sensor is a Carnegie Robotics Multisense SL sensor
mounted as the head. This sensor uses both a Hokuyo UTM-
30LX-EW LIDAR mounted on a slip ring for continuous
rotation and a stereo camera system. Furthermore the robot
provides a pose estimate based on a internal IMU and internal
joint sensing.

2http://www.ros.org/

The robot is delivered with a proprietary walking con-
troller developed by BDI. The closed source “BDI Walk-
ing/Stepping Behaviors” provide several controller modes
including a quasi-statically stable stepping mode as well as
dynamically stable walk mode. From our perspective, the
BDI Walking Behavior is a pure black box; this emphasizes
the generality of our footstep planning approach.

IV. WORLD MODELING

To our knowledge graph-based planners have nearly only
be used for planning in flat environments. In contrast 3D
planning needs the ability to estimate the full 3D state of
each placed foot. This concerns in particular the roll, pitch
and height of the foot pose which are not needed for 2D
planning approaches.

Thus, a suitable world model is essential for reliable
footstep planning in rough terrain scenarios and has to
provide all required information in an efficient way. Although
Atlas is equipped with multiple sensor systems, only the
LIDAR scanner is a suitable for large range scans providing
accurate terrain data for long distance planning. For this
purpose a processing pipeline was implemented to generate
a suitable word model for rough terrain planning. The first
step is to aggregate each single LIDAR scan into a 3D point
cloud given an aggregation horizon in seconds. In our case
we use only data which was collected since the robot has not
moved due to missing robot state estimation and correction.

Afterwards, noise is filtered out from the resulting point
cloud by applying the Voxel Grid and Moving Least Square
filters of the Point Cloud Library (PCL)3. Additionally, a
Pass Through filter is used to reduce the computational
expense by cropping the region of interest. All parameters
of the filtering process were adjusted offline by comparing
the resulting surface reconstruction of the Greedy Projection
approach which is provided by PCL. Figure 1 emphasizes
the difference between noisy and filtered point clouds.

(a) Noisy point cloud and 3D surface reconstruction due to missing filtering

(b) Filtered point cloud and 3D surface reconstruction

Fig. 1: Examples for 3D surface reconstruction

3http://www.pointclouds.org/



Given the smoothed point cloud we can extract the height
and normal of the surface. The height map is obtained easily
by storing the z-component of each point of the cloud in
a discretized 2D grid map. Each cell of the height map
contains the highest value discovered in the point cloud.
Unfortunately the height map contains many small holes due
to sparse LIDAR data. This issue may let the planner fail
unnecessarily due to missing height information. Therefore,
missing height information p̂z is estimated by the weighted
average of the point’s p̂ = (p̂x, p̂y, p̂z)
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which is demonstrated in figure 2.

(a) Cluttered pixels indicate missing
height information

(b) Homogeneous height data is now
available due to estimation

Fig. 2: Example for gap filling in a height map

Fig. 3: Resulting normal estimation of a pitch ramp using
PCA-based approach: The white lines visualize the estimated
normals while the underlying point cloud consists of the
turquois points.

The normal is extracted by applying a Principle Com-
ponent Analysis (PCA)4 based approach from PCL on the
neighborhood of the query point. This operation is performed
on every point of the cloud which is surrounded by a
sufficient amount of neighbors in a given distance. As the
solution for the direction is not unique, all normals are
converted to point upright relative to gravity (see figure 3).

4http://pointclouds.org/documentation/tutorials/
normal_estimation.php

Given a target position and orientation the normal can be
obtained and used to determine the roll and pitch angle for
this query point. In order to determine a normal for any
query point efficiently, all of them are saved in a k-d-tree,
which is already implemented in PCL. In our case we use
the position as query key and the normal is resolved with
O(log n) in average.

For simple body collision checks the LIDAR scans are
additionally used to generate an octomap [20] which results
in a 3D world representation composed of cubes. This
octomap is used to generate 2D occupancy grid maps by
projecting a slice of the octomap.

V. FOOTSTEP PLANNING

Our novel approach efficiently generates suitable plans
for rough terrain tasks using existing black box walking
controllers without deep knowledge about their implemen-
tation that requires decoupling of planning and execution
layers. For this purpose the planner must be able to determine
feasible paths with the given world model as fast as possible
to operate the robot efficiently.

The presented work is based on Hornung’s footstep plan-
ning framework [9][10][11]. In this paper we want to high-
light the major extensions and all necessary steps to perform
footstep planning for rough terrain tasks under real-world
applications. Finally, the approach is evaluated with the Atlas
robot but may be easily transferred to general classes of
humanoid robots providing a walking controller.

The basic footstep planner by Hornung et. al. defines
the state s as the pose of the foot s = (x, y, θ, f), where
{x, y} denote the 2D-position, θ the orientation and f ∈
{left, right} the corresponding foot. All successor states
s′ of s are generated by applying the transition function
t(s, a) where a ∈ A are actions describing the displacement
vector (∆x,∆y,∆θ, f) and f denotes the supporting foot.
Therefore the successor state s′ is simply derived by:

s′ = t(s, a) = s
a7→ s′ (2)

The set A consists of all possible actions a which are also
denoted as “footstep primitives”. For simplicity we omit
the foot f in all following representations as we assume
that the planner will generate an alternative sequence of
footsteps and every action can be mirrored in following way:
(∆x,∆y,∆θ, left) = (∆x,−∆y,−∆θ, right).

Finally this representation is used to generate a graph with
states as nodes and actions as transition condition between
the nodes. Here, the Anytime A* (ARA*) [21] algorithm is
used to determine the shortest path from start to goal which
is transformed to a sequence of footsteps afterwards.

A. States, Actions and Transition Model

The key parts of graph-based planning are the states,
actions and the transition model. These components have to
be adapted in a way they become suitable for rough terrain
tasks requiring full 3D planning space.



1) States: Rough terrain traveling requires a 3D state
space representation. Thus, the original approach was ex-
tended by z, φ (roll) and ψ (pitch) to the 3D state space
s = (x, y, z, φ, ψ, θ) = (sx, sy, sz, sφ, sψ, sθ). Fortunately,
these new components are constrained by the underlying
surface and can easily be obtained by the generated height
map and normals as described in section IV. For this purpose
the corresponding normal n = (nx, ny, nz)

T has to be
converted to Euler angles given the target orientation θ of
the foot:

φ = − arcsin(nx sin(−θ) + ny cos(−θ)) (3)
ψ = arcsin(nx cos(−θ)− ny sin(−θ)) (4)

which fits a plane tangential to the surface at the query point.
The Euler angle representation simplifies the comprehension
and design of cost functions. Although the extended state
space now has six DoF, the search space itself remains
at three DoF. For this reason the computational effort for
searching an optimal solution is not increased by this modi-
fication, provided the world model can be queried efficiently.

With the growth of larger, more complex humanoid robots,
consideration of dynamics has become more important and
cannot be neglected for the Atlas robot. For this reason the
cost functions were extended to evaluate the cost c(s, s′) for
full step representation (see Figure 4b) instead of the original
half step representation (see Figure 4a) where the origin of
the swing foot is unknown. This allows us to consider the
dynamic behavior estimate of the robot executing this step
sequence. We define a new representation for step sequences
consisting solely of the start state s and goal state s′ of the
moving foot which are given relative to supporting foot s0.
This kind of representation enables a unique representation
for any possible step, and permits the use of lookup tables
instead of computational expensive function evaluations, to
reduce planning time significantly.

(a) half step representation (b) full step representation

Fig. 4: Modification of step representation

2) Actions: Although the original approach was designed
for small humanoid robots walking on flat ground, the search
space remains the same (see Section V-A.1). Thus, an action
a is still defined as displacement vector (∆x,∆y,∆θ).
Rough terrain tasks demand higher accuracy in planning
level due to unstructured debris on the floor. This problem
is further exacerbated by larger humanoid robots whose

reachable regionR for a single step is significantly increased.
Therefore, the action set A must be increased as well
to maintain a sufficient variation of discrete actions and
accuracy for crossing rough terrain. For this reason it is not
feasible to extend the set A manually like the authors in
[12] do. Thus, we define a reachability polygon R next to
the supporting foot s0 from which the footstep primitive set
A is sampled in a discrete way.

B. Cost Functions and Heuristics

The cost function used in combination with a heuristic
has the maximum impact on the planner solution [10].
This makes designing cost functions and heuristics the most
important and challenging task.

1) Cost functions: As we do not have any detailed insight
into the robot’s walking controller (here the BDI Walk
Behavior) all cost functions can only be designed by system-
atic experiments, expertise or machine learning approaches.
Besides the robot capabilities basic properties like minimal
number of steps or shortest path has to be considered by
cost functions too. Additionally, life-size humanoid robots
have versatile walking capabilities which should be utilized
in rough terrain, so the footstep planner has to minimize
multiple, possibly competing costs e.g. shortest path and
minimal fall risk. For this reason a hierarchical system of
cost functions was implemented, dividing each criterion in
a different layer which is finally conquered individually by
a specific cost function. This design was realized by using
the Decorator Pattern [22], enabling the composition of cost
functions in a flexible manner.

In this section we will only introduce briefly the imple-
mented cost functions.
• Constant: This functions adds the constant value cstep

on top of all cost regardless of the given step. Using this
function enforces the planner to generate a step-minimal
solution.

• Euclidean: The euclidean cost function computes the
2D distance traversed by the robot’s torso. This way
the planner is enforced to find the shortest path.

• GPR: This cost function wraps a Gaussian Progress
Regression implementation estimating step cost by pre-
viously collected and offline learned observation.

• Map: In Section V-A.1 we have pointed out that instead
of evaluation of computational expensive cost function a
simple lookup table may be used which is implemented
by this cost function,

• Boundary: This cost function implements the robot
specific capabilities and invalidates all step sequences
which can probably not performed by the robot. This
cost function was determined by systematic experiments
with the real robot to discover the limits of the system
which are tightened to decrease the risk of failure.
In sum, this cost function penalize violation of these
tightened limits and has the most influence on Â(s).

• Dynamics: The dynamic behavior e.g. accelerations are
modeled as additional cost and prevents high accelera-
tions of the robot torso.



• Ground Contact: This cost function utilizes the ground
contact estimation (see Section V-C) and adds artificial
cost, when the given step position does not fit the
underlying terrain perfectly.

In the current state following hierarchy is used (top-down):
Constant, Euclidean, Boundary, Dynamics and Ground Con-
tact. Finally the accumulated cost represents the effort to
execute the step sequence.

2) Risk Measurement: The reachability polygon P intro-
duced in Section V-A.2 implies the risk of including bad
footstep placements. For this reason we introduce in our
novel approach a quantity denoted as risk to distinguish
between effort (cost) and feasibility (risk) of a step. Merging
risk and cost in a single value would not prevent the planner
from using bad steps in a plan when only a small number
of step options are available. Furthermore, risk evaluation
allows to generate dynamically a subset of valid actions
Ã(s) ⊆ A depending on current state s which improves
the quality of generated plans. Analogous to evaluation of
cost, the risk is simultaneously computed in every layer.
Thus, feasibility of a step can now be determined based on
the accumulated risk while the effort to execute this step is
represented solely by the cost.

3) Heuristic: Finding the global best solution is not
guaranteed by using the ARA*-planner in anytime mode.
While the cost function defines the shape of the resulting
(local) cost-minimal plan, the heuristic influences which
local minimum is found by the planner; thus, the heuristic
may not be neglected. The original heuristics uses

h(s) = ‖s− sgoal‖+ cθ · |∆θ|+ cstep ·
‖s− sgoal‖

dmax
(5)

to estimate remaining cost with dmax as maximal step
distance, ∆θ the shortest angle between θ, θgoal and cθ,
cstep as predefined cost per angular difference or step. In
combination with the cost functions defined in Section V-
B.1 the planner has a poor planning performance (see figure
5a), because the heuristic does not take into account that the
maximum step distance dmax should depend on the direction
of movement. Hence, we distinguish between transversal
∆xmax and lateral ∆ymax step distance limits leading to
following modified heuristic:

nsteps = b ∆x̂

∆xmax
+

∆ŷ

∆ymax
c (6)

ĥ(s) = ‖s− sgoal‖+ cθ · |∆θ|+ cstep · nsteps, (7)

where ∆x̂ and ∆ŷ denote the needed transversal and lateral
movement distance without using any rotational movement.
Thus, nsteps is just an estimation of minimal number of total
transversal and lateral steps needed to reach the goal. In
usual cases ∆xmax > ∆ymax holds which means the robot
can move faster forwards than sidewards. Thus, the modified
heuristic ĥ(x) prefers moving directly towards the goal why
ĥ(x) performs better than h(x) in Figure 5b.

C. Collision Check
Rough terrain tasks demand the ability to detect obstacles

and walkable surfaces and utilize these information for

(a) Sight line euclidean step cost
heuristic: 101.659 expanded states,
95s planning time

(b) Modified euclidean step cost
heuristic: 10.102 expanded states, 9s
planning time

Fig. 5: Comparison of heuristics

navigation. Our approach is focused on solving the terrain
task of the DRC Trials which has fairly sloped terrain without
walls and the robot doesn’t need to perform multi-contact-
planning. Thus, we may assume if two sequent states are
collision free then the trajectory will be collision free too.

1) Occupancy Grid Map: Hornung et. al. already imple-
mented an efficient collision check strategy for rectangular
bodies like the feet which is proposed by Sprunk et al.
[23] using an occupancy grid map. They assume that all
not surmountable obstacles are artificially inflated in the
occupancy grid map [10] to keep the upper body collision
free. But this approach is insufficient for our purposes
because the robot has to traverse narrow doors. Therefore,
we split collision checking into two layers: One layer is
exclusively responsible for upper body and the other for feet
collision check. Analogously, we extend the footstep planner
to use different occupancy grid maps for each layer which are
generated by slicing the octomap as described in Section IV.

2) Ground Contact Estimation: In the domain of 3D
planning collision checking using 2D occupancy grid maps
has the drawback to take not the terrain height into account.
When using the occupancy grid map, we can not distinguish
between holes and hills. Furthermore, while performing as
expected, occupancy grid maps have the drawback of wasting
space by encircling each obstacle with non-traversable cells.
As a result, collision checks with occupancy grid maps are
too strict because they enforce placing each foot avoiding
obstacles completely. This results in longer paths and the
ARA*-planner takes a lot of more computational time trying
to find shorter solutions. Furthermore the occupancy grid
map based collision checks do not allow any kind of over-
hang when climbing upstairs.

This motivates our new approach to use solely the height
map introduced in Section IV. Given a target foot state s
the undersurface of the footprint is sampled equally spaced to
compute the vertical distance ∆z = h(sx, sy)−sz relative to
the terrain surface h(x, y) which is shown in Figure 6. Each
sampling point is classified by using thresholds into collision
(∆z > 0.75cm), overhung (∆z < −1.0cm) or otherwise
contact. If at least one sampling point is classified as collision
the foot state will be treated as invalid. Otherwise the ground
contact support is given as percentage of sampling points
classified as contact. These narrow thresholds are feasible



because of well filtered LIDAR data (see Section IV) and all
surfaces in the competition are flat. In general the thresholds
must be scaled towards data quality. The ground contact
support estimate becomes worse with increasing noise in case
of many overhanging points and the planner performance
decreases due to many false positive collision detections.
In future work we plan to use the convex hull of contact
points as ground contact estimation that promises more
robustness against false positive overhung classifications.
Furthermore, it enables the planner to generate steps having
only at least three contact points (e.g. stepping on three
poles). An estimate of surface friction is neglected for now
because all tasks are built up with slip-proofed surfaces. But
friction estimation will be added when required by future
competition.

Fig. 6: This example shows the sampling points at the
undersurface of the footprint. The steps 4 and 6 have been
sampled in higher resolution.

The ground contact estimation superfluous the usage of
discretized occupancy grid maps. Furthermore the planner
is now able to plan overhanging steps which increases
flexibility of foot placement. For this reason the planner
is able to find and optimize solutions quicker improving
significantly the resulting plan. In Figure 7 two examples of
the DRC Trials are given where the ground contact support
outperforms the usage of occupancy grid maps by generating
shorter and straighter paths.

(a) occupancy grid map (b) ground contact estimation

Fig. 7: Comparison of collision checking approaches: In
both examples the ground contact estimation outperforms the
occupancy grid map.

D. Miscellaneous modifications
1) Start foot selection: As the first step is not explicitly

defined by the planning request, the planner has to select

the starting foot by itself. The original footstep planner by
Hornung et. al. selects always the left foot. In contrast we add
the logic to select the foot which is closer to the goal pose.
This behavior allows the planner to turn quicker towards the
goal position which results in shorter paths.

2) Automatic goal pose refinement: The operator may
define the planning goal by pose. In this case the planner
itself has to define the final feet position at the end of the
plan. The planner is able to autonomously project both feet
on the sloped surface. If the initial feet configuration collides,
the planner is able to shift slightly the feet pose to a collision
free configuration within the given reachability polygon R.

3) Post-Processing: Walking controllers are supposed to
define further parameters for each step e.g. lift height. We
are interested in getting as fast as possible a solution, so
optimizing these parameters during planning process is not
feasible due to increased dimension of search space. Thus,
these parameters are improved in a post-process step after the
final solution was found. In the current state we determine
only the lift height by searching the maximum terrain height
in sight line between origin and target pose of the step.

VI. OPERATOR INTERACTION

For supervised robot operation different abstraction layers
for controlling the footstep planner is available. With increas-
ing task complexity a more detailed operator interface can
be used. The most simple way to interact with the footstep
planner is by moving the ghost robot to the desired goal
position demonstrated in Figure 8. Alternatively, the operator
may define directly a target pose by clicking on the grid map.

(a) (b) (c)

Fig. 8: Use case of footstep planning: The operator places
a template (a). The ghost robot (green) will be aligned with
the template (b) and the footstep plan is generated (c).[24]

For more complex task like rough terrain several widgets
are available which we want to introduce briefly:
• Parameter Widget: This widget provides access to the

major planner parameters.
• Step Widget: The widget provides the option to define

manually single steps or whole patterns.
• Terrain Request Widget: 3D terrain model generation is

unfortunately computational expensive; thus, it should
only be generated by operator request.

Transmission bandwidth is very limited during the compe-
tition. Thus, the operator receives only a thinned out version
of the point cloud consisting of a very small fraction of the
original point cloud data to verify the generated footstep
plan which is visualized with boxes which can be seen in
Figures 6 and 7.



VII. RESULTS

Fig. 9: OCS perspective of the ramp (DRC Trials)

Fig. 10: Robot traversing the pitch ramp (DRC Trials)

Fig. 11: OCS perspective of the chevron hurdle (DRC Trials)

Fig. 12: Robot traversing the chevron hurdle (DRC Trials)

At an early development stage we tried to learn a suit-
able step cost function using Gaussian Progress Regression
(GPR) for the simulated robot. For this purpose random
step pattern has been generated and executed in simula-
tion. After each experiment the step pattern was rated by

successful execution or fall. In total over 40k experiments
were performed in simulation whose data was used to
learn a step cost function which estimates the risk of fail-
ure. In https://www.youtube.com/watch?v=hT-_
n4icg54 the footstep planner is able to utilize the black
box walking controller much better compared to the manual
defined footstep primitives in https://www.youtube.
com/watch?v=JMCREHzimpM. However, it turned out
that offline learning approaches like GPR takes too much
effort to train. All recorded data and the learned cost
functions are supposed to be invalidated every time the
robot is modified, which happened often because Atlas was
still in development. Thus, extensive (re)training must be
performed, which is not feasible for a real robot system. Fur-
thermore, simulation-based learning is not feasible because
of significant differences between the model and real robot.

As we got only a limited developing time until the DRC
Trials, we had to investigate in an approach which is easier
to maintain in case of changes of the robot system or
the walking controller. For this reason the final solution is
to define a hierarchical step cost function determined and
optimized by systematic experiments (see Section V-B.1).

This approach was successfully used during the DRC
Trials in all tasks without any falls caused by the footstep
planner. While the BDI walking controller provided a very
stable walk, we demonstrated how to utilize this walking
controller close to the limits. During the DRC Trials almost
all teams using the Atlas robot with the provided BDI
walking controller performed significant smaller step sizes
and with it slower travel speed.

The terrain task was the supreme task for locomotion
where the planner performed well. It took only a few minutes
and very few interaction steps by the operator to cross the
pitch ramp and the chevron hurdle. The resulting execution is
summarized in the Figures 10 and 12 while the corresponding
perspective of the operator control station which contains
the 3D world model and footstep plan is showed in the
Figures 9 and 11. We also provide videos of stepping
over the pitch and the chevron hurdle at https://www.
youtube.com/watch?v=7Qv__bLa3j4 and https:
//www.youtube.com/watch?v=vAtqVKGWvFM.

In general we are able to generate plans on flat surfaces
within a few seconds using a single core of a Core i7
computer. Going into 3D space, the initial solution is found
within a few seconds too, but the improvement of the plan
takes around ten seconds depending on terrain complexity.
The terrain model generation time depends on the selected
size of the region of interest; but at the DRC Trials it took
a maximum of one second for a region of the size which
is visible in Figures 9 and 11. The plan for the pitch ramp
in Figure 9 could be generated online in 0.7 seconds and
for the chevron hurdle in Figure 11 in 1.8 seconds. To our
knowledge almost all participating teams haven’t performed
the terrain task by using a high-level footstep planner. Instead
each step was defined by the operator manually which takes
obviously more planning time.

As discussed in Section IV the footstep planner



is also required to navigate through narrow doorways.
The video at https://www.youtube.com/watch?v=
BlUfl5iSAkU shows the successful attempt of the robot
walking autonomously through a very small doorway without
any collisions using our footstep planner.

VIII. CONCLUSION

In this work a complete supervised 3D footstep plan-
ning system covering perception, world modeling, full 3D
(6 DoF) planning and operator interaction was introduced.
We demonstrated a graph-based footstep planning approach
utilizing an existing black box walking controller to generate
whole sequences of steps in rough terrain scenarios. The 3D
state of each step is determined by the planner automatically.
Thus, the operator has not to define manually each step to be
executed which increases the operator efficiency and mission
performance.

Many features like the used full step representation with
reachability polygon as well as the novel ground contact esti-
mation based on height map and normal estimation improve
the planner performance in uneven terrain significantly. The
generated terrain model provides sufficient data to perform
3D footstep planning in unstructured environments and a
compressed version can be sent to the operator station to
provide situational awareness. Furthermore, we described a
couple of user interfaces that were implemented to provide
flexible footstep planning control given in different abstrac-
tion layers.

The first simulation-based experiments show a proof of
concept for learning cost functions for black box walking
controller. However, it turned out that the investigated offline
learning approaches are not feasible for robots which are still
in development due to required excessive training.

In future work we would like to improve planning results
by generating the reachability polygon (see Section V-A.2)
online by using inverse kinematics and respecting in parallel
the center of mass dynamics including all carried objects.
Experience has shown us that the terrain model is crucial for
reliable 3D footstep planning. For this reason we will inves-
tigate how to improve the model quality, while reducing the
computational expense. The effectiveness of the supervising
operator depends on the provided options to interact with
the footstep planner. Therefore we are going to implement
an interactive footstep planner interface which will allow the
operator to fine tune the planned steps. The advanced planner
will also incorporate plan stitching to allow more complex
and flexible “human-in-the-loop” planning which mitigates
the lack of intelligence of the planning system.
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