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Abstract. In this paper an approach is presented that allows a human
supervisor to efficiently interact with task allocation in a multi-robot
team (MRTA). The interaction is based on online modification of the
setting of the employed MRTA optimization algorithm during its com-
putation. For the example of a computationally expensive mixed-integer
linear programming algorithm it is demonstrated how to achieve up to
optimal solution quality, while simultaneously reducing the required cal-
culation time compared to a fully autonomous optimization. The supervi-
sor is enabled to rate feasible, intermediate solutions based on objective
or subjective quality criteria and personal expertise. In that way, also
suboptimal solutions can be chosen to be satisfactory, and the solver can
be terminated without the need to wait for the completion of the compu-
tation of the optimal solution. An event based communication concept
with queries is used as an efficient means of implementation of the in-
teraction. Furthermore, the supervisor can support the MRTA solver in
finding good solutions by defining crucial parts of the solution structure.
These intuitive commands are internally translated into constraints and
are added to the problem as lazy constraints. This combination of human
expertise and state-of-the-art optimization algorithms allows to achieve
up to potentially optimal task allocation in much shorter time.

1 Introduction

Multi-robot task allocation (MRTA) is a key element in mission planning and
execution of autonomous robot teams. It deals with assigning a set of m tasks
to a group of n robots in the best possible way. This problem is known to be
NP-hard [7]. This means, calculating the optimal solution can take very long
time in case the number of tasks is high and/or the team of robots is large.
Therefore, usually heuristics are applied, to find feasible solutions in shorter
time. However, in many cases these solutions are not good enough, unless the
applied algorithms account for specific situations. As an example consider the
setup depicted in Figure 1. Here, two quadrotors are supposed to explore a small
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Fig. 1. Example scenario for joint exploration of a small indoor environment by 2 UAVs

indoor environment by visiting all of the marked locations. For a human, it is
not difficult to observe that a good solution approach would be to distribute the
two quadrotors to the two rooms. For a general task allocation algorithm, that is
not specialized on clustering sets of tasks, this is difficult to calculate. A simple
greedy scheduler for example would at first assign the tasks in the right room
to the two robots, and then assign the tasks in the left room, hence both robots
would work on some tasks in both rooms.

This example demonstrates, that in many cases a task allocation heuristic
is not sufficient for achieving a good solution. In [15], a mixed-integer linear
program (MILP) formulation for solving the MRTA problem for heterogeneous
robots and arbitrary tasks with timing constraints has been presented. There
interaction with a human to define crucial parts of the MILP were considered
offline before the start of the MILP solver. Also premature termination of the
solver by the human supervisor was not enabled. The results demonstrated that
already a single input from a supervisor can significantly speed up the optimiza-
tion process, but still the planning time can be very high, even for basic examples
like the one in Figure 1. However, in many applications it is not necessary to cal-
culate the optimal solution for the MRTA problem. Instead an approximate
solution in between a heuristic solution and the optimum is sufficient from a
practical point of view. Therefore, in this paper the approach is extended to
allow a human supervisor to interact with the MRTA problem definition and
solver online during the computation of the solutation to interactively influence
the solution quality and the required computational time.

For an autonomous algorithm it is often difficult to decide if an intermediate
approximation of the solution is good enough, whereas for a human it is difficult
and exhausting to manually solve the full MRTA problem. Therefore, we suggest
in this paper to use an autonomous algorithm for solving the MRTA problem, and
have a human supervisor to interact with the solver and problem setting online
during computation. The interaction concept is based on queries which are part
of an event-based communication system as presented in [16]. It is demonstrated
in this paper, how queries and additional MILP constraints can be used to allow
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a human supervisor to interact with a state-of-the-art optimization to end up
with good solutions in much shorter time.

2 State of Research

The different approaches to solve the MRTA problem can be classified into
mainly three categories: centralized, (usually distributed) marked-based, and
behavioral approaches.

If the mission can be described as an optimal assignment problem (OAP)
[5], the optimal solution can be found, e. g., using the Hungarian method [11], in
O(mn2) time (with m robots and n tasks). Search tasks can be described as a
multiple traveling salesman problem (TSP, [12]), which can be transformed into
a mixed-integer linear program (MILP) for faster solving [17]. The constraint op-
timization coordination architecture COCoA presented in [9] combines heuristic
methods with a MILP formulation into an anytime algorithm, to solve complex
problems with interdependencies between different goals.

Market-based approaches are usually variants of the contract net protocol
(CNP) [19]. Here, the robots trade tasks for revenue, to maximize the team’s
overall utility. In the simplest form, this results in a greedy scheduler, like MUR-
DOCH [6]. This solution is 3-competitive to the optimal solution, which is the
best possible performance bound if neither planning in advance nor task re-
allocation is allowed [8]. With the M+ architecture [2], also task re-allocation is
allowed, and the robots plan one task in advance to achieve a higher solution
quality. One of the first market-based approaches is TraderBots, described in
[3]. In [4], this architecture is extended to robot leaders, that centrally optimize
the allocation within subgroups of robots. In [18], each robot maintains a rough
schedule of its future actions, and inserts traded tasks into this schedule.

In the context of behavioral approaches, each robot selects its actions based
on local information. Cooperation and coordination emerge usually implicitly.
First behavioral approaches were inspired by collective behavior of insects like
ants and bees, without using explicit communication among the individual robots
[10]. In ALLIANCE [14], the robots broadcast their current activities to their
teammates. The agents are motivated to execute tasks based on impatience and
acquiescence, which allows them to take over tasks from other robots. With
STEAM [20], robots use shared plans and joint intentions, which enables also
intentional teamwork among the robots.

None of the above approaches considers online interaction with a human
supervisor to interactively influence the solution procedure. Not much work is
known which considers the interactive modification of a complex task allocation
algorithm by a human supervisor. For realizing the interaction, we suggest a
concept based on queries and event-based communication in addition to our
previous work as described next.
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3 Queries as Interaction Mode Between Robots and a
Supervisor

A communication system has been presented in [16], that includes the use of
queries as robot-initiated interaction mode. The robots are enabled to transfer
decisions to a human supervisor instead of taking critical decisions autonomously.
The decision mode (autonomous or with human support) can be changed dy-
namically during runtime. An enhanced version of this concept, featuring more
query modes and an improved query manager, is applied here.

A query is a specific event that can be sent occasionally by any part of a
robot’s software components. A query contains a description of the required de-
cision and a set of possible solutions. This can be either a fixed set of static
solutions, or can allow free inputs if appropriate, for example for numerical val-
ues. For each query, a response event is expected, containing one of the originally
stated possible solutions. Additionally, queries can be tagged to different topics,
and can have payloads like text or images. Policies (c. f. [16]) based on topics
can be used to adapt the query mode, and hence regulate the robots’ level of au-
tonomy (LOA). This allows to trade off full autonomy for the amount of queries
and resulting interruptions for each scenario independently.

To allow adapting the LOA during runtime, a query manager is used. It
collects all queries that are generated by the robot’s behavior control software,
and determines the response, taking into account the currently granted authority
of the robot.

In case a decision is transferred to the supervisor, three possible modes for
presenting the queries are considered:
Supervisor decision (SD): All possible answers, including variable parameters,
are presented, without differentiating between the options. The supervisor has
to select one of the options, and if necessary specify variable parameters.
Autonomous with confirmation (AC): In addition to SD, a potentially best so-
lution is determined by the query manager, and highlighted for the supervisor.
The human can either confirm the preselected solution, or select one of the other
available options.
Autonomous with veto (AV): The solutions are presented as with AC, but if the
supervisor does not veto the suggested solution, this answer is given automati-
cally.

If a decision is not transferred to the supervisor, the robots have to select a
solution autonomously. Also in this case, several different modes are possible:
Autonomous Default (AD): One of the possible solutions is defined as default
answer, which is always selected.
Autonomous Random (AR): One of the possible solutions is chosen randomly.
Autonomous Algorithm (AA): An algorithm is executed, that determines the
best solution based on the current status of the robots and the environment.

With the different query modes, it is possible to model lots of decisions in
the robot control software as queries. The supervisor can use policies to de-
fine the mode for each query type, or for groups based on tags. This allows to
transparently switch between autonomous and supervised decisions, because the
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querist always uses the interface to the query manager. The more queries have
to be answered with supervisor support, the lower is the robots’ LOA, and the
higher is the workload of the human supervisor. When selecting the mode for
the different query types, the supervisor should not be bothered with queries
that can be easily answered autonomously, to avoid effects of human fatigue and
complacency [13].

Within the context of this paper, queries are used to allow a MILP solver to
interact with a human supervisor, to speed up the optimization process.

4 MILP Formulation of Multi-Robot Task Allocation
with Timing Constraints

We already presented a mixed-integer linear program (MILP) formulation for
the MRTA problem in [15]. This formulation can handle arbitrary tasks with
optional timing constraints (i. e., earliest start time or latest time to be finished).
The most important equations are given again here for reference, the complete
MILP is presented in [15].

Given is a set of n robots, i ∈ R, 0 ≤ i < n, and a set of m tasks j ∈
T, 1 ≤ j ≤ m. The final number m of all tasks is not known in advance, because
new tasks can arise during the mission, either automatically, or defined by the
supervisor. Each robot i ∈ R can only work on a single task j ∈ T at a time,
but can sequentially execute one task after another. For each robot i ∈ R, a cost
matrix Ki ∈ R(m+1)×m is given, that defines the cost for executing task j2 ∈ T
after finishing task j1 ∈ T , with entries κij1j2 , j1 ∈ T ∪ 0, j2 ∈ T . Entries κi0j
describe the cost for executing task j starting with the current configuration.
The costs include the time to reach a destination and the time a robot needs
to work at the target destination. Variables ηij1j2 describe the time for robot
i to execute task j2 after task j1. ηij1j2 may be equal to κij1j2 , but this is not
necessary. A revenue ρj is paid for completing task j.

Binary variables xij are used to indicate that task j is assigned to robot i.
The robots can plan a fixed number of p tasks in advance. Each task can be
assigned to at most one robot. This leads to the following constraints:∑

i∈R
xij ≤ 1 ∀j ∈ T (1)

∑
j∈T

xij ≤ p ∀i ∈ R (2)

To account for the order of tasks, that are assigned to the robots, variables yijk
are used to indicate, if task j is the k-th task for robot i:

p∑
k=1

yijk ≥ xij ∀i ∈ R, ∀j ∈ T (3)
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To end up with a linear objective function, sequence variables zij1j2 are intro-
duced, that indicate that task j2 follows task j1 in the schedule of robot i:

zij1j2 ≥ yij1k−1 + yij2k − 1 ∀i ∈ R, ∀j1 ∈ T ∪ {0}, j2 ∈ T, ∀ 0 ≤ k ≤ p (4)

Each task has parameters tjmin ≥ 0 and tjmax ≤ ∞, that describe the earliest
and latest time the task can be accomplished without penalties. The time t̄j is
the calculated time when j is scheduled to be completed. Variables p1j and p2j
reflect if task j is scheduled too early (and hence the robot has idle time), or too
late, given the time constraints of all tasks.

p1j ≥ tjmin
− t̄j ∀j ∈ T (5)

p1j ≥ 0 ∀j ∈ T (6)

p2j ≥ t̄j − tjmax ∀j ∈ T (7)

p2j ≥ 0 ∀j ∈ T (8)

t̄j are modeled as recursive constraints based on the current schedule:

t̄j ≥ zi0j · ηi0j + p1j + tnow ∀i ∈ R, ∀j ∈ T (9)

t̄j2 ≥ (t̄j1 + p1j2 + ηij1j2) · zij1j2 ∀i ∈ R, ∀j1, j2 ∈ T (10)

Please refer to [15] for a linear version of these equations.

The objective function sums up the costs for executing all scheduled tasks,
and subtracts the respective revenues. Furthermore, exceeding the time con-
straints is penalized with factors α1 and α2. The final objective function, which
has to be minimized, is defined as:∑

i∈R

∑
j1∈T∪{0}

∑
j2∈T

zij1j2 · κij1j2 −
∑
i∈R

∑
j∈T

xijρj +
∑
j∈T

(p1j · α1 + p2j · α2) (11)

The constraints matrix quickly gets very large. Both, the number of variables (the
columns of the matrix) and the number of constraints (the rows of the matrix)
grow linearly with the number of robots and with the planning horizon, and grow
quadratically with the number of tasks. We showed in [15], that adding few, but
crucial, constraints manually by the human supervisor (by defining a small part
of the solution) can significantly speed up the optimization. In the described
work, these constraints had to be given before the start of the optimization. In
this paper, we extend this approach by enabling the supervisor to define parts
of the solution while the optimization is already running. A further extension
allows the solver to request input from the supervisor using queries as defined
in Section 3.
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5 Human in the Loop During the Optimization

In many cases, globally optimal task allocation is not needed, instead a solution
is sufficient that is good enough but can be provided in reasonable time. Callback
functions during the optimization allow to access the current incumbent, which
denotes the best approximation of the solution the solver has found so far, and
other relevant data. It is possible to terminate the optimization if desired, e. g.,
based on user-defined criteria. These criteria can be, e. g., after a predefined
time limit is reached, or if the gap between the current incumbent and the best
known performance bound is below a given threshold. However, frequently it
is not possible to formulate adequate termination criteria beforehand, because
they can be dependent on the current mission or on the needs of the supervisor.
Therefore, the termination of an optimization should not be defined strictly
before starting the calculation, but should rather be rated dynamically during
the optimization. At this point, a human supervisor is put into the loop. The
supervisor can fulfill two tasks for supporting the optimization: 1) rating if the
current incumbent is good enough, and 2) defining parts of the solution.

5.1 Rating the Current Incumbent

Frequently, a human supervisor would subjectively rate a solution as (not) good
enough, without being able to formally define a metric for this decision. There-
fore, every time a new incumbent is found by the solver, the effect of its potential
execution on the robot team is presented graphically to the supervisor. For this
purpose, different types of queries (c. f. Section 3) are used.

Fig. 2. Exemplary query dialog asking the supervisor if an incumbent is good enough.

In the simplest form, the supervisor is asked to decide if an incumbent is
good enough (and hence shall be executed) or not (Figure 2). While waiting for
the response, the solver can continue searching for the optimum. Therefore, this
query is formulated as an AV query (autonomous decision with veto).
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Besides this simple yes/no decision, the supervisor can also be asked to mark
parts of a solution that are considered to be good and should be maintained for
the next iteration. This is formulated as SD query (supervisor decision). In the
interface, the supervisor can mark the sequences that should be maintained by
clicking on them. As soon as the supervisor has finished this task, he can click
the submit button to send the whole list back to the solver. Internally, additional
constraints are added to the model, which require the given sequences to be in
the next solution, as described in the next section. In the next iteration, these
stored sequences are used as a suggestion to be kept for the next solution, which
results in an AC query (autonomous with confirmation). The supervisor can
either confirm to keep these sequences for the next iteration, or can change the
set by adding or removing some sequences.

5.2 Defining Parts of the Solution

The supervisor is enabled to manually define parts of the desired solution, similar
to [15]. However, while in [15] all user inputs had to be done before the start of the
optimization, here the user can give input at any time. The respective constraints
are added as lazy constraints while the optimization is running. Lazy constraints
are constraints that can be added after the start of the optimization to cut off
some feasible solutions. The solver guarantees that all unintended solutions can
be cut off using lazy constraints.

Assigning specific tasks and sequences to the schedule of robot i: The supervisor
can assign tasks j1 − jk to the schedule of robot i by selecting the respective
mode in the user interface for robot i, and then clicking on all tasks that should
be assigned to this robot. The number k of assigned tasks needs to be less or
equal to the planning horizon p, otherwise an error occurs and the supervisor is
asked to deselect some tasks for robot i. For the MILP, the assignment of a task
is translated into the constraint

xij = 1 for j = 1, ..., k (12)

These constraints do not regulate the order of the assigned tasks, it is only
required that the respective tasks are somewhere in the schedule of robot i. To
define an ordering, the supervisor can select the sequence mode for robot i, and
mark ordered pairs to be included as sequences in the robot’s schedule. This can
be done without explicitly assigning the tasks first, because adding the sequences
implies that the task are assigned to the robot. For a sequence j1j2, the following
constraint is generated:

zij1j2 = 1 (13)

In case a task is assigned to two robots, the supervisor receives a query to resolve
this conflict.
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Executing a specific task at a higher priority: The supervisor can request that
a task j is executed within the next N steps in the schedule of any robot, with
N < p. Internally, this results in the constraint

∑
i∈R

N∑
k1

yijk = 1 (14)

However, it is more intuitive for the supervisor to define a time limit, which is
directly assigned to tjmax . To definitely ensure the timely execution, a further
constraint needs to be added:

t̄j ≤ tjmax
(15)

But this can in the worst case make the problem infeasible if the deadline cannot
be met by any of the robots. Therefore, this method should only be used carefully.
An alternative to raise the priority for executing task j is to either raise the
revenue ρj , or to lower the cost κikj to execute this task ∀i ∈ R, k ∈ T ∪ 0.

Defining groups for joint execution: Consider the scenario in Figure 2. If not
more than two robots are available to work on these tasks, it is apparently a good
solution to execute the tasks in each room as separate groups. The supervisor
can enter the group definition mode, and then mark all tasks that belong to
this group J . To model this command as a soft constraint, the costs to execute
sequences within the group J are lowered. Depending on how strong this soft
constraint is intended to be, κij1j2 is scaled with a factor 0 < a < 1, ∀i ∈
R, j1, j2 ∈ J . The smaller the factor a is chosen, the more likely will a robot
that works on one of these tasks also execute the other tasks in group J . To
model the same request as a hard constraint, the following constraints with new
binary variables gi are added to the system:

k · gi ≤
∑

j1,j2∈J
zij1j2 ∀i ∈ R (16)

∑
i∈R

gi = 1 (17)

These constraints require that one robot has at least k tasks of J in its schedule.
Parameter k must not be larger than the planning horizon p, otherwise the
problem is infeasible.

Excluding a specific sequence from the solution: The supervisor can exclude the
consecutive execution of two tasks j1 and j2, for example to reduce the set of
feasible solutions and hence speed up the optimization. This can be achieved by
adding the following constraints:

zij1j2 = 0∀i ∈ R (18)

The described interaction types allow a human supervisor to support the
solver in finding the optimal solution by either cutting off non-optimal solutions
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quickly, or by pointing out ways to quickly find better solutions. Hard constraints
lead to a high speed-up, because they require fixed values for some variables. Soft
constraints lead to a larger gap between the objective value of the optimum and
other solutions. Hence, also soft constraints lead to a faster calculations, but this
effect is stronger with hard constraints [15]. However, hard constraints can lead
to infeasible problems. Therefore, it should be decided carefully if the system
should translate the input of the supervisor into soft or hard constraints.

Infeasible commands that can be detected during the input are directly re-
jected, if possible with a hint for the supervisor. Sometimes, the combination of
different commands causes an infeasibility. In this case, it is usually difficult to
automatically explain the reason to the supervisor. For handling such situations,
the easiest way to resolve this problem is to reject the most recent constraints.
Another option is to compute an irreducible inconsistent subsystem (ISS) that
causes the infeasibility, and either remove these constraints or present them to
the supervisor for further inspection. However, this requires the supervisor to
have a detailed knowledge about the model, which is not assumed to be the
case. Instead of removing constraints, slack variables can be used to meet the
constraints as good as possible. In all cases, some commands of the supervisor
cannot be addressed properly.

6 Application

The implementation in the presented experiments uses the robot operating sys-
tem ROS (www.ros.org). The MILP is modeled using the python interface of
Gurobi [1].

6.1 Rating the Current Incumbent

Consider the experiment setup of Figure 1. To find the optimal solution, the
planning horizon p has to be set to 9. On an Intel Core i7 with 4x 3.5GHz and
16GB RAM, this could not be calculated for memory reasons. The calculation for
p = 8 took almost 18 hours [15]. However, when having a look at the incumbents
found during the optimization for p = 9 (Figure 3), it can be seen that the
optimal solution is actually found much faster (i. e., after 2800 seconds), while
the rest of the calculation time is needed for proving that no better solution
exists. Furthermore, also one of the suboptimal solutions, that are found after
much shorter calculation time, can be good enough with respect to the subjective
quality criteria of a human supervisor.

To leave the decision whether a solution is good enough or not to the supervi-
sor, a query is generated every time the solver finds a new incumbent (Figure 2),
as described in Section 5.1. The incumbents for this example can be seen in Fig-
ure 3. In the first three feasible solutions, the robots switch between the two
rooms, and therefore these solutions are not good enough, on the one hand be-
cause execution of this solution takes too long, and on the other hand because
the risk of colliding robots is very high with these solutions. Already after less

www.ros.org
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Fig. 3. Incumbents of the optimization for the considered example. The calculation
time (measured from the start of the optimization until the incumbent is found) is
displayed on top of every incumbent.

than 30 seconds, the structure of separating the two drones to the two rooms is
found, but the paths of both robots are very disordered. However, only 6 sec-
onds later a solution is found that looks much cleaner. This is more than 10
seconds faster than the average calculation time for planning horizon 4 (with
fully autonomous solving), but the solution quality is much better, because none
of the robots has to switch rooms. After 209 and 258 seconds of calculation
time, solutions are found that are very close to the optimum. This is still twice
as fast as the fully autonomously calculated solution for planning horizon 5 (the
minimum planning horizon for ending up with the optimal structure). Finally,
after almost 2800 seconds of calculation time, an optimal solution is found. This
means, that the solver, if not interrupted, spends more than 20 times the amount
of calculation time to find out that this actually is the best solution.

For most supervisors, the solution found after 33 seconds of calculation time
is good enough, and hence they would decide to stop the optimization at this
point. However, some other supervisor might want to wait for an even better
solution, and interrupt the optimization at a later point in time. Hence, queries
are a good means for enabling a human supervisor to interact with the solver
in a flexible manner. This shows, that already this simple interaction mode can
significantly speed up the process of finding a satisfactory solution.
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6.2 Defining Parts of the Solution

The effectiveness of the second interaction mode, defining parts of the solution,
is highly dependent on the current supervisor. While one supervisor might be
able to quickly determine a critical constraint, another one may be less skilled
(or less lucky), and may need more time or more interaction steps to end up
with comparably good results.

Furthermore, the performance of a supervisor is dependent on the user inter-
face, i. e., how well he understands the different possibilities to interact with the
system and how fast he can actually express his commands. This is influenced
by the training level of the supervisor and by the design of the user interface.
However, development and evaluation of the user interface is not in the focus
of this work. Therefore, no experiments for this interaction mode are presented
here.

The results presented in [15] can be transferred to this work. There it had
been shown that a single allocation given by a human supervisor can speed up
the calculation time by an order of magnitude, while simultaneously also the
quality of the solution is higher already with short planning horizons. Because
the supervisor can, in contrast to the previous work, add commands while the
optimization is running, he has more time to determine good interactions that
can be inspired by the current incumbent, and also a higher number of commands
can be added. Therefore, a well-trained supervisor is expected to have an even
higher impact on the solution quality and calculation time using this interactive
mode, than a supervisor who only gives a couple of commands before the start
of the optimization.

7 Conclusion

The presented methods allows a human supervisor to interact online with a
state-of-the-art optimization to achieve potentially better results for the MRTA
problem in the same or shorter time needed for computation. As extension to
[15], the supervisor is enabled to online rate the quality of a solution based on
objective or subjective criteria and user expertise, and thereby interrupt the
optimization early in case an intermediate solution candidate is satisfactory.
The communication of these ratings are realized using queries, which allow the
optimization to get feedback from the supervisor every time a new incumbent
is found. Furthermore, the computational time for optimization can be reduced
by adding lazy constraints while the optimization is running. The supervisor
can formulate intuitive commands, which are internally translated into MILP
constraints.

The results demonstrate that these methods are adequate for interactions be-
tween a human supervisor and an optimization approach for solving the MRTA
problem. The superiority of humans over machines with respect to problem solv-
ing using conceptional thinking and user expertise is utilized. At the same time,
the supervisor is not required to perform tasks that can be better achieved
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by autonomous calculations. Furthermore, it has been demonstrated that these
types of interactions can have a potentially high impact on the quality of the
solution and on the time required to compute these solutions. However, the ac-
tual improvement in more complex scenarios will also be depending on the user
interface and on the individual supervisor. Extensive user studies and interface
evaluation were not in the focus of this paper and are subject of future work.

The approach presented in this paper can be extended to general MRTA
algorithms which are characterized by high computational efforts and enable
interactive monitoring of their progress and modification of the problem setting.
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