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Abstract— Introducing compliant actuation to robotic joints
is an approach to ensure safety in closer human-machine
interaction. Further, the possibility to adjust stiffness can be
benificial, considering energy storage and the power consump-
tion required to track certain trajectories. The subject of this
paper is the stiffness and position control of the Variable
Torsion Stiffness (VTS) actuator for application in compliant
robotic joints. For the realization of a variable rotational
stiffness, the active length of a torsional elastic element in serial
configuration between drive and link is adjusted in VTS. Based
on a brief repetition of this basic concept and the deduction of
an extended drive train model, this paper gives an advanced
power analysis clarifying power-optimal settings from previous
basic models and identifying addtional settings that allow for
a more versatile operation. Based on these results that can
be generalized to other variable elastic actuator concepts, an
optimized strategy for setting stiffness is determined consid-
ering the whole system dynamics and natural frequencies as
well as antiresonance effects. For position control of VTS in
a prototypical imlementation, a nonlinear position controller
is the designed by means of feedback linearization and the
extended model. Adapting the stiffness of the model in the
controller provides the posibility to ensure the required tracking
performance although the system is modified significantly by
changing the drive train stiffness. Further, notes on practical
implemenation and a friction compensation are given.

I. INTRODUCTION

Contemporary, the interaction of humans and robots is get-
ting closer and thus safety aspects receive increased priority
in the design of robots. A promissing approach to ensure
safety are compliant concepts for joint actuation in series
elastic setup. Beyond safety benefits, those can provide en-
ergy storage and optimize the drive train efficiency and power
consumption [1]. For such purposes, the possibility to adjust
the stiffness of the compliant drive train is advantageous, as
it allows to match its natural frequency to the frequency of
the desired trajectory as shown in [2]–[4]. First concepts of
actuators with variable stiffness like the Series Elastic Actu-
ator (SEA) [2], [5] and the Mechanical Impedance Adjuster
(MIA) [6] were intoduced in the 1990s. Present concepts
can be categorized in four groups of fundamental stiffness
variation principles [1]: Equilibrium-controlled, antagonistic-
controlled, structure-controlled and mechanically controlled
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stiffness. Actuators using the equilibrium-controlled princi-
ple like SEA, change the equilibrium position of a spring
as shown in [7]. Approaches working with the antagonistic-
controlled principle utilize actuators coupled antagonistically
and working against each other as in AMASC [8]. A high
number of contemporary variable stiffness designs belong to
structure-controlled and mechanically controlled solutions.
While the first ones change stiffness by a modification of
the physical structure of an elastic element as in MIA, the
latter ones like MACCEPA [9] adjust the system stiffness
by pretension. The authors’ approach is based on variable
torsion stiffness (VTS) and aims at biomechanically inspired
robotic joints as in lower limb prostheses [10]. As the
torsional joint stiffness is adjusted by varying the length of an
elastic element, it belongs to the structure-controlled variable
compliant actuators. The functional concept described in [10]
enables compact actuators with a large stiffness bandwith
and customizable dynamic characteristics. A first simulative
study based on models of drivetrain and compliance control
mechanism in [10] indicated that power consumption is
comparable to other present approaches for moving the link,
while VTS has very low power consumption in setting joint
stiffness and shows to be beneficial in retaining the selected
stiffness and varying it during operation.
In this paper the stiffness and position control of VTS

in the actuation of compliant robotic joints are investigated
based on an advanced power analysis. After a brief repetition
of the basic concept, an extended drive train model is derived
based on the preliminary one in Section II. An advanced
power analysis considering the parameters of a prototypical
implementation is performed based on simulations of the
extended model in Section III. Subsquently, Section IV gives
an optimized strategy for setting the drive train’s stiffness
considering the system dynamics including the natural fre-
quencies as well as antiresonance effects. In Section V, a
position control algorithm for practical application in the
VTS prototype is implemented by feedback linearization
with stiffness adaptation and simulative results showing the
tracking performance are presented. After some notes on
practical implemtation of this control scheme, a conclusion
and an outlook are given in Section VI.

II. MODELING

The concept and functional units of an actuator using
variable torsion stiffness are given in the upper part of
Figure 1, while the lower part shows the control schemes
presented in Section IV and V. In the VTS concept, actuator
1 applies a torque τi to the torsional elastic element and
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Fig. 1. Principle of VTS functionality and block diagram of control
architechture.

thus moves the link. The adjustment of the torsional drive
train stiffness kvts(x) is implemented by varying effective
length x of the elastic element via the location of a counter
bearing using actuator 2. Due to the separation of the actua-
tors driving the joint and setting its stiffness, this adjustment
is conducted independently from the control of joint position
in idle state as well as during operation.

A. Basic Models

The main transfer paths of actuators with variable torsion
stiffness are the compliant drive train and the stiffness control
path. Models for both parts are derived in [10]. The model
of the compliant drive train is given by

τt = kvts(x)ϑ =
GIt(x)

x
(ϕo − ϕi) . (1)

In (1), the torsional angle ϑ corresponding to the difference
of the output position ϕo and the input position ϕi is induced
by the torsional torque τt of the elastic element, which is
equal to −τo in Figure 1. The torsional stiffness kvts(x)
of the elastic element is described based on the material’s
modulus of elasticity in shear G, the active length x of the
elastic element and the torsional moment of inertia It(x)
of the elastic element. Considering frictional effects in the
counter bearing, the the stiffness control path is modelled by

Ff = −µ
kvts(x)

rn
ϑ . (2)

B. Extended Drive Train Model

In [10] the model of the elastic drive train is used for the
simulation of driving a pendulum via the VTS concept. The
dynamic equation of this system is given by

Irp ϕ̈o +mp g α lp sin(ϕo) = −τt = τo . (3)

Yet, this model assumes an ideal actuator without inertia and
hence neglects the dynamic influences of it. In this paper, this
preliminary model is thus extended regarding the mechanical
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Fig. 2. Extended mechanical model of the VTS drive train.

transfer behaviour of actuator 1 as shown in Figure 2 and
in [11]. Hence, the dynamic equations of the system are

M (qo) q̈o + C(q̇o, q) +G(qo) +K (qo − qi) = 0 , (4)
J q̈i −K (qo − qi) = τi , (5)

according to the model for elastic joint robots from [12].
In this, qo = ϕo represents the position of the output
or link sided pendulum and qi = ϕi corresponds to the
input or drive sided position. The input torque τi equals
the actuator torque τm transformed by the gear ratio ig .
In (5), the matrices M (qo) = Irp, C(q̇o, qo) = 0, G(qo) =
mp g αp lp sin(ϕo), J = Irm and K = kvts represent scalar
values, since only one link is considered. Regarding the link
side, the moment of inertia of the pendulum is given as Irp =
mp (αp lp)

2
+Ip. The reduced inertia Irm = ig

2 Im+Ig+Ic
of actuator, transmission and coupling regarding the drive
side is considered in J according to [13]. In G(qo) the
gravitational terms are modeled, while K represents the
elasticity of the drive train. All mechanical parameters of the
model are based on the prototype given in [14] and presented
in Table I.

TABLE I
PARAMETERS OF MECHANICAL SETUP AND CONTROL [10], [15].

Parameter Value Unit

V
T
S
dr
iv
e
tr
ai
n

kvts 50− 350 Nm/rad

xmin 10.0 · 10−3 m

xmax 100.0 · 10−3 m

Im 1.80 · 10−4 kg m2

Ig 0.95 · 10−4 kg m2

Ic 2.40 · 10−3 kg m2

ig 80

Pe
nd
ul
um

mp 6.81 kg

Ip 11.05 · 10−2 kg m2

lp 0.45 m

αp 0.77

g 9.81 m s−2

C
on
tr
ol

kR,p 10000 Nm rad−1

kR,v 4000 Nm s−1 rad−1

kR,a 600 Nm s−2 rad−1

kR,j 40 Nm s−3 rad−1

a 5.9 Nm

b 357.1 Nm s rad−1
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Fig. 3. Power consumptions Pm,i of an ideal stiff actuator (black line), the basic VTS model (shaded mesh, left) and the extended VTS model (shaded
mesh, right) versus frequency fs and stiffness kvts.

III. POWER ANALYSIS

For the power analysis of the drive train, the powers
required to perform the motion of input Pm,i = τi ϕi

and output Pm,o = τo ϕo are investigated based on (5)
and τo = −τt. Additionally, the power consumed for stiffness
setting is analyzed with (2). As in [10], stiffness adjustment
is presumed to happen instantaneously and the setting energy
Es is given by

Es =

? x2

x1

|Ff | dx ,

=
???µτt

R
(x2 − x1)

??? . (6)

In this radial distance of the counter bearing rn is assumed
to equal to the outer radius R and the elastic element is
supposed to have a neglectable damping constant cvts [10].
The motion energies of input and output are further given
by Em,i =

?
tm

|Pm,i| dt and Em,o =
?
tm

|Pm,o| dt. Thus,
the average power consumption Pi, required from the ac-
tuators, results from the total energy consumption Ei =
Em,i + Es for link motion and stiffness adjustment divided
by the elapsed time tm.
The investigations of the extended model are performed

by an inverse dynamics simulation of (5) considering a
sinusodial trajectory with a magnitude of 10 ◦. As the power
consumption for an ideal stiff actuator equals Pm,o, it is
also derived from this simulation. For comparability to [4]
and [10], the calculations for the basic drive train model 1 are
repeated with inverse dynamics. Further, the initial energy
of the different models is considered in all simulations,
since this represents the actual operational state and is
compatible with the assumptions in the studies mentioned
above. In contrast to those, the investigated stiffness intervall
is extended to range from 5Nm/rad up to 350Nm/rad,
while frequencies from 0.1Hz to 3.5Hz are considered to
clarify the system dynamic influences of the extended model.
Further, the usage of inverse dynamics allows to avoids the
necessity to consider settling times or falsifying influences
due to the control algorithm.

A. Link Motion

The power consumption required for motion resulting
from the two simulations are given in Figure 3. In both
plots, the power consumption of an ideal stiff actuator is
indicated by a black line on the axes planes for reference,
while the shaded meshs in both plots represent the power
consumptions of the VTS drive train. The results for the
basic model shown in the left plot coincide with the ones
from [10], as one area of minimum power consumption
can be identified. Comparing this and the results for other
compliant actuators in [4] to the right plot showing the results
from the extended model, it becomes distinct that two regions
of minimum power consumption occur instead of one. This
is due to the system dynamics of the extended model that
considers the input inertia Irm caused by actuator, coupling
and transmission. With the increased investigated frequency
range, a further area of minimum power consumption can be
observed a frequency below 0.5Hz. In contrast to the other
minimum areas, this one is influenced by the variation of the
stiffness kvts only weakly. As the extended model describes
the system dynamics better than the preliminary ones, one
can see that a deeper investigation of the extended model
as in Section IV is required to find a strategy for setting
power-optimized stiffness values.

B. Stiffness Setting

As the model for the stiffness adjustment path of VTS is
not extended, it shows comparable power requirements for
both simulation and is thus presented for the extended model
only. The power consumption is determined by

Ps =
Es

tm
. (7)

In [10] it is shown, that the power required for stiffness
adjustment is very low in comparision to the power demand
of link motion. Hence, the results from the simulation with
the extended model are given by absolute power instead of
relative energy values in figure 4. Again, the low power
consumption of the stiffness adjustment can be observed.



It also becomes obvious that the required powers increase
with decreasing stiffness due to the caracteristics of the
elastic element. Beyond this, the power consumption reaches
a minimum at about 0.8Hz for low stiffness values. This is
due to the low input power required at this point and the
resulting low values for the friction force Ff on the counter
bearing.

IV. STIFFNESS CONTROL
With the insights from power analysis, an power-optimized

strategy for adjusting the stiffness of the drive train can be
derived. In Figure 1, this strategy corresponds to the block
stiffness controller that determines the power-optimized stiff-
ness value based on the model and the current trajectory. For
basic models considering the output inertia Irp only, mini-
mum power consumption could be achieved by matching the
natural frequency of the linearized system to the frequency
of the trajectory due to [4] and [10]. In the case of VTS and
the corresponding basic modell this is given by

ω0,b =

?
kvts +mp g lp αp

Irp
, (8)

regarding the operating point ϕo = 0◦. Due to the results
from the analysis of the extended model this is not sufficient,
since three areas of minimum power consumption occur
instead of one. To investigate the causes of these areas, the
system dynamics of the extended model are analyzed. First
indications on stiffness setting due to the system dynamics
of the drive train are given in [11] based on the linearized
extended model. Yet, the two natural frequencies examined
there do not explain the power consumption observed in Fig-
ure 3 completely and hence further investigation is necessary.
For this, the transfer function from the input torque τi to the
output position qo

qo(s)

τi(s)
=

kvts
c4 s4 + c2 s2 + c0

, (9)

and the transfer function from the input torque τi to the input
position qi

qi(s)

τi(s)
=

Irp s
2 + kvts +mp g lp αp

c4 s4 + c2 s2 + c0
, (10)
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Fig. 4. Absolute power consumption Ps for setting stiffness in the extended
VTS model (shaded mesh, right) versus frequency fs and stiffness kvts.

of the linearized extended model are considered, where

c4 = Irp Irm , (11)
c2 = (Irm + Irp) kvts + Irm mp g lp αp , (12)
c0 = kvts mp g lp αp , (13)

and ϕo = 0◦ is chosen as operating point. For both transfer
functions the system characteristics represented by the nat-
ural frequencies are identical and given by the roots of the
denominator c4 s4 + c2 s

2 + c0.
Further, a antiresonance can be observed due to the zero

of the transfer function from the input torque τi to the input
position qi. The frequency ωa,e of this antiresonance is iden-
tical to the natural frequency ω0,b of the basic model given
in (8) and thus only depends on the output characteristics.
In Figure 5 the variation of the natural and antiresonance
frequencies of the linearized system are ploted in comparison
to the contour of the motion power consumption determined
with the extended model. The comparison of the contour
from nonlinear simulation shows, that the frequencies de-
termined from linearized transfer functions represent an
appropriate approximation of the nonlinear ones. Further,
the comparison of the frequencies and the power contour
in Figure 5 clarify the reasons of the power-optimal areas
distinctly: The first natural frequency ω0,e1 is about 0.5Hz
and influenced by stiffness variation only slightly. Due to
this and the low power requirements at low frequencies,
tuning the drive train to this frequency should not lead to
significant improvements compared to ideal stiff operation
of VTS. Selecting stiffness by considering the other two
areas of minimum power consumptions shows to be a more
appropriate method, as those can be manipulated better by
stiffness adjustment, provide significant decrease of power
consumption and cover the investigated frequency range. As
shown in Figure 5, these areas are caused by the antireso-
nance observed at the input with ωa,e and the second natural
frequency ω0,e2 of the system. With this clarification of the
reasons leading to the power minima, one can see that setting
stiffness by (8) based on basic models as in [4] and [10],
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leads to strategies that are power-optimized. Although such
models do not consider the system dynamics of the drive
train completely, machting the natural frequencyat ω0,b of
the basic model is power-optimal, since this frequency is
identical with the antiresonance ωa,e of the extended model.
Thus, stiffness adjustment is performed using

kvts,a(ω) = −Irp ω
2 −mp g lp αp , (14)

Anyhow, the stiffness adjustment can be optimized further
based on the second natural frequency ω0,e1 of the extended
model resulting in the adjustment law

kvts,02(ω) = −Irm Irp ω
4 + Irm mp g lp αp ω

2

(Irp + Irm)ω2 +mp g lp αp
. (15)

Since it is more sensitive to stiffness variation, this allows to
cover an even wider range of frequencies during operation.
Addtionally, it becomes possible to tune the drive train
based on the second natural or the antiresonace frequency
depending on the current application scenario. For this,
switching between these areas frequently should be avoided,
as this would increase power consumption.

V. POSITION CONTROL

For position control of the extended model, the computed
torque control from [10] is replaced by a controller based
on feedback linearization as proposed in [12], [16]. Further,
the influence of varying the stiffness kvts is investigated and
notes on practical implementation are given subesequently.

A. Feedback Linearization

For the design of the feedback linearization control scheme
that is depicted by the block diagram in Figure 1, the
extended model (5) is rewritten in nonlinear state space
representation with the state vector

?
x1 x2 x3 x4

?T
=

?
qo q̇o qi q̇i

?T
. (16)

Hence, the system is represented by

ẋ = f(x) + g(x) u , (17)

ẋ =




x2
mp g αp lp

Irp
sin(x1)− kvts

Irp
(x1 − x3)

x4
kvts

Irm
(x2 − x4)


+




0
0
0
1

Irm


 u ,

where the system input u equals the input torque τi. Instead
of using a nonlinear control law directly, this torque is com-
puted by a linear controller v(z) after performing feedback
linearization by the state transformation

z =




x1

x2

−mp g αp lp
Irp

sin(x1)− kvts

Irp
(x1 − x3)

−mp g αp lp
Irp

x2 cos(x1)− kvts

Irp
(x2 − x4)


 , (18)

and the input transformation

u(x, z) =
Irp Irm
kvts

(v(z)− a(x)), (19)

based on the nonlinear function

a(x) =
mp g αp lp

Irp
sin

?
x2
2 +

mp g αp lp
Irp

cos(x1)
kvts
Irp

?

+
kvts
Irp

(x1 − x3)

?
kvts
Irp

+
kvts
Irm

+
mp g αp lp

Irp
cos(x1)

?
,

(20)

due to the design given in [12], [16]. Assuming that the
model fits the real system perfectly, the system with the two
transformations behaves like a linear state space system with

A =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 , (21)

and B = [0 0 0 1]
T , while the components of transformed

state vector z correspond to the output position ϕo, veloc-
ity ϕ̇o, acceleration ϕ̈o and jerk

...
ϕo. For this system, a linear

tracking control law

v(z) = z
(4)
d + kR z̃ , (22)

is designed. In this, z(4)d corresponds to the desired value of
the fourth derivation of the transformed state z1 = q1, z̃ is
the state control error and kR = [kR,p kR,v kR,a kR,j ] are
the control gains determined by pole placementof all poles
to −10 as given Table I.

B. Influence of Stiffness Adjustment

For the adaptation of the control algorithm according to the
modification of the drive train stiffness during operation, this
is considered in the model based transformations as shown in
the block diagram in Figure 1. By adapting the input and state
transformations given in 19 and 18 to the current stiffness,
feedback linearization and the suitability of the linear control
design should be guaranteed for all possible stiffness values.
To investigate this and the dynamical errors occuring

due to stiffness modification, the controlled extended model
is simulated considering a sinusodial reference trajectory
with 2.0Hz and a magnitude of 10 ◦. During the simula-
tion time, the stiffness kvts is modified from 160Nm/rad
to 60Nm/rad, which is implemented by a fifth order polyno-
mial. The results from this simulation are shown in Figure 6.
In the upper left plot, the angular positions are depicted,
while the lower left plot presents the corresponding control
errors. It becomes distinct, that both errors increase due to the
dynamical changes during stiffness modification. Anyhow, a
stable control with robust performance regarding stiffness
variation is provided, as both control errors are compensated
in a short period of time. In the upper right plot of 6, the
trajectory of stiffness modification is shown and the power-
optimized values are marked: The dotted line corresponds
to a stiffness of 123.41Nm/rad representing an adjustment
of the drive train according to the antiresonance frequency
with (14). Further, the dash-dotted line indicates tuning
the drive train by considering the second natural frequency
with (15) and thus selecting a stiffness of 73.59Nm/rad.
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Fig. 6. Simulation results of the controlled extended model: Left plots -
Position and control error of input (grey) and output (black). Upper right
plot - Stiffness modification. Lower right plot - Input power consumption.

The indications of those values, are also given in the lower
right plot, that represents the required input power and shows
a significant reduction for those.

C. Notes on Practical Implementation

For practical implementation on the test rig shown in [14],
the assumption that the model ideally fits the real system
might not be given. Hence, the control algorithm should be
extended to be robust against model deviations as it is done
in [12] for example. Further, the sensor minimal solution
given there could be used to control the test rig by measuring
the input position ϕi and velocity ϕ̇i only. Due to friction
in the motor-gear unit of the prototype setup, the position
control is extended by a friction compensation as shown
in [14]. This is introduced to the control law τi = u(x, z) +
τfr,i by feedforward control τfr,i = a sign(ϕ̇i)+b ϕ̇i, where
the model parameters in Table I are identified by least squares
regression based on measured data.

VI. CONCLUSIONS

With the extended model of VTS given in Section II,
holistic power analysis of the mechanical drive train system
is performed in Section III. The results show that three areas
of power-optimized operation can be found due to the two
natural frequencies and the antiresonance of the drive train.
With this, a basis for the selection of power-optimized stiff-
ness values for specific applications and trajectories is given.
Furhter, the low energetic effort for setting energy shown
in [10] is substantiated. Based on those results, the causes of
areas with low power consumption requirements are clarified
by the system dynamics and tuning laws for power-optimzed
stiffness adjustment are given in Section IV. Beyond this,
feedback linearization is applied to the extended model and
adapted regarding the stiffness selection in Section V. A
simulation shows that appropriate tracking performance can
be provided depending on the rate of stiffness adjustment.
Additionally, modifying the stiffness in a range containing
both power-optimzed values shows their positive effect in

dynamic operation. For the prototype, notes on practical
control and friction compensation are shown in V.
In their future works, the authors will focus on the

implementation and control of the VTS prototype. This
comprises the robust control of the drive train as well as
the automization and control of the counter bearing for
stiffness adjustment. Further, a optimization of the elastic
elements will be conducted for better integration and struc-
tural integrity. With the finalized prototype, the results from
simulations will be compared to experimental investigations.
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