
Overview of Team ViGIR’s Approach
to the Virtual Robotics Challenge

Stefan Kohlbrecher1, David C. Conner2, Alberto Romay1, Felipe Bacim3, Doug A. Bowman3, and Oskar von Stryk1

www.teamvigir.org 1 Simulation, Systems Optimization and Robotics Group, Technische Universität Darmstadt, Germany
2 TORC Robotics, United States 3 Center for Human-Computer Interaction, Virginia Tech, United States

Abstract—With the DARPA Robotics Challenge (DRC), a call
to an ambitious multi-part competition was sent out to the
robotics community. In this paper, we briefly summarize the
approach for addressing the Virtual Robotics Challenge (VRC)
where software for control and supervision of a capable humanoid
robot must be developed. Team ViGIR, comprising members from
the US and Germany, leveraged previous robotics competition
experience and a variety of open source tools, to achieve sixth
place in the VRC out of 126 registrants, thereby advancing to
the next round of the DRC and obtaining an Atlas robot.

I. INTRODUCTION

The Fukushima Daichi nuclear plant disaster once again
showed that disaster response and mitigation could improve
significantly if more capable robots were available for use.
This motivated the DARPA Robotics Challenge1. In the VRC
a simulated humanoid robot has to perform a series of tasks
inspired by real world needs. Details of the challenge and
participation models can be found online. Seven top scoring
teams in the VRC received an Atlas robot being developed by
Boston Dynamics and proceed to the next round of competion.
For developing and integrating the complete onboard and
offboard software within the few months available until the
VRC, we decided to reutilize and adapt available, preferably
open source, software from within and outside the team.

II. SYSTEM OVERVIEW

Team ViGIRs software uses ROS as middleware [1]. While
the DRC simulator2 was locked to use the ROS fuerte version
during competition, ROS groovy was used for all team soft-
ware to leverage recent software advancements only available
for ROS groovy, for example the MoveIt! motion planning
framework [2]. With developers spread over two continents,
development was tracked using the Redmine project manage-
ment system, frequent conference calls, and an on-site sprint
meeting preceding the VRC competition.

III. BASIC CAPABILITIES

For the VRC, the team focused on developing the basic
capabilities required for operation of a humanoid robot in the
competition scenarios. Due to space constraints, other software
capabilities like footstep planning, behavior control, semi-
autonomous grasping and open-loop motion editing are not
detailed in this paper.

1http://www.theroboticschallenge.org/
2http://www.gazebosim.org/wiki/DRC

Operator Control Station (OCS) The OCS is a set of
graphical user interface components that allow the operator to
control the robot and visualize information about its current
state and the world surrounding it. The goal for OCS design
was a customizable user interface with support for different
widgets that can be changed and reorganized based on the
task at hand. Three main components to the OCS were used
in each task: a 3D perspective view widget that allows the
operator to control end effectors directly, visualize 2D and 3D
reconstructions of the environment, and plan robot motion; a
top-down orthographic view widget that is used for navigation
and to request more information about the environment; and a
camera widget that allows the operator to request images with
a requested resolution from every camera in the robot. The
other OCS components available to the operator include grasp
control, individual joint control, and planner configuration
tools. The complete setup used in the VRC is shown in Fig. 1.

Fig. 1: OCS setup used in the VRC

Bandwidth-Constrained Communication Only very limited
communication is allowed between the robot and the Operator
Control Station (OCS). In the VRC, traffic was restricted by
emulation software and teams could only transmit a limited
amount of data to the robot (upload) and from the robot
(download). The most strict scenario allowed only 7Mb of data
download from the robot over the whole 30 minute mission
time, making bandwidth management and careful selection
of data to be transmitted a serious issue. The overhead of
communication when using a single ROS Master to connect
the onboard and OCS systems was prohibitive; therefore, a
communications bridge using a compressed transport based on
Google Protobufs and bz2 compression was developed. Band-
width constraints were never exceeded during VRC missions.

Perception Due to bandwidth limitations, only limited
amounts of perception data could be transmitted to OCS, so
fusion of data and conversion to a low-bandwidth represen-
tation were very important. LIDAR point cloud data is fused
using PCL tools [3] and the probabilistic octomap approach

stryk
Schreibmaschinentext
Preprint of the paper which appeared in:IEEE Intl. Symposium on Safety, Security, and Rescue Robotics (SSRR),21-26 Oct. 2013, Linkoping, Sweden. 



[4], reducing data volume compared to conventional pointcloud
storage. Octomap data can then be sliced in a region of
interest over a given height range, resulting in a 2D occupancy
grid map representation. Using this approach, map data for
obtaining general situational awareness can be transmitted to
the OCS with minimal bandwidth cost.

Manipulation of the environment was required for 2 of the 3
VRC tasks and thus a key capability. Limited bandwidth means
that the transmission of a full 3D model of the environment is
prohibitive, so collision free motion planning has to happen
onboard the robot. To this end, the operator can specify a
intended joint or cartesian endeffector target pose for the robot
and motion planning including full 3D obstacle avoidance is
performed using the MoveIt! motion planning framework [2]
onboard the robot, leveraging full 3D obstacle information.
Grasps for different kinds of object are template based and
are generated offline using the GraspIt! [5] toolkit.

Motion Control A per joint PID controller using feedfor-
ward motion compensation was employed for simplicity and
robustness. It can be used to follow joint trajectories and will
also stitch trajectories for smooth transition between them.
Keyframe based motions worked very well in simulation. Basic
locomotion controllers were provided for optional use to teams.

IV. TASK PERFORMANCE

Approaches to the three VRC tasks and resulting perfor-
mance are summarized. For each task, 5 instances with varying
conditions were used and for each of those, up to 4 points could
be scored depending on the degree of task completion.

Task 1 (Driving) After walking up to the vehicle using the
capabilities presented in Section III, the driving task presented
two challenges. Getting into the car was achieved by using a
carefully designed motion that makes use of mechanical effects
to reduce uncertainty in positioning the robot into a sitting
posture in the car (Fig. 2a). Actuation of the car controls
was difficult, as the seat was modeled as a sticky surface.
When performing the required manipulation in contact with
the environment, the robot would slip in the seat unpredictably.
This resulted in loss of sitting posture in all runs.

Task 2 (Rough Terrain) Due to a bug in the optionally
provided walk controller which only showed up during VRC, it
was not possible to get into walking mode again when the robot
has stood up after a fall. Therefore, after a fall during a task
in the VRC, crawling was the only option left for locomotion.
Open-loop key frame-based quadrupedal locomotion had been
developed which was used in the VRC during the rough terrain
task and whenever the robot had fallen. After walking up to
the first gate, the robot encountered a simulated mud pit, which
could not be traversed using the provided walking controller.
Therefore, the robot was commanded into a sitting posture and
backwards crawling was employed as the mode of locomotion
for the remainder of Task 2 (Fig. 2b).

Task 3 (Hose Manipulation) The most challenging part
of the hose manipulation task was aligning the hose with the
standpipe after picking it up (Fig. 2c). While picking the hose
up worked reliably using our approach, moving it towards the
location of the standpipe was more challenging, as movement

of the hose was unpredictable when dropped on the table for
re-grasping with the other arm. For this reason, strategy was
switched to walking with hose in hand during VRC, which
allowed alignment with the standpipe in one run.

Fig. 2: VRC Tasks: a) Driving (left), b) Rough Terrain
(middle) and c) Hose Manipulation (right)

V. EVALUATION

From out of 126 Track B and C teams registered for the
VRC, 26 passed qualification and 22 scored in the VRC. With
a total of 27 points (Table I) Team ViGIR was ranked 6th
behind 5th and 4th with 29 and 30 points and before 7th and
8th with 25 and 24 points. The distribution of points scored in
the three tasks was quite similar for teams ranked 3rd to 8th.

Run 1 Run 2 Run 3 Run 4 Run 5 Total (Max. 20)

Task 1 0 1 1 1 0 3

Task 2 4 2 4 4 4 18

Task 3 1 1 2 1 1 6

TABLE I: Team ViGIR VRC scores.

VI. CONCLUSION

In this paper, a short overview of Team ViGIRs entry to the
Virtual Robotics Challenge is presented. The team is currently
transfering and adapting the software developed for the VRC
to the actual Atlas robot and extending it. It plans to provide
as much as possible of their software developments as open
source to foster progress in rescue robotics.

ACKNOWLEDGMENT

The authors would like to thank all team members who
contributed and continue to contribute to the success of the
team: Tony Angell, Florian Berz, Lindsay Blassic, Thorsten
Graber, Jesse G. Hurdus, Alex Little, Johannes Meyer, Jochen
Mück, Karen Petersen, Philipp Schillinger, Dorian Scholz,
Jacob Sheppard, Alexander Stumpf and Ben Waxler.

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009.

[2] S. Chitta, I. Sucan, and S. Cousins, “Moveit!” IEEE Robotics Automation
Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[3] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (pcl),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1–4.

[4] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based
on octrees,” Autonomous Robots, 2013, software available at http:
//octomap.github.com. [Online]. Available: http://octomap.github.com

[5] A. T. Miller and P. K. Allen, “GraspIt! a versatile simulator for robotic
grasping,” Robotics & Automation Magazine, IEEE, vol. 11, no. 4, pp.
110–122, 2004.




