
Preprint of the paper which appeared in the Proceedings of the
IEEE-RAS International Conference on Humanoid Robots (Humanoids),

Osaka, 2012

Dynamic Modeling of Elastic Tendon Actuators with Tendon
Slackening

Thomas Lens, Jérôme Kirchhoff and Oskar von Stryk

Abstract—This paper presents a new, detailed dynamics
model of a novel type of actuators based on tendons with
integrated springs that allows for offline adjustment of the
stiffness characteristics. Like other cable or belt actuators, the
elastic tendon actuator allows to radically reduce the link inertia
by placing the motors near the robot base. But by additionally
integrating springs in the tendons, the motor and the joint are
elastically decoupled, which increases the lifespan of the tendons
and the safety of the actuator. A detailed mathematical model
of the actuator is derived taking tendon slackening effects into
consideration. The result is a degressive stiffness curve that
depends on the pretension force of the integrated tendon springs.
The derived model is validated against static and dynamic
experimental measurement data of a robot arm equipped with
elastic tendon actuators.

I. INTRODUCTION

Applications with close physical human-robot interaction
increase the need for safe robot arms. Introducing elasticity
can increase safety when using geared motors because of the
decoupling of motor and joint [1]–[4]. The degree of elasticity
does not necessarily have to be high. In [5] it has been shown
that even the elasticity introduced by Harmonic Drives can
be sufficient to actively decouple the motor from the joint
side in case of a collision. Elasticity can be realized by using
inherently compliant actuators, such as artificial pneumatic
muscles [6], [7] or by using elastic elements in series with
standard geared motors [1], [8]. Additional actuators can be
used to adapt stiffness or damping [9]–[11], or to combine
actuators with complementary features, such as electromotors
and pneumatic actuators [12].

The use of cables in robotic arms can also contribute to
safety by allowing to place the motors away from the actuated
joints to previous links in the kinematic chain and therefore
reducing the link weights [13], [14]. As a drawback, special
care has to be taken in the design process regarding the
lifespan of the tendons [15].

The actuation approach of the BioRob arm as shown in
Figure 12 is inspired by the human elastic muscle tendon
apparatus and aims at combining the robust behavior of
standard electrical motors with the safety characteristics of
elasticity in the drivetrain and a radical lightweight design by
using tendons to actuate the robot joints. When using tendons
spanning multiple joints, additional friction is introduced.
However, this comes also with several advantages. By using
tendons, the motors can be placed near the base, thus reducing
the robot arm’s inertia. As an alternative, they can even be
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used as a counterbalance for the weight of the links. The
reduction of mass and inertia allows to use smaller and
less heavy motors and gears. In addition, by using elasticity
in the tendons, the reflected rotor inertia and friction are
dynamically decoupled from the link side, reducing shocks
on the gearbox as well as on the environment in case of
a collision. This increases safety and the durability of the
tendons.

In this paper, a detailed mathematical model for a single
joint elastic tendon actuator, as displayed in Figure 1, will
be derived. The specific characteristics of this actuator will
be analyzed, such as the case of static tendon slacking, the
characteristic stiffness and damping curves, and the role of
prestretching for shaping the characteristic curves.

II. SINGLE JOINT ELASTIC TENDON ACTUATOR MODEL

For the derivation of the single elastic tendon actuator it
is assumed that the elastic elements integrated in the tendons
can be approximated as massless springs. This is a valid
assumption if the mass of the springs is small compared to
the effective mass of the motor and gearbox inertia and the
effective mass of the joint pulley and attached link. For the
motors, this is especially true when using gearboxes with high
reduction ratios. The effective mass of the link is normally
also higher by at least one magnitude.

Only in case of a very lightweight last link without attached
further links and without end-effector or load, the spring mass
may not be negligible compared to the effective link mass.
In this case the spring and link with low joint damping can
behave as a two-mass oscillator. Excited at the resonance
frequency by minimal motor motions, the spring and link
can easily start oscillating. The constellation of two-mass
oscillator driven by the motor is highly undesirable and
unfavorable for control and should be avoided by choosing
a spring with a mass at least a magnitude smaller than the
effective link mass.

A. Kinematics

As according to Figure 2, the lengthening xi of the springs
depends on the radius R of the joint pulley, the radius r of
the motor pulley, the angular joint position q, and the angular
motor position with respect to the elastic actuator eθ

x1 = −Rq + r eθ (1)
x2 = Rq − r eθ = −x1 (2)

Because of the kinematic constraint of a constant tendon
length, the displacement x1 of the upper spring equals the
negative displacement −x2 of the lower spring. The tendons
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Figure 1. Third joint connecting the second and third link of the BioRob-X4
arm actuated by two parallel elastic tendon actuators. Both actuators have
an upper spring with stiffness k1,i and a lower spring with stiffness k2,i.
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Figure 2. Model of the elastic transmission with parameters motor pulley
radius r, joint pulley radius R, spring rest length lr, spring prestretched
deflection lp, maximum spring deflection lmax, and state variables angular
joint position q, angular motor position with respect to the elastic actuator
eθ, elastic actuator torque τe, elastic actuator joint torque jτe, spring force
F , and spring deflection x with respect to prestretched length. The indices
1 and 2 stand for the upper and the lower spring, respectively.

are made of prestretched, high-performance polyethylene and
can be regarded as stiff compared to the springs.

B. Elastic Pulley Torques

The force to displacement characteristic curve of the
springs is modeled as ideally viscoelastic. The force Fi

exerted by the stretched springs depends on the prestretched
length lpi

, the spring stiffness ki and damping di and the
elongation xi

Fi = ki (lpi
+ xi) + di ẋi (3)

and contains the prestretching force Fp

Fp = ki lpi
, (4)

which prevents slack in the cables. In the equilibrium position
with xi = 0 and ẋi = 0 both spring forces equal the
prestretching force, yielding the ratio of the prestretching
lengths lpi

lp,1
lp,2

=
k2
k1

(5)

Table I
STATE TRANSFORMATIONS BETWEEN THE ELASTIC ACTUATOR STATE

SPACE AND THE JOINT STATE SPACE WITH TRANSMISSION RATIO nt = R
r

.

State Elastic Actuator Joint

Elastic actuator torque τe = 1
nt

jτe jτe = nt τe

Motor position eθ = nt
jθ jθ = 1

nt

eθ

Joint position eq = nt q q = 1
nt

eq

The forces Fi acting on the pulleys with radius R on the
joint side and radius r on the motor side cannot become
negative, as the tendons only transfer pulling forces. Cable
sagging occurs for spring displacement smaller than the
prestretched spring length, i. e. xi < lpi , which is referred
to in this paper as static tendon slack. The resulting torque
on the joint produced by the elastic pulley actuation can be
expressed using the step function σ

σ(x) =

{
0 : x < 0
1 : x ≥ 0

(6)

as

jτe = R F1 σ(F1)−R F2 σ(F2) , (7)

whereas the elastic pulley torque at the motor side yields

τe = r F1 σ(F1)− r F2 σ(F2) (8)

C. Definition of Reflected Variables

As can be seen from Equations (7) and (8), a transmission
ratio nt can be defined to reflect the elastic torque τe from
the motor side to the joint side

nt =
jτe
τe

=
R

r
, (9)

which, from Equations (1) and (2), can also be used to reflect
the motor position eθ through the elasticity to the joint side

1

nt
=

jθ
eθ

=
r

R
(10)

With the transmission ratio, the kinematics Equations (1)
and (2) can be expressed either with respect to the joint state
space

x1 = −R (q − jθ) = −x2 (11)

or with respect to the elastic actuator state space

x1 = −r (eq − eθ) = −x2 (12)

The reflected motor position jθ therefore equals the joint
position q if the elastic actuator is in equilibrium position
with xi = 0 and τe = 0. Table I summarizes the defined state
transformations.
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Figure 3. Model of the elastic tendon actuator with reflected variables.
The motor position with respect to the join side jθ marks the equilibrium
position of the joint position q. The area without tendon slack is marked by
joint angles between the red and blue line.
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Figure 4. Definition of static tendon slack states of the elastic tendon
actuator. Static slack in the tendons (indicated by dashed lines) occurs in
case of large joint deflections. State I describes static slack in the lower
tendon (with index 2), State II static slack in the upper tendon (with index 1),
and State III is the normal operation mode without slack.

D. Static Tendon Slack and Maximum Deflection

As described in (7) and (8), slack in a tendon can be caused
by the displacement xi + lpi < 0. Figure 4 lists the possible
states of a single joint elastic tendon actuator with respect to
tendon slack.

Static slack in the lower tendon occurs if the elongation of
the spring in that tendon becomes negative. This yields the
constraint for the angular displacement of the joint position
q with respect to the reflected motor position jθ

lp2
+ x2 ≤ 0 ⇒ (q − jθ) ≤ − Fp

Rk2
(13)

The constraint for the upper side is calculated respectively
and static tension in both tendons is therefore maintained for
the angular joint displacement range

− Fp

Rk2
≤ (q − jθ) ≤ Fp

Rk1
(14)

The maximum joint deflection is determined by the maxi-
mum spring extension lmaxi

lmaxi ≥ lpi + xi (15)

yielding the joint angle constraint

− lmax1

R
− Fp

k1R
≤ (q − jθ) ≤ − lmax2

R
− Fp

k2R
(16)

E. Characteristic Stiffness and Damping Curves

Figure 4 visualizes the elastic tendon actuator states that
were derived in the previous section. In this section the output
torque function of these states are derived.
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Figure 5. Characteristic stiffness curve with respect to the joint side.
Example for asymmetric configuration with a stiffer spring on the upper
side k1 = 1.33 k2 with maximum deflection lmax1 = 0.67 lmax2 .

1) State I: With dynamic or static slack in the lower tendon
(index 2), the elastic torque is generated only by the taut upper
tendon (index 1):

jτeI = R (Fp + k1 x1 + d1 ẋ1) (17)

= RFp − k1R2
(
q − jθ

)
− d1R2

(
q̇ − jθ̇

)
(18)

The actuator output stiffness and damping can be obtained
by derivation with regard to the joint deflection and the joint
deflection velocity

jkeI = −
∂τeI

∂(q − jθ)
= R2 k1 (19)

jdeI = −
∂τeI

∂(q̇ − j θ̇)
= R2 d1 (20)

2) State II: Equivalent to State I, with transposed indices:
the elastic torque is generated only by the taut lower tendon
(index 2):

jτeII = −R (Fp + k2 x2 + d2 ẋ2) (21)

= −RFp − k2R2
(
q − jθ

)
− d2R2

(
q̇ − jθ̇

)
(22)

with stiffness and damping
jkeII = R2 k2 , jdeII = R2 d2 (23)

3) State III: Without slack, both tendons contribute to the
elastic torque:

jτeIII = −R2 (k1 + k2)
(
q − jθ

)
−R2 (d1 + d2)

(
q̇ − jθ̇

)
(24)

with stiffness and damping
jkeIII = R2 (k1 + k2) , jdeIII = R2 (d1 + d2) (25)

The resulting steady state characteristic stiffness curve
is plotted in Figure 5. The shifting direction of the area
borders for increasing prestretching force Fp are indicated
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Figure 6. Symmetric spring configuration with protection against over-
stretching causing a progressive curve. Possible hardware implementations
for the protective elements are displayed in the left picture. Protective strings
guided within the springs are marked in red, strings on the outside of the
springs are marked in yellow.
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Figure 7. Effect of prestretching on the characteristic stiffness curve with
respect to the joint side. Example for asymmetric configuration with k1 =
22.820 kN/m, k2 = 0.75 k1, lmax1 = 5mm, lmax2 = 1.33 lmax1 ,
R = 5 cm. The maximum torque remains constant, whereas the maximum
joint deflection decreases for increasing pretension force Fp.

with arrows. The area with slack in the upper spring is marked
in red, as well as the borders with a dependence on parameters
of the upper spring. Respectively, the area and borders that
are marked in blue are related to the lower spring.

III. DESIGN AND DIMENSIONING GUIDELINES

A. Guidelines for Choosing the Spring Stiffness

If the stiffnesses of the upper and lower spring differ, an
asymmetric stiffness curve configuration results. Examples
for a stiffer upper spring are shown in Figure 5 and Figure 7.

These configurations can be useful for operation where the
direction of gravity is predefined. The asymmetric stiffness
curve exhibits a larger high stiffness area for negative joint
deflection angles and therefore compensates the joint angle
equilibrium shift caused by gravitational forces.

B. Guidelines for Setting the Prestretching Force

The high stiffness area (both springs are loaded and both
tendons taut) can be increased by increasing the prestretching
force Fp. Figure 5 displays the boundaries of the areas
with combined and single stiffness. The arrows indicate the
shifting direction of the boundaries in case Fp is increased.
The maximum allowed prestretching force is represented by

−0.4 −0.2 0 0.2 0.4
0

20

40

 

 

−0.4 −0.2 0 0.2 0.4
0

20

40

j
k
e
[N

m
/
ra
d
]

 

 

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

4

6

8

(q − jθ) [rad]

−
j
τ e

[N
m
]

 

 

−0.4 −0.2 0 0.2 0.4
0

20

40

(q − jθ) [rad]

 

 

Fp = 0
Fp = 40
Fp = 80

Fp = 0

Fp = 40

Fp = 80

Figure 8. Effect of prestretching on the characteristic stiffness curve with
respect to the joint side. Example for symmetric configuration with ki =
11.580 kN/m, lmaxi = 15mm, R = 4 cm. The maximum torque remains
constant, whereas the maximum joint deflection decreases for increasing
pretension force Fp.

the outer boundaries of the characteristic curve:
Fp

Rki
=
lmaxi

R
, (26)

which yields

Fp,max = min
i={1,2}

(
lmaxi

ki

)
(27)

A more reasonable upper limit, however, is given by maxi-
mizing the high stiffness area. Maximizing the high stiffness
area for negative deflections yields

Fp

R k1
− lmax1

R
= − Fp

R k2
, (28)

whereas maximizing the high stiffness area for positive
deflections yields

− Fp

R k2
+
lmax2

R
=

Fp

R k1
(29)

The combined maximum limit is therefore given by

Fp,max = min
i={1,2}

(
lmaxi

( 1

k1
+

1

k2

)−1)
(30)

For springs with equal maximum stretching length lmax, the
maximum pretention force can be therefore chosen as:

Fp = lmax

( 1

k1
+

1

k2

)−1
, (31)

which maximizes the high stiffness area in both positive and
negative direction of deflection. It should be ensured that the
mechanical joint construction can bear the given prestretching
forces as well as dynamical and external forces.

C. Guidelines for Increasing the Maximum Output Torque

The maximum output torque can be increased by using
springs with a higher maximum force Fmaxi

and an appro-
priate maximum deflection lmaxi

Fmaxi
= lmaxi

ki (32)

It must be noted, however, that heavier springs increase the
danger of undesired oscillations of the spring mass.
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Figure 9. Characteristic stiffness curve of BioRob-X4 joint 3 with two
parallel elastic tendon actuators with spring stiffness ki = 11.580 kN/m,
maximum spring elongation lmaxi = 15mm, and joint pulley radius R =
3 cm. The resulting stiffness curves for various spring preloading forces Fp

are shown.

If no stiffer spring with the desired properties is available,
parallel tendons with equal springs can be used. In this
case, the resulting spring stiffness is the sum of all spring
stiffnesses used in parallel. Figure 1 displays the use of
two parallel tendons for joint three of the BioRob-X4 arm,
resulting in the combined stiffnesses

k1 = k1,1 + k1,2 (33)
k2 = k2,1 + k2,2 (34)

In addition, the use of parallel tendons is also advantageous
in that it allows for a more homogeneous distribution of stress
on the joint bearing.

IV. EXPERIMENTAL VALIDATION

In this section, the theoretical models derived in the
previous sections are validated by comparing the models with
experimental measurements from the BioRob-X4 arm. All
four joints of this robot arm, as displayed in Figure 12, are
driven by elastic tendon actuators [8]. The design leads to a
very low overall weight of the robot arm of 4 kg (including
power electronics), while still enabling it to carry an end-
effector load of 2 kg without exceeding the maximum torques.

For validation of the actuator models, the joint torque over
joint deflection characteristic curve of the third joint was
measured and compared to the theoretical models.

The stiffness of the springs is given as k = 11.580 kN/m.
Because two parallel cables are used, the stiffness values are
added, cf. (33),

ki = ki,1 + ki,1 = 23.160 kN/m (35)

No additional damping elements are used in parallel to the
springs, and the internal damping of the springs and tendons
is small compared to the damping in the joints and motors.
Therefore, the damping parameters of the elastic transmission
are set to di = 0Ns/m.

The border values of the stiffness curve for joint three of
the BioRob-X4 arm can be calculated with the parameters
lmaxi = 15mm, R = 3 cm, and a pretension force of Fp =
80N. The static slack boundary lies at

±(q − jθ) =
Fp

Rki
= 0.115 rad = 6.60 ◦ , (36)
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Figure 11. Experimental data (solid lines, marked with ‘E’) of an excitation
trajectory of the third joint of a BioRob-X4 arm compared with the simulated
dynamic behavior using the elastic tendon actuator model (dashed lines,
marked with ‘S’).

and the maximum joint deflection at

±(q − jθ) = − Fp

Rki
+
lmaxi

R
= 0.385 rad = 22.05 ◦ (37)

The angular stiffness and damping parameters in the state
without slack (State III) are

keIII = R2 (k1 + k2) = 41.69Nm/rad (38)

and in case of static slack (State I and II)

keI = R2 k1 = keII = R2 k2 = 20.8Nm/rad (39)

The resulting characteristic torque and stiffness curves of
the BioRob-X4 elastic tendon actuator for the third joint are
displayed in Figure 9 and the experimental measurement data
for validation is compared to the model in Figure 10. The
measured values match the derived model quite well. The
deviation of the measured data at the corners of the stiffness
curve is due to the use of overstretching protection in the
springs, as depicted in Figure 6.

In addition to the static measurements, also a validation
of the dynamic behavior of the elastic tendon actuator was
conducted, as shown in Figure 11. For this experiment, the
motor position was controlled according to a given excitation
trajectory jθd with respect to the joint side. The resulting
joint trajectory q in simulation shows a good agreement with
the measured experimental data.

5



Preprint of the paper which appeared in the Proceedings of the
IEEE-RAS International Conference on Humanoid Robots (Humanoids),

Osaka, 2012

q4

q3

q2

q1

Motor of 

joint 4

Motor of 

joint 1

Motor of 

joint 2

Motor of 

joint 3

Guiding pulleys 

of joint 4

Figure 12. Location of the electrical DC motors in the BioRob-X4 arm
with four joints driven by elastic tendon actuators.

V. CONCLUSION

In this paper, a novel type of actuators based on electrical
DC motors and tendons with integrated springs for construc-
tion of low inertia robotic arms with high levels of mechanical
safety and high acceleration and velocity properties was
presented.

A detailed mathematical model of the actuator was devel-
oped and validated by comparing the theoretical models with
experimental measurement data from the BioRob-X4 robot
arm equipped with elastic tendon actuators, which showed
good conformity of the model compared to the hardware in
both the static as well as in the dynamic case.

The elastic tendon actuators can be used to construct
robotic arms with more human-like properties regarding
safety and speed than most current robotic arms. For example,
the BioRob-X4 with elastic tendon actuators in all of its four
joints can achieve end effector velocities higher than 6 m/s
while maintaining a high level of safety [16].

Humanoids can benefit from elastic tendon actuators
because this type of actuators allows an excellent mass
distribution with very low links weights by placing the
motors in the robot’s torso. The passive compliance of the
actuators and the possibility to shape the stiffness curve to
an asymmetric gravity-based configuration or to a degressive
behavior are very useful properties for humanoids intended
for applications with close physical human-robot interaction
(pHRI).

The presented actuation concept allows to drastically
reduce the effective mass of robot arms by more than 90 %
compared to conventional designs [17] while still allowing
high relative payloads. The intrinsic mechanical actuator
compliance combined with the low effective mass offer very
high safety properties for humanoids robots for pHRI. In
this context, the developed and validated dynamics models
presented in this paper play a crucial role for dimensioning
of the actuator parameters and model based control of robot

arms driven by elastic tendon actuators.
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