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Abstract—For many applications in Urban Search and Rescue
(USAR) scenarios robots need to learn a map of unknown
environments. We present a system for fast online learning of
occupancy grid maps requiring low computational resources.
It combines a robust scan matching approach using a LIDAR
system with a 3D attitude estimation system based on inertial
sensing. By using a fast approximation of map gradients and
a multi-resolution grid, reliable localization and mapping ca-
pabilities in a variety of challenging environments are realized.
Multiple datasets showing the applicability in an embedded hand-
held mapping system are provided. We show that the system
is sufficiently accurate as to not require explicit loop closing
techniques in the considered scenarios. The software is available
as an open source package for ROS.

Keywords: Simultaneous Localization and Mapping, Inertial
Navigation, Robust and Fast Localization

I. INTRODUCTION

The ability to learn a model of the environment and to
localize itself is one of the most important abilities of truly
autonomous robots able to operate within real world envi-
ronments. In this paper, we present a flexible and scalable
system for solving the SLAM (Simultaneous Localization
and Mapping) problem that has successfully been used on
unmanned ground vehicles (UGV), unmanned surface vehicles
(USV) and a small indoor navigation system. The approach
consumes low computational resources and thus can be used
on low-weight, low-power and low-cost processors such as
those commonly used on small-scale autonomous systems.
Our approach uses the ROS meta operating system [1] as
middleware and is available as open source software. It honors
the API of the the ROS navigation stack and thus can easily
be interchanged with other SLAM approaches available in the
ROS ecosystem.

The system introduced in this paper aims at enabling suffi-
ciently accurate environment perception and self-localization
while keeping computational requirements low. It can be used
for SLAM in small scale scenarios where large loops do
not have to be closed and where leveraging the high update
rate of modern LIDAR systems is beneficial. Such scenarios
include the RoboCup Rescue competition, where robots have
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Fig. 1. Overview of the mapping and navigation system (dashed lines depict
optional information)

to find victims in simulated earthquake scenarios which feature
rough terrain and thus require full 6DOF motion estimation of
vehicles, or the indoor navigation of agile aerial vehicles that
move fast compared to ground robots. Previous results where
the system has been used in the context of building semantic
world models in USAR environments are available in [2].

Our approach combines a 2D SLAM system based on the
integration of laser scans (LIDAR) in a planar map and an
integrated 3D navigation system based on an inertial mea-
surement unit (IMU), which incorporates the 2D information
from the SLAM subsystem as one possible source of aiding
information (Fig. I). While SLAM usually runs in soft real-
time triggered by the updates of the laser scanner device, the
full 3D navigation solution is calculated in hard real-time and
usually forms a part of the vehicle control system.

II. RELATED WORK

There has been a wealth of research into the SLAM problem
in recent years, with reliably working solutions for typical
office-like indoor scenarios using Rao-Blackwellized particlec© 2011 IEEE



filters like Gmapping [3] being available as open source soft-
ware. However, these solutions work best in planar environ-
ments, rely on available, sufficiently accurate odometry and do
not leverage the high update rate provided by modern LIDAR
systems. For unstructured environments, that lead to significant
roll and pitch motion of the carrier, or implementation on
aerial platforms such systems are not applicable or have to
be modified significantly.

A distinction between SLAM frontend and backend system
has to be made. While SLAM frontends are used to estimate
robot movement online in real-time, the backend is used
to perform optimization of the pose graph given constraints
between poses that have been generated before using the
frontend. The approach presented in this paper serves as a
SLAM frontend and does not provide pose graph optimization
like the solutions presented in [4] and [5]. However, we show
that in many scenarios such optimizations are not needed under
real world conditions as the approach is sufficiently accurate
for robots to perform their mission.

Multiple indoor navigation systems based on laser scan
matching have been presented for the use on Quadrotor UAVs
[6], [7], [8]. Here, a two-stage approach is employed, with a
front end fast scan alignment step for pose estimation and a
slower backend mapping step running in the background or on
a remote computer. The pose estimates from scan alignment
are not directly incorporated in the vehicle’s control loop and
thus they move at a low speed only.

In [9] and [10] other front end systems used on mobile
robots are described. In contrast to system presented in this
paper they do not provide a full 6DOF pose estimate and are
not available as open source software.

Work on localization using scan matching started with the
Iterative Closest Point (ICP) [11] which originated as a general
approach for registering 3D point clouds. The main drawback
of many ICP-based methods is the expensive search for point
correspondences, which has to be done in every iteration. Polar
Scan Matching (PSM) [12] avoids the correspondence search
by taking advantage of the natural polar coordinate system
of the laser scans to estimate a match between them. Scans
have to be preprocessed to be used in the polar scan matcher.
The real-time correlative scan matching approach [13] uses an
exhaustive sampling based approach for scan matching. Using
several optimizations this approach is capable of real-time
application. Normal Distribution Transform (NDT) [14] based
scan matching aligns scans to a mixture of normal distributions
representing preceding scans.

For littoral water scenarios there has been research into
using expensive multi-sensor scanners [15], but to the authors’
knowledge there is no single emitter LIDAR-based SLAM
approach available that was tested under real world conditions.

III. SYSTEM OVERVIEW

As the presented system has to be usable on platforms that
exhibit full 6DOF motion as opposed to the 3DOF motion
assumed in many other 2D grid-based SLAM algorithms,
our system has to estimate the full 6DOF state consisting

of translation and rotation of the platform. To achieve this,
the system consists of two major components. A navigation
filter fuses information from the inertial measurement unit
and other available sensors to form a consistent 3D solution,
while a 2D SLAM system is used to provide position and
heading information within the ground plane. Both estimates
are updated individually and only loosely coupled so that they
remain synchronized over time.

We define the navigation coordinate system as a right-
handed system having the origin at the starting point of the
platform with the z axis pointing upwards and the x axis
pointing into the yaw direction of the platform at startup. The
full 3D state is represented by x =

(
ΩT pT vT

)T
, where

Ω = (φ, θ, ψ)
T are the roll, pitch and yaw Euler angles, and

p = (px, py, pz)
T and v = (vx, vy, vz)

T are the position and
velocity of the platform expressed in the navigation frame.

The inertial measurements constitute the input vector
u =

(
ωT aT

)T
with the body-fixed angular rates ω =

(ωx, ωy, ωz)
T and accelerations a = (ax, ay, az)

T. The mo-
tion of an arbitrary rigid body is described by the nonlinear
differential equation system

Ω̇ = EΩ · ω (1)
ṗ = v (2)
v̇ = RΩ · a + g (3)

where RΩ is the direction cosine matrix that maps a vector in
the body frame to the navigation frame. EΩ maps the body-
fixed angular rates to the derivatives of the Euler angles and
g is the constant gravity vector [16]. The effects of pseudo
forces due to the earth’s rotation can usually be neglected
when low-cost sensors are used.

Due to sensor noise the integrated velocity and position
exhibit significant drift. Therefore further sensor information
has to be integrated. In this paper, this information is provided
by the scan matcher, which is well suited for use in indoor
scenarios. Other possible sources are magnetic field sensors
for heading information or barometric pressure sensor for
altitude estimation. If available, wheel odometry can be used
to provide measurements of velocity. In outdoor scenarios,
satellite navigation systems are commonly used as an aiding
system to prevent the inertial navigation solution from drifting
[17].

Depending on the target platform, further constraints can be
introduced in the system equation, resulting in a reduction of
the state space.

IV. 2D SLAM

To be able to represent arbitrary environments an occupancy
grid map is used, which is a proven approach for mobile robot
localization using LIDARs in real-world environments [18].
As the LIDAR platform might exhibit 6DOF motion, the scan
has to be transformed into a local stabilized coordinate frame
using the estimated attitude of the LIDAR system. Using the
estimated platform orientation and joint values, the scan is
converted into a point cloud of scan endpoints. Depending
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Fig. 2. (a) Bilinear filtering of the occupancy grid map. Point Pm is the
point whose value shall be interpolated. (b) Occupancy grid map and spatial
derivatives.

on the scenario, this point cloud can be preprocessed, for
example by downsampling the number of points or removal
of outliers. For the presented approach, only filtering based
on the endpoint z coordinate is used, so that only endpoints
within a threshold of the intended scan plane are used in the
scan matching process.

A. Map Access

The discrete nature of occupancy grid maps limits the
precision that can be achieved and also does not allow the
direct computation of interpolated values or derivatives. For
this reason an interpolation scheme allowing sub-grid cell
accuracy through bilinear filtering is employed for both esti-
mating occupancy probabilities and derivatives. Intuitively, the
grid map cell values can be viewed as samples of an underlying
continuous probability distribution.

Given a continuous map coordinate Pm, the occupancy
value M(Pm) as well as the gradient ∇M(Pm) =(

∂M
∂x (Pm), ∂M∂y (Pm)

)
can be approximated by using the four

closest integer coordinates P00..11 as depicted in Fig. 2(a).
Linear interpolation along the x- and y-axis then yields

M(Pm) ≈ y − y0

y1 − y0

(
x− x0

x1 − x0
M(P11) +

x1 − x
x1 − x0

M(P01)

)
+
y1 − y
y1 − y0

(
x− x0

x1 − x0
M(P10) +

x1 − x
x1 − x0

M(P00)

)
(4)

The derivatives can be approximated by:
∂M

∂x
(Pm) ≈ y − y0

y1 − y0
(M(P11)−M(P01))

+
y1 − y
y1 − y0

(M(P10)−M(P00)) (5)

∂M

∂y
(Pm) ≈ x− x0

x1 − x0
(M(P11)−M(P10))

+
x1 − x
x1 − x0

(M(P01)−M(P00)) (6)

It should be noted that the sample points/grid cells of the
map are situated on a regular grid with distance 1 (in map
coordinates) from each other, which simplifies the presented
equations for the gradient approximation.

B. Scan Matching

Scan matching is the process of aligning laser scans with
each other or with an existing map. Modern laser scanners
have low distance measurement noise and high scan rates. A
method for registering scans might yield very accurate results
for this reason. For many robot systems the accuracy and
precision of the laser scanner is much higher than that of
odometry data, if available at all. The evaluation scenarios
presented in section VI show examples where odometry data
is not available.

Our approach is based on optimization of the alignment
of beam endpoints with the map learnt so far. The basic
idea using a Gauss-Newton approach is inspired by work in
computer vision [19]. Using this approach, there is no need
for a data association search between beam endpoints or an
exhaustive pose search. As scans get aligned with the existing
map, the matching is implicitly performed with all preceding
scans.

We seek to find the rigid transformation ξ = (px, py, ψ)T

that minimizes

ξ∗ = argmin
ξ

n∑
i=1

[1−M(Si(ξ))]
2 (7)

that is, we want to find the transformation that gives the best
alignment of the laser scan with the map. Here, Si(ξ) are the
world coordinates of scan endpoint si = (si,x, si,y)T. They are
a function of ξ, the pose of the robot in world coordinates:

Si(ξ) =

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)(
si,x
si,y

)
+

(
px
py

)
(8)

The function M(Si(ξ)) returns the map value at the coor-
dinates given by Si(ξ). Given some starting estimate of ξ,
we want to estimate ∆ξ which optimizes the error measure
according to

n∑
i=1

[1−M(Si(ξ + ∆ξ))]
2 → 0 . (9)

By first order Taylor expansion of M(Si(ξ+ ∆ξ)) we get:
n∑

i=1

[
1−M(Si(ξ))−∇M(Si(ξ))

∂Si(ξ)

∂ξ
∆ξ))

]2

→ 0 .

(10)
This equation is minimized by setting the partial derivative

with respect to ∆ξ to zero:

2

n∑
i=1

[
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]T
[
1−M(Si(ξ))−∇M(Si(ξ))

∂Si(ξ)

∂ξ
∆ξ))

]
= 0 (11)

Solving for ∆ξ yields the Gauss-Newton equation for the
minimization problem:

∆ξ = H−1
n∑

i=1

[
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]T
[1−M(Si(ξ))]

(12)



with

H =

[
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]T [
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]
(13)

An approximation for the map gradient ∇M(Si(ξ)) is pro-
vided in section IV-A. With equation (8) we get

∂Si(ξ)

∂ξ
=

(
1 0 − sin(ψ)si,x − cos(ψ)si,y
0 1 cos(ψ)si,x − sin(ψ)si,y

)
(14)

Using ∇M(Si(ξ)) and ∂Si(ξ)
∂ξ , the Gauss-Newton equation

(12) can now be evaluated, yielding a step ∆ξ towards the
minimum. It is important to note that the algorithm works
on non-smooth linear approximations of the map gradient
∇M(Si(ξ)), meaning that local quadratic convergence to-
wards a minimum cannot be guaranteed. Nevertheless, the
algorithm works with sufficient accuracy in practice.

For many applications a Gaussian approximation of the
match uncertainty is desirable. Examples are updates of para-
metric filters as well as pose constraints for use with graph
optimization SLAM backends. One approach is to use a
sampling based covariance estimate, sampling different pose
estimates close to the scan matching pose and constructing
a covariance from those. This is similar to the idea of the
Unscented Kalman Filter [20]. A second method is the use
of the approximate Hessian matrix to arrive at a covariance
estimate. Here, the covariance matrix is approximated by

R = Var{ξ} = σ2 ·H−1 (15)

where σ is a scaling factor dependent on the properties of the
laser scanner device. A comprehensive derivation is available
in [21].

C. Multi-Resolution Map Representation

Any hill climbing/gradient based approach has the inher-
ent risk of getting stuck in local minima. As the presented
approach is based on gradient ascent, it also is potentially
prone to get stuck in local minima. The problem is mitigated
by using a multi-resolution map representation similar to
image pyramid approaches used in computer vision. In our
approach, we optionally use multiple occupancy grid maps
with each coarser map having half the resolution of the
preceding one. However, the multiple map levels are not
generated from a single high resolution map by applying
Gaussian filtering and downsampling as is commonly done in
image processing. Instead, different maps are kept in memory
and simultaneously updated using the pose estimates generated
by the alignment process. This generative approach ensures
that maps are consistent across scales while at the same time
avoiding costly downsampling operations. The scan alignment
process is started at the coarsest map level, with the resulting
estimated pose getting used as the start estimate for the next
level, similar to the approach presented in [22]. A positive
side-effect is the immediate availability of coarse grained maps
which can for example be used for path planning.

(a) (b) (c)

Fig. 3. Multiresolution representation of the map: (a): 20cm grid cell length
(b) 10 cm grid cell length (c) 5cm grid cell length

V. 3D STATE ESTIMATION

This section covers the estimation of the full 3D state vector
according to section III and the integration of the 2D SLAM
solution. The navigation filter runs in real-time at a constant
rate of 100 Hz and is asynchronously updated with the scan
matching pose and other sensor information as soon as they
arrive. The fusion of other sensors than the scan matching pose
is not within the scope of this paper. Implementation details
can be found in [23].

A. Navigation Filter

For estimating the 6D pose of the platform we use an
Extended Kalman Filter (EKF) with the general platform
model defined by equations (1)-(3). In addition, the state
vector is augmented with the biases of the gyroscopes and the
accelerometers as they vary over time and influence the result
significantly. Note that the system equation is non-linear due to
the Euler angle terms in the matrices EΩ and RΩ and therefore
a non-linear filter has to be used. The inertial measurements
are considered as known system inputs.

The velocity and position update is a pure integration of
the measured accelerations and the system would be unstable
without additional feedback through measurement updates. An
usual countermeasure to prevent the state estimate to grow
indefinitely when no measurements are available are pseudo
zero-velocity updates as soon as the variance reaches a certain
threshold and stability cannot be assured otherwise. In this
paper, the 2D position and orientation in the plane is updated
by the scan matcher, while for full 3D estimation an additional
height sensor such as a barometer or range sensor is needed.

B. SLAM Integration

For best performance, information between the 2D SLAM
solution and the 3D EKF estimate has to be exchanged in both
directions. The systems are not synchronized and the EKF
usually runs at a higher update rate.

To improve performance of the scan matching process,
the pose estimate of the EKF is projected on the xy-plane
and is used as start estimate for the optimization process of
the scan matcher. Alternatively, the estimated velocities and
angular rates can be integrated to provide a scan matching
start estimate.

In the opposite direction, covariance intersection (CI) is
used to fuse the SLAM pose with the full belief state [24]. A
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Fig. 4. Platforms: (a) Hector UGV system used in the simulated USAR
scenario of the RoboCup Rescue League. (b) Self-contained embedded
mapping system for handheld mapping. (c) UGV mapping system mounted
on a USV platform.

simple Kalman measurement update would lead to overcon-
fident estimates because it assumes statistically independent
measurement errors.

We denote the Kalman estimate at the time of the scan as
x̂ with covariance P and the SLAM pose (ξ∗,R) as defined
in (7) and (15). The fusion result is then given by

(P+)−1 = (1− ω) ·P−1 + ω ·CTR−1C and (16)

x̂+ = P+
(

(1− ω) ·P−1x̂ + ω ·CTR−1ξ∗
)−1

(17)

with the observer matrix C that projects the full state space
into the 3-dimensional subspace of the SLAM system. The
parameter ω ∈ (0, 1) is chosen to tune the effect of the SLAM
update.

In analogy to the dualism between the Kalman Filter and
the Information Filter the covariance intersection can also be
written in its covariance form

P+ = P− (1− ω)−1 ·KCP and (18)

x̂+ = x̂ + K(ξ∗ −Cx̂) (19)

with

K = PCT

(
1− ω
ω
·R + CTPC

)−1

. (20)

As inversion of the full state covariance according to (16)
and (17) is computationally expensive, this is the preferred
approach here.

VI. RESULTS

We show the examples of the versatility and robustness of
the presented system for three different use cases. It should
be noted that standard datasets used for benchmarking SLAM
approaches lack the 6DOF motion considered for our approach
as well as the high LIDAR update rate that it leverages. For
this reason, we provide datasets in the ROS bag format for
benchmarking.

A. USAR Scenario

The presented approach is used on UGVs performing au-
tonomous exploration and victim detection in Urban Search
and Rescue (USAR) scenarios like the RoboCup Rescue Robot
League competition. The Hector UGV system is depicted in
Fig. 4(a). The LIDAR is stabilized around the roll and pitch

(a) (b)

Fig. 5. Vehicle experiments: (a): Map learned at the RoboCup 2010
competition. (b) Learned grid map of 0.25m resolution overlaid over satellite
imagery ( c© Google, Commonwealth of Virginia)

axes to keep the laser aligned with the ground plane and
maximize information gain from the planar LIDAR scans.
As can be seen in Fig. 5(a) and 6(a), our approach is ca-
pable of learning highly accurate and consistent maps despite
significant changes in the 6DOF state of the UGV system.
Video showing online mapping in the RoboCup Rescue arena
at RoboCup 2010 as well as the other experiments in this
section is available online1.

B. Littoral Waters Scenario

For testing in littoral waters with GPS outages due to
dense vegetation, the mapping system of the Hector UGV
was mounted on a USV system (Fig. 4(c)). No modification
to the USV system was necessary and the complete SLAM
system was mounted and operational in less than 30 minutes.
Logfiles of different narrow parts of Claytor Lake in Virginia,
USA, were recorded and used to learn maps of the enviroment
without GPS data as well as with no specific motion model
of the vehicle, as this would have required tighter integration
and a longer preparation time. As can be seen in Fig. 5, our
approach produces maps sufficiently accurate for navigation in
case of GPS outages. As it does not use extracted features like
polylines, it works well in the highly unstructured environment
provided by coastal vegetation. It should be noted that the used
Hokuyo UTM-30LX LIDAR does not return valid distance
measurements when the beams hit water, which is advanta-
geous for preventing faulty measurements from influencing the
SLAM system. Once GPS is reacquired, a Graph-based SLAM
approach can be used to optimize the pose graph provided by
scan matching by adding GPS poses acquired before and after
GPS outage as additional absolute position constraints. This
is subject of future work.

C. Embedded mapping system

An embedded mapping system is shown in Fig. 4(b). It
consists of a Hokuyo UTM-30LX LIDAR system, an Intel
Atom Z530 based CPU board as well as a small low-cost
MEMS IMU. The system thus provides all necessary sensors

1http://www.youtube.com/playlist?list=PL0E462904E5D35E29



(a) (b)

Fig. 6. Maps learned using the handheld mapping system overlaid with
ground truth data: (a): RoboCup 2011 Rescue Arena with multiple small
loops.(b) New building at Schloss Dagstuhl exhibiting a large loop.

for the application of the presented SLAM approach. It can
easily be mounted on unmanned vehicles or carried by hand to
learn maps of the environment. Fig. 6(a) shows a map learned
by walking through the RoboCup 2011 Rescue Arena with
the system in hand overlaid over a ground truth map and Fig.
6(b) shows the system used for mapping the new building
at Dagstuhl castle, Germany. As it is visible from paths
and maps, the system is sufficiently accurate to close loops
typically encountered in small scale scenarios without use of
an approach for explicit loop closure, keeping computational
requirements low and preventing changes to the estimated map
during runtime. Videos and ROS bagfiles of the experiments
are available online2. The logged sensor data can be played
back to the SLAM system at 3x real-time speed on the
Atom Z530 CPU without loss of map quality. The SLAM
system thus consumes less than half of overall computational
resources of the embedded mapping system with the used
settings.

VII. CONCLUSIONS

A flexible and scalable SLAM approach usable for a mul-
titude of scenarios is presented in this paper. We demonstrate
the applicability for diverse scenarios such as simulated urban
search and rescue, littoral mapping on a USV as well as in
a hand-held embedded mapping system. We show that the
system correctly estimates and incorporates the 3D motion of
the used LIDAR system while consuming low computational
resources. The system is available as open source software3.

To the authors’ knowledge the combination of high update
rate simultaneous onboard 2D mapping and 6DOF pose esti-
mation for low power platforms is otherwise not available as
open source software.
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