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Abstract: The observation of multiple moving targets by cooperating mobile robots is a key problem
in many security, surveillance and service applications. In essence, this problem is characterized by a
tight coupling of target allocation and continuous trajectory planning. Optimal control of the multi-robot
system generally neither permits to neglect physical motion dynamics nor to decouple or successively
process target assignment and trajectory planning.
In this paper, a numerically robust and stable model-predictive control strategy for solving the problem
in the case of discrete-time double-integrator dynamics is presented. Optimization based on linear mixed
logical dynamical system models allows for a flexible weighting of different aspects and optimal control
inputs for settings of moderate size can be computed in real-time.
By simulating sets of randomly generated situations, one can determine a maximum problem size
solvable in real-time in terms of the number of considered robots, targets, and length of the prediction
horizon. Based on this information, a decentralized control approach is proposed.
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1. INTRODUCTION

The cooperative multi-robot observation of multiple moving
targets (CMOMMT, Parker and Emmons (1997)) is a key prob-
lem in many security, surveillance, and service applications. As
it is inherently cooperative and scalable, it is a well-accepted,
NP-hard benchmark problem for investigating situation-based
allocation of roles and subtasks as well as the determination of
vehicle-specific trajectories (Parker (2002); Luke et al. (2005);
Ding et al. (2006); Markov and Carpin (2007)). Most appli-
cations require decentralized robust online control strategies
which allow real-time adaptation to a dynamic environment.

Although the CMOMMT problem is characterized by a tight
coupling of discrete decisions (target assignment) and contin-
uous trajectory planning, these aspects are usually considered
subsequently. This raises, in general, a significant loss of opti-
mality. Most existing approaches for task-allocation in cooper-
ative, autonomous multi-robot systems are based on heuristics
like market-based methods or behavior-based decision rules
(e.g. Parker (1998); Risler (2009)). Therefore these approaches
do not guarantee any optimality.

In order to apply optimization-based control methods, a model
of robots and targets within the considered environment is
needed. Modeling a cooperative control problem that allows
for continuous as well as discrete variables and logical rules
results in a possibly nonlinear Hybrid Optimal Control Prob-
lem (Glocker et al. (2006)). In general, solving this prob-
lem is computationally very expensive. A discrete-time linear
model approximation simplifies the problem. Therefore, many
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optimization-based control strategies use highly efficient Mixed
Integer Linear Programs (MILP) to approximate the real sys-
tem. This strategy has already been applied to some specific
examples of cooperative multi-robot games (cf. e.g. Earl and
D’Andrea (2007); Reinl and von Stryk (2007)) and multi-
vehicle coordination problems (e.g. Richards and How (2004)).

Modeling frameworks for linear hybrid dynamical systems –
particularly mixed logical dynamical (MLD) and piecewise
affine (PWA) systems – were studied extensively in control
theory within the last decade (cf. Bemporad and Morari (1999);
Morari and Baric (2006)). Especially when combined with a
model-predictive control (MPC) strategy, the MLD framework
provides a powerful tool for a wide range of modeling and con-
trol tasks. MPC, in general, combines optimality with robust,
stabilizing control and various software tools were developed
for controller synthesis (e.g. Kvasnica (2008)).

As the applicability of MPC based on MLD systems is hardly
investigated for simultaneously planning discrete decisions and
continuous trajectories in cooperative multi-robot systems (as
in Fierro and Wesselowski (2004)), this paper presents a new
MLD-based decentralized, numerically robust, and stable MPC
strategy for the problem of CMOMMT.

A MLD formulation is used to model the multi-vehicle syste-
mand an objective function, which permits flexible weighting
of different aspects, is set up (Section 3). At each time step,
the resulting optimal control problem is transformed into a
MILP before being solved. When considering the entire system,
global optimality of the resulting control inputs is guaranteed.
By investigating randomly generated situations, a maximum
real-time computable problem size is determined in terms of the
number of robots, targets, and length of the prediction horizon.
Based on this information, the decentralized control approach
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is derived. In comparison to results from Parker (2002) (Sec-
tion 4) it shows its potential to outperform existing heuristic
approaches to the CMOMMT problem.

2. CMOMMT PROBLEM FORMULATION

2.1 Global View

A fixed number of nR robots and nT targets is considered as
vehicles in a bounded work area S ⊂ R2 with no obstacles.
Each robot has a 360◦ sensing range of radius R2, in which it is
able to detect targets. It is said to observe a target if the target
is located within the robot’s observation range with radius
R1, where R1 ≤ R2 (cf. Fig. 1). The overall region covered
by the robots’ observation sensors is significantly smaller than
the considered work area, forcing them to dynamically adjust
their movement to nearby targets. It is assumed that the robots’
maximum velocity is greater than those of the targets.

Fig. 1. Robot r1 with its observation, sensing, and communica-
tion range. r1 observes target t2 and is able to detect targets
t1 and t3. The location of t6 is passed to r1 by r2. The targets
t4 and t5 are invisible for r1.

The common objective is to minimize the total time in which
targets escape observation. In order to formalize this goal, the
A-metric (Parker (2002)) is introduced:

A =
1

nT

T

∑
i=1

nT

∑
j=1

a(ti)j

T
, (A-metric)

where a(ti)j are binary variables that equal 1 if target j is ob-
served at time step ti and 0 otherwise. The A-metric represents
the average percentage of targets being observed by at least one
robot at some instant in time throughout a period of T time
steps. Thus, the shared goal can be restated as the maximization
of A, where A = 1 represents the absolute maximum.

The robots are able to communicate information on targets
within their sensing range as well as their own position to other
team mates. The range of communication R3 is assumed to be
significantly larger than the observation range, but too small to
cover the whole work area. Positions are communicated based
on a shared global coordinate system.

2.2 Local View

From a single robot’s point of view, only an excerpt of the
overall CMOMMT problem is considered. This subproblem

involves the robot itself and all team mates within its com-
munication range. Positions of all targets within the robot’s
sensing range plus those targets sensed by the robots it is able to
communicate with (cf. Fig. 1) are available for locally planning
a cooperative strategy.

The basic idea of the decentralized approach presented in
this paper is to use a model-predictive controller to provide
the robot’s optimal next move based on the locally available
information on other vehicles. For this purpose, a model of the
local subsystem which includes the currently involved vehicles
is set up and serves as a basis for predicting the evolution of the
system state. Determination of a single robot’s control will be
based on the assumption that the movement of all other robots
is optimal in the regarded subsystem. This means, optimal
behavior for all involved robots is computed, from which only
the control input for the currently considered robot is actually
applied. Disturbances resulting from the fact that the actual
system state differs from its locally predicted evolution are
compensated by the model-predictive control strategy.

3. PREDICTIVE CONTROL BASED ON A MIXED
LOGICAL DYNAMICAL MODEL

3.1 The MLD Framework

The Mixed Logical Dynamical (MLD) Framework was pro-
posed for modeling and controlling constrained linear systems
containing interacting physical laws and logical rules (Bem-
porad and Morari (1999)). This comprises not only hybrid
systems, but also finite state machines, (constrained) linear
systems or nonlinear dynamic systems where nonlinearity can
be expressed through combinatorial logic. Hence, the MLD
framework is a powerful tool for a wide range of modeling
and control tasks, especially when combined with a predictive
feedback control strategy.

In order to develop a MLD representation of the considered
system, logical statements have to be transformed into linear
inequalities (e.g. by using the Big-M method from Williams
and Brailsford (1996)). The following system of linear dy-
namic equations subject to mixed-integer linear inequalities is
obtained:

x(k+1) = Ax(k)+B1u(k)+B2δ
(k)+B3z(k) (1a)

y(k) =Cx(k)+D1u(k)+D2δ
(k)+D3z(k) (1b)

E2δ
(k)+E3z(k) ≤ E1u(k)+E4x(k)+E5 , (1c)

where k ∈Z represents the current time step τk and
x = [xc xb]

T ,xc ∈ Rnc ,xb ∈ {0,1}nb describes the system state,
y = [yc yb]

T ,yc ∈ Rpc ,yb ∈ {0,1}pb is the output vector,
u = [uc ub]

T ,uc ∈ Rmc ,ub ∈ {0,1}mb is the control input,
and δ ∈ {0,1}rb and z ∈ Rrc represent auxiliary binary and
continuous vectors, respectively.

For the proposed model-predictive control of CMOMMT sub-
systems it suffices that eq. (1) involves discrete-time dynamics
and time-invariant matrices. Note, that the MLD framework
also covers the time-variant case and can be restated with con-
tinuous time dynamics. Since the framework directly allows
for the interaction of continuous physical characteristics and
discrete decision logic, the MLD framework is an appropriate
choice for modeling cooperative mobility problems like the
CMOMMT.
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3.2 MLD Model of the CMOMMT Subsystem

This section presents an approach to modeling the CMOMMT
scenario using mixed-integer linear (in-)equalities and formu-
lating a specific linear cost function. The model includes ñR
robots and ñT targets.

Motion dynamics The main focus of investigation is con-
trol of cooperative behaviour. Therefore, simplifying double-
integrator vehicle dynamics are used and robots as well as tar-
gets are considered point masses moving in the plane. However,
the modular structure of the overall system model permits to
substitute a simple dynamic model with a more complex model,
if necessary.
Let xr and yr denote a robot’s position coordinates, vr,x and vr,y
the corresponding velocities, ur,x and ur,y the accelerations. The
robot’s locomotion at time τ then is described by ẍr(τ)= ur,x(τ)
and ÿr(τ) = ur,y(τ). In case of piecewise constant inputs on a
fixed time grid the formulation is equal to

x(k+1)
r =

1 0 ∆τ 0
0 1 0 ∆τ

0 0 1 0
0 0 0 1

x(k)r +


1
2 ∆

2
τ 0

0 1
2 ∆

2
τ

∆τ 0
0 ∆τ

u(k)
r , (2)

where x(k)r =(x(k)r ,y(k)r ,v(k)r,x ,v
(k)
r,y ), u(k)

r =(u(k)r,x ,u
(k)
r,y ), r = 1, . . . , ñR,

k = 1, . . . ,N, ∆τ = τk+1− τk, x(k) := x(τk), and y(k), v(k)x,y , u(k)x,y
defined analogously.
Simple target dynamics ẋt(τ) = vt,x(τ), ẏt(τ) = vt,y(τ) are in-
cluded in the model in order to predict target positions and
adjust the robot’s control accordingly. The target movement
prediction is based on an estimation supposing each target to
continue linearly in its current direction. In fact, it might change
its orientation during the N predicted time steps. In order to
cope with this uncertainty, the predicted target velocity is re-
duced by a constant factor ρ ∈ (0,1) in every time step:

x(k+1)
t =

1 0 ∆τ 0
0 1 0 ∆τ

0 0 ρ 0
0 0 0 ρ

x(k)t , (3)

where x(k)t = (x(k)t ,y(k)t ,v(k)t,x ,v
(k)
t,y ), t = 1, . . . , ñT . As the target

positions and velocities are updated at every call of the con-
troller the deviation from the real target behaviour is kept at a
minimum.

Constraints on vehicle position, velocity, and acceleration
For the example scenarios investigated in this paper, the work
area S is considered to be a circle with radius Rwork. Hence,
the model contains the following constraints on the vehicles’
positions, which linearly approximate the circular work area by
a polygon with ns edges:

x(k)r sin
2π j
ns

+ y(k)r cos
2π j
ns
≤ Rwork , (4)

x(k)t sin
2π j
ns

+ y(k)t cos
2π j
ns
≤ Rwork , (5)

where j = 1, . . . ,ns. In addition, position, velocity, and acceler-
ation variables are restricted by lower and upper bounds:

xmin ≤ x(k)r ,x(k)t ≤ xmax and (6)

umin ≤ u(k)
r ≤ umin . (7)

Distances The exact Euclidean distance between a robot r and
a target t is d̂rt =

√
(xr− xt)2 +(yr− yt)2. A linear approxima-

tion is obtained by introducing a set of inequalities

(x(k)r − x(k)t )sin
2π j
nd

+(y(k)r − y(k)t )cos
2π j
nd
≤ d(k)

rt (8)

for j = 1, . . . ,nd . If d(k)
rt is set to a minimum value, such that

all of the inequalities (8) hold, then d(k)
rt ≈ d̂(k)

rt , whereby the
accuracy of the approximation can be scaled by the constant
parameter nd ∈N. The overall optimization will ensure that d(k)

rt
is driven to its smallest possible value.

Observation constraints For each robot target pair (r, t), a
binary variable b(k)rt ∈ {0,1} indicates whether or not robot r
observes target t at time τk:

b(k)rt = 1 ⇒ d(k)
rt ≤ R1 . (9)

All robots are assumed to have observation ranges of equal size.
Applying the Big-M method to (9) results in

d(k)
rt −R1 ≤ M(1−b(k)rt ) , (10)

where M ≥maxxr ,yr ,xt ,yt{drt −R1}.
Since it is not of interest which robot observes target t, but
whether it is observed by any of them, another binary variable
s(k)t ∈ {0,1} is introduced and represents the general observa-
tion status of target t:

s(k)t = 0 ⇔
ñR

∑
r=1

b(k)rt ≥ 1 . (11)

A linear formulation of eq. (11) is given by the inequalities

1−
ñR

∑
r=1

b(k)rt ≤M · s(k)t and (12)

1−
ñR

∑
r=1

b(k)rt ≥ ε +(m− ε)(1− s(k)t ) ,

where M ≥ max{1−∑brt} = 1, m ≤ min{1−∑brt} = 1− ñR
and ε is a small tolerance close to machine precision.
The aspect of cooperation is realized by minimizing the number
of unobserved targets, i.e. ∑

ñT
t=1 s(k)t , and by minimizing each

robot’s distance to those targets not yet observed by any other
robot. The latter decision is expressed using the binary variables
st and an additional set of auxiliary variables hrt ∈ R, which
equal the distances drt in the case of unobserved targets and
equal zero in the case of already observed targets:

h(k)rt = s(k)t ·d
(k)
rt . (13)

The linear representation comprises the inequalities

h(k)rt ≤M · s(k)t , (14)

h(k)rt ≤ d(k)
rt , and

−h(k)rt ≤−d(k)
rt +M(1− s(k)t ) ,

where M = maxxr ,yr ,xt ,yt{drt}.

Objectives Clearly, the main objective in an observation sce-
nario is to observe as many targets as possible for as many
time steps as possible. In order to achieve this goal, the robots
are to move towards strategically good positions. This basically
means that a robot is supposed to approach unobserved targets
without losing sight of the target(s) it might already be observ-
ing. In addition, the robots are to move at a minimum control
effort, which in reality could correspond to energy consumption
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or other limiting factors. In summary, the cost function contains
the following elements:

-The number of unobserved targets: min
N

∑
k=0

ñT

∑
t=1

s(k)t (15)

-The distances to unobserved targets: min
N

∑
k=0

ñR

∑
r=1

ñT

∑
t=1

h(k)rt (16)

-The required control effort: min
N−1

∑
k=0

ñR

∑
r=1
|u(k)r,x |+ |u(k)r,y | (17)

The elements (15) - (17) have to be weighted according to
the different objective priorities and the best expected task
performance. For this purpose, the weights qδ , qz, qu ∈ R are
introduced and the assembled cost function is of the form

min
ur

N

∑
k=0

(
qδ

ñT

∑
t=1

s(k)t +qz

ñT

∑
t=1

ñR

∑
r=1

h(k)rt
)
+qu

N−1

∑
k=0

ñR

∑
r=1
|u(k)r,x |+ |u(k)r,y |.

(18)

3.3 MLD-Based Model-Predictive Control

The basic idea of model-predictive control is to use sequences
of optimal control inputs u(0), . . . ,u(N−1) computed by model-
based prediction over a finite time horizon N according to some
optimality criterion. The first element of the control sequence
is applied to the system, then its new state is measured for
computing an updated control input sequence. In this manner,
the prediction horizon N is shifted over time. The main ad-
vantage of this strategy is its ability to compensate modeling
inaccuracies and disturbances.

In order to apply the concept of MPC, problem (2)-(18) is refor-
mulated as Constrained Finite Time Optimal Control (CFTOC)
problem employing the MLD framework:

min
UN
|Px(N)|+

N−1

∑
k=0
|Q1u(k)|+|Q2δ

(k)|+|Q3z(k)|+|Q4x(k)| (19a)

s.t. x(k+1) = Ax(k)+B1u(k)+B2δ
(k)+B3z(k) (19b)

y(k) =Cx(k)+D1u(k)+D2δ
(k)+D3z(k) (19c)

E2δ
(k)+E3z(k) ≤ E1u(k)+E4x(k)+E5 , (19d)

where UN := {u(k)}N−1
k=0 is the optimization variable.

In this representation, the vector x(k) ∈ R4ñR+4ñT contains posi-
tions and velocities of all involved vehicles. All binary variables
are contained in δ (k) ∈ {0,1}ñR·ñT+ñT . z(k) ∈R2·ñR·ñT comprises
all other (auxiliary) continuous variables like the distances d(k)

rt

and h(k)rt , respectively. The vector u(k) ∈ R2ñR represents the
robot control inputs. Eq. (19b) - (19d) comprise 4ñR + 4ñT
equalities and 4ñRñT + 2ñT + ñRñT nd +(ñR + ñT )ns inequali-
ties.

The MLD framework was exploited as favorable as possible in
terms of problem complexity also taking into account how min-
imizing the cost function affects the variables. As an example,
consider the first observation constraint in section 3.2. A cor-
rect representation would require an “if-and-only-if ”-relation
instead of the single implication (9). However, the optimization
will always drive the variables brt to value 1 instead of 0,
which is why eq. (9) suffices to completely describe the relation
between brt and drt for problem (19).

Problem (19) is a mixed-integer linear formulation. Therefore
a numerically robust, efficient computation can be performed,
which guarantees global optimality without strongly depending
on initial guesses or bounds, as it would be the case in mixed-
integer non-linear programming.

4. DECENTRALIZED CONTROL

In order to use the MLD-based MPC as described in section 3
for the decentralized CMOMMT control approach, a priori the
application, several MLD models are set up offline, one for
each possible combination of the number of robots and the
number of targets. During the online application, an appropriate
model and the corresponding controller is selected by the
robot based on the number of teammates and targets within its
sensing / communication range as described in section 2.2. That
way, each robot is controlled individually based on the current
constitution of its local environment. Targets within robot r’s
observation range that are closer to other robot team members,
will be ignored by r. This reduces the risk of multiple robots
observing the same target.

In order to obtain an efficient online control strategy, a maxi-
mum number of robots ñRmax and targets ñT max in a model may
not be exceeded. During application, if there is information on
more targets or robots available than the defined maximum,
only those vehicles closest to the currently considered robot
are included in the subsystem model. As complexity and cal-
culation time grows exponentially with the model size, it is
suggested to sound out reasonable calculation times by solving
MILPs for different numbers of robots ñR and targets ñT as well
as different lengths of prediction horizons N. As an example,
Fig. 2 shows the computing times needed to solve a single
MILP describing a system of ñR = 1, . . . ,5 robots and 2 · ñR
targets over a prediction horizon N = 5 and N = 3, respectively.
The boxplots were obtained from 200 solver calls for randomly
generated system states for each instantiation of ñR, ñT , and N
(performed on a Dual Core CPU, 2.53 GHz, 4GB RAM using
the Multi-Parametric Toolbox (Kvasnica (2008)) for Matlab R©
and the solver CPLEX (ILOG (2007))).

Fig. 2. Boxplots of the computing times needed to solve a single
mixed-integer linear program over prediction horizon N =
3 and N = 5, respectively, for systems of ñR robots and
2 ñR targets.

Comparing the computing times permits to define an upper
bound (ñRmax,ñT max,N) for the model size in order to maintain
online efficiency of the control computation performed at each
time step. However, it has to be taken into account that appro-
priate combinations of ñRmax, ñT max, and N also depend on the
quality of the obtained solutions.

For reasons of stability, there is no controller for subsystems
without targets. If no target information is available, the robot
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is supposed to perform some kind of target search instead of
just staying idle at a certain location. The strategy implemented
in this paper causes the robot to follow the teammate currently
observing the most targets (at least 2) at the same time. If one
of the targets escapes the teammate’s observation, the following
robot can take over and switches back to the regular controlled
movement as soon as it again senses a target. This strategy
requires a teammate observing two or more targets within the
current robot’s communication range. If that is not the case,
the robot switches to random movement until it either finds a
target to observe or a robot to follow. Alternative approaches
include, among others, systematic search algorithms based on
Voronoi decomposition of the work area or probability-based
patrol behavior, but will not be further explored in this paper.

Since the decentralized control approach, in general, does not
reach the global optimality achieved by the centralized one, the
approach is now enhanced by inter-robot communication and
several rules regarding robot/target selection as was mentioned
above. This is in order to make the most of every controller call
and come as close as possible to the globally optimal solution.
One of the main advantages of the decentralized strategy is that
the size of the subproblem can be adapted to the given system
characteristics, e.g. the overall number of involved vehicles, and
available computing capacities. Moreover, the decentralized
approach is flexible in terms of the number of robots and
targets involved in the entire system. The control strategy does
not depend on a central component and a permanent, stable
communication with it.

4.1 Stability

For each robot, which is controlled by the proposed model-
based predictive strategy, there exists a set of equilibrium
points. Namely, these are all robot positions (with velocity 0
respectively) that cannot be improved within the considered
time horizon N.
In case of only one target in the robot’s environment, that would
correspond to positions in observation distance to the target.
Therefore, for any pertubation that effects the robot’s state to
be outside the set of stationary points, sufficiently high weights
qδ and qz in eq. (18) lead to a minimization of the distance
between the current robot state vector and the set of equlibrium
points. This distance is expressed by st and hrt .
In case of multiple considered robots and targets within the
sensing and communication range, the set of equilibrium points
is not connected any more and a pertubation may direct the
robot to be controlled towards a stationary point that lies in a
different subset.

4.2 Comparison to a heuristic solution (Parker (2002))

In this section, solutions of the CMOMMT problem obtained
with the proposed decentralized approach are presented and
by simulations compared to the heuristic approach in Parker
(2002). For this purpose, some parameters regarding the robots’
sensing capabilities are adapted to satisfy equal conditions.

At the beginning of each simulation run, robots and targets
are randomly positioned within a 1000× 1000 square in the
work area center. Since the robots’ observation range is set to
R1 = 2600 and the sensing range R2 = 3000, all targets are
observed when the simulation starts. A robot is assumed to
know about two types of targets, those it is currently observing

itself and those which are located within its sensing range and
are observed by some other robot. This further restricts the
problem definition in section 2, where each robot itself was
able to detect targets within its sensing range. Communication
with teammates is possible within a communication range of
radius R3 = 5000. At the beginning, the targets are assigned
a random orientation and a random velocity up to 150 units
per second, which they keep constant during the run. At a 5%
chance, they randomly change their orientation (max. ±90◦) at
each time step. If a target gets close to the work area boundary,
it is repelled and moves on along the reflected direction. Robots
can move with a velocity up to 200 units per second.

Settings with a fixed robot target ratio of nR
nT

= 1
4 and nR =

1, . . . ,5 are considered. They represent the class of “harder”
problems since there are more targets than robots. Hence,
the robots need to observe more than one target at the same
time in order to maximize the A-metric. The work area radius
Rwork varies between 1000 and 50000 units. For each instance
(nR,nT ,Rwork), 250 simulation runs were performed and evalu-
ated based on the average value of the A-metric. Fig. 3 shows
the results obtained with the proposed decentralized MPC ap-
proach (ñRmax = ñT max = 3, N = 5) in comparison to the results
obtained with Parker’s A-CMOMMT approach.

Fig. 3. Comparison of the simulation results obtained with the
decentralized approach and with Parker’s A-CMOMMT
approach (Parker (2002)) based on the average A-metric
for settings with nR = 1, . . . ,5 robots and nT = 4 ·nR targets
in a work area with radius Rwork = 1000, . . . ,50000.

Due to the small work area and frequently reflecting targets,
an average value of A = 1 is obtained for very small values of
Rwork. Along with a rising work area size comes the increasing
risk of targets escaping observation. A more or less constant
average value of A is reached as soon as the work area radius
does not influence the success of the observation task anymore,
which is the case for Rwork ≈ 11000 for the MPC approach
and Rwork ≈ 22000 for the A-CMOMMT approach. Hence, the
success rate of Parker’s approach keeps shrinking while that
of the MPC approach has already settled at a level around
A = 0.715. For Rwork > 22000 the MPC method outperforms
the A-CMOMMT method by approx. 25%.

Fig. 4 (a) shows an example of a simulation run with 4 robots
and 16 targets. It can be seen that the robots cover 2 or more
targets with their observation ranges as long as the targets are
close enough together.
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Fig. 4. Examples of simulation runs. Robots are represented by
diamond shaped markers surrounded by circles indicating
their observation, sensing, and communication range, re-
spectively. The solid lines represent the robots’ trajecto-
ries, the dashed lines and circular markers the targets.

It turned out, that the superiority of the MPC approach to the A-
CMOMMT approach becomes even more obvious for a robot
target ratio of nR

nT
= 1. In a simulation setup similar to the

1/4-case, average values for A around 0.98 were obtained for
Rwork > 10000. An improvement of approx. 38% compared to
Parker’s method was achieved for Rwork > 22000. Fig. 4 (b)
depicts a simulation run for 5 robots and 5 targets, which shows
how the robots are controlled to either follow one target each or
a robot which observes more than 2 targets (work area center).

5. CONCLUSION

A decentralized, model-predictive control strategy that consid-
ers a tight coupling of discrete decisions and continuous vehicle
dynamics was proposed and applied to a benchmark problem of
cooperative multi-robot observation of multiple moving targets.
It simultaneously provides stable situation-based allocation of
targets and vehicle-specific path-planning while meeting real-
time requirements.

In contrast to existing heuristic approaches, the proposed
method guarantees a certain degree of optimality, that is scal-
able by the number of considered robots, targets and the length
of the MPC prediction horizon. In comparison to an approach
presented by Parker (2002), the model-predictive strategy re-
sults in significantly better cooperative strategies.

Thus, for a key problem in many security, surveillance and
service applications an online control strategy based on mixed-
integer linear programming is presented, which is generalizable
to various cooperative multi-vehicle scenarios that require the

consideration of a tight coupling of discrete decisions and
continuous vehicle dynamics.
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