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Abstract. In urban search and rescue scenarios, typical applications of
robots include autonomous exploration of possibly dangerous sites, and the
recognition of victims and other objects of interest. In complex scenarios,
relying on only one type of sensor is often misleading, while using comple-
mentary sensors frequently helps improving the performance. To that end,
we propose a probabilistic world model that leverages information from
heterogeneous sensors and integrates semantic attributes. This method of
reasoning about complementary information is shown to be advantageous,
yielding increased reliability compared to considering all sensors separately.
We report results from several experiments with a wheeled USAR robot
in a complex indoor scenario. The robot is able to learn an accurate map,
and to detect real persons and signs of hazardous materials based on iner-
tial sensing, odometry, a laser range finder, visual detection, and thermal
imaging. The results show that combining heterogeneous sensor informa-
tion increases the detection performance, and that semantic attributes can
be successfully integrated into the world model.

1 Introduction

Modeling the world in complex environments is a crucial aspect on the way toward
reliable, intelligent, and autonomous search and rescue robots. As motivated in
[1–3], it is desirable not only to infer a geometrically interpretable map, but also
to integrate semantic attributes to enable high-level scene interpretation. In urban
search and rescue (USAR), reliable robots have to provide a semantically meaning-
ful interpretation of objects within a scene (e.g. victims in collapsed buildings) [4].
In unconstrained environments – as is the case in USAR scenarios – relying only
on one type of sensor is often insufficient, while fusing complementary information
(i.e. information from different types of sensors) enables semantic interpretability
of scenes and superior reliability.

The main goal of this paper is to propose a mobile robot system for autonomous
detection of victims in USAR scenarios. The system is capable of autonomous navi-
gation and map learning, and localizes victims and objects of interest in a 3D world
coordinate system. Our setting approaches actual search and rescue operations in
realism and complexity: Real human victims have to be localized in unstructured
environments, even in the presence of background clutter and multiple thermal
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Fig. 1. Examples of sensor and world model data: (a) Visual image with victim
detection. (b) Thermal image with heat detections. (c) Range samples along the
horizontal axis of the image. (d) Snapshot of the semantic world model with esti-
mated victim locations denoted by the red covariance ellipses.

sources such as office equipment and heating. To this end, we expand the sce-
nario beyond the current RoboCup Rescue competition, in which the environment
is built of simple structural elements and a thermal camera is sufficient for vic-
tim localization in most cases. By adding objects of interest to the metric map of
the environment, we augment the robot’s environment with semantic information,
which can then be utilized for decision making by human operators. Our system
is able to achieve high performance even for cluttered and complex datasets (see
Fig. 1). All information is processed onboard and in real-time, as is crucial for
realistic rescue deployments.

In our system visual information is supplied to a generic object detector that
allows detecting structured objects and assigns them a semantic meaning (e.g.
upper bodies of victims or hazardous material signs). To avoid relying on a single
source of information, we consider the information from all sensors simultaneously,
and derive a generic model that is able to leverage complementary information. As
motivated in [5], merging different sources of information helps achieving higher
levels of performance in victim detection. However, to the best of our knowledge,
this work is the first attempt at integrating and evaluating state-of-the-art visual
object detection with an autonomous USAR robot system.

Sec. 2 describes our system, while in Sec. 3 the sensors and detection algorithms
for victim and object detection are introduced. Afterwards two approaches for
sensor fusion are presented in Sec. 4. Experimental validation is presented in Sec. 5.

Related work. Enhancing geometric world models with semantic information
is motivated in [6], where an indoor environment is described by corridors, doors,
and types of rooms. Features are extracted from camera images and laser range
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data, and subsequently classified via hidden Markov models. The paper shows that
semantic world models are helpful for behavior planning. In our context, we focus
on detecting objects of interest, for example victims, rather than rooms and doors.

State-of-the-art algorithms for people detection frequently rely on only one type
of sensor. In particular, a large body of literature exists for people detection in vi-
sual camera images and video sequences. Much of the progress in this area has been
achieved by combining statistical machine learning techniques with robust image
representations. High variability in people poses and appearance is often addressed
using part-based models, in which parts either correspond to anatomically mean-
ingful body parts [7], or are automatically inferred from data [8, 9]. In [10] an image
descriptor based on histograms of oriented gradients (HOG) is proposed, which is
combined with discriminative SVM classifiers in order to exhaustively scan an im-
age for people hypotheses. This representation has been further extended in [11] to
incorporate motion information and has been used as basis for multiple approaches
to people and object detection [12–14]. Although being conceptually simple, HOG-
based detectors belong to the best people detection methods published to date
[15].

Thermal images can be used to detect upright people [16, 17], to distinguish
upright people from people lying on the ground [18], and to detect body parts and
arbitrary postures of humans [19]. Laser range finders are frequently used to detect
upright standing or walking people, either by tracking the upper body [20], the legs
[21], or both [22]. All of these algorithms have restrictions and work only in specific
situations. Some require upright standing or walking people, others assume to have
no other heat sources than humans in the sensing range. These drawbacks can be
overcome by using several heterogeneous, complementary types of sensors. However,
combinations of several heterogeneous sensors have been shown to perform better
than each classifier alone. In [23, 24] detections from a laser range finder are used
to classify regions of interest for a visual detector, and in [5] several independent
classifiers relying on heat, skin color, motion and face detection are fused using
Markov random fields.

2 System Overview

Since the locations of victims need to be specified in world coordinates, the robot
pose and a metric map have to be estimated using a combination of inertial sensing
and simultaneous localization and mapping (SLAM). These estimates are continu-
ously updated over time and used for integrating victim hypotheses obtained from
different sensor types. Simultaneously with the pose and map estimation at each
time step, our system generates a set of object hypotheses using a visual object
detector and thermal-camera based detector, which are used as a basis for sensor
fusion.

We explore two complementary approaches for sensor fusion. In the first, which
we denote as explicit sensor fusion, we integrate information from different sensors
directly in the sensor space using known transformations between different sensor
modalities (i.e. the mapping between thermal and visual images). This allows to use
known dependencies of sensor signals to either amplify or attenuate the confidence
in the measurements.
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In the second approach, which we denote as implicit sensor fusion, the global
belief is updated independently for each observation. The advantage of using com-
plementary sensors is realized through accumulation of positive evidence in the
world model. Integrating hypotheses into the model requires an association step
for matching a hypothesis to an already known object. The case in which previously
unknown objects have been found must be considered separately. Once association
is established, the matching is taken for granted and the corresponding victim loca-
tion estimate and evidence is updated by using an extended Kalman filter (EKF).
Integration of observations into the global belief state can therefore be considered
to be a method for temporal sensor fusion. Additionally, confidence in a hypothesis
is influenced by negative observations, where the absence of expected detections or
contradictory measurements reduce the confidence value.

When applying implicit sensor fusion the observations from different sensors
are integrated independently into the world map, while explicit sensor fusion is an
optional step that precedes the integration step, and is primarily used to increase
the reliability of observations.

2.1 World Model

World models generally account for a mathematical description of the environment,
with different aspects being considered important depending on the application. In
our USAR scenario the model is formed by a representation of building geometry
and additional semantic information, like the location of people and objects of
interest. By applying additional high-level knowledge to the model, it can be easily
enriched with more detailed information in future work, e.g. classification of places,
a graph of passable paths through a building, or estimates of hazardousness of
specific locations. Based on this high-level description of the environment, the robot
is able to plan reasonable future actions and – when integrating human operators
– is able to deliver valuable information to rescue teams, e.g. to guide them to
detected victims.

The robot state vector yk contains the estimated 6DOF robot pose as well as
translational and angular velocities in the global coordinate system and is updated
at discrete timesteps t = tk. The location of objects, including the victims, is
referred to as xj

k with j being an index variable over the estimates. The objects
are modeled as points, ignoring their spatial extent. In this paper we assume the
world to be static apart from the movement of the robot itself. The number of
objects is not known in advance. Besides the location information we introduce the
probability πj

k that object j is detected correctly as a measure of confidence, which
is incrementally updated with each new sensor reading and typically increases when
more detections of the same object occur.

The process of world modeling requires inference in state space from measure-
ments given in sensor-space. Since sensors are error-prone, a probabilistic model
description is used here. We choose a Gaussian representation for the continuous
state variables, with estimated means ŷk and x̂j

k, and variances Ck and P j
k , respec-

tively.

2.2 Simultaneous localization and mapping (SLAM)

State estimation of the vehicle and a map is performed by two components. A
2D pose and map estimate is provided by a module using incremental maximum
likelihood alignment of laser scans with the estimated map. The map is represented
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by a discrete grid and updated using the log-odd probabilities of occupancy [25,
26].

Estimation of the robot state yk is performed by an extended Kalman filter
(EKF) integrating observations from all available sensors. Attitude estimation is
provided by a built-in IMU and compass, while position estimation is provided by
wheel encoders and the 2D pose estimation updates from the SLAM module. For
the USAR scenarios described in this work, our approach is sufficiently accurate
as to not require multiple map hypotheses (e.g. using a Rao-Blackwellized particle
filter), or explicit loop closure.

3 Victim and object detection

In order to enrich the map with semantic information, we perform on-board detec-
tion of objects of interest, which in our case correspond to people and dangerous
materials marked with hazmat signs. In this paper we focus on the detection of
upper bodies of people, since this allows to detect both standing people as well as
possibly injured people sitting on the ground (see Fig. 1), and leave more complex
cases for future work. Due to background clutter, partial occlusions and complex
articulations, visual people detection is a difficult problem even in this somewhat
restricted setting. In particular, state-of-the-art computer vision methods are still
severely challenged by this task [12].

Object detection. In order to find initial hypotheses of people and hazmat signs
in camera images, we use the popular sliding window approach. In this approach
every image is exhaustively scanned over a range of positions and scales; for each
position and scale a discriminative SVM classifier is used to make binary deci-
sions about the presence or absence of an object. While seemingly expensive, the
sliding-window approach is especially suitable for parallel implementation, since
each object location can be examined independently of the rest of the image.

In order to describe the contents of the image at each particular location, we
leverage recent results in computer vision and rely on a histogram of oriented
gradients (HOG) descriptor [10]. In our system we scan the image with steps of
8 pixels and relative scale factors of 1.05. We use the GPU implementation [14]
developed in our group, which allows to achieve real-time performance without
sacrificing recognition performance.

The confidence svisk ∈ [0, 1] of a hypothesis is calculated via a sigmoidal mapping:

svisk =
1

1 + exp(a · fk + b)
, (1)

where fk is the SVM score of the hypothesis, and a and b are parameters that are
estimated by cross-validation [27].

Object classification. A HOG descriptor is especially well suited for captur-
ing the characteristic shape of an object. However, it has shortcomings when it
is necessary to distinguish between objects with similar shape, such as different
hazmat signs, all of which have a rhombus shape and differ mainly in color, in-
ternal patterns and text. In order to identify hazmat signs we augment the HOG
descriptors with color histograms. For each hazmat sign hypothesis of the HOG
based detector, we compute a color histogram in LAB color space and use this to
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Fig. 2. (a) Correspondence between annotation height and distance. (b) Example
detections of frame 561. (c) Scanline of frame 561. (d) Example detections of frame
287. (e) Thermal image of frame 287.

perform the final classification of hazmat signs by applying a k-nearest neighbor
approach in combination with the χ2-distance. As our experiments demonstrate,
the combination of HOG and color histograms yields good performance for hazmat
sign classification (Sec. 5).

Thermal victim detection. In addition to victim hypotheses from visible
light camera images, our system also creates a set of hypotheses based on images
from a thermal camera. These thermal hypotheses are generated with a simple
procedure that searches the images for large enough groups of connected pixels
with temperature values within the human body temperature range. Each such
group of pixels is used to generate a hypothesis. Although hypotheses generated
by the thermal camera alone are significantly less reliable compared to hypotheses
produced by the visual object detector, we found them to be effective in reducing
the number of false positives.

We define a simple model for the confidence sthermk ∈ [0, 1] by counting the
number of pixels within the person’s bounding box that have a temperature close
to human bodies. This model is robust to small offsets in corresponding locations in
visual and thermal images, which arise due to imprecise synchronization between
these modalities.

4 Sensor fusion

The reliability of the entire victim detection framework can be increased by fusing
victim hypotheses from different sensors and across time steps. Intuitively, the
confidence of a detected victim should be increased if it is observed in several update
steps or by different sensors and on the other hand stay below a certain threshold
when it is only spotted once. We employ an extended Kalman filter (EKF) in order
to update the locations xj

k of victims in our world model and integrate several
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hypotheses across update steps. In parallel, the confidence πj
k that the victim is

present at the respective location is updated in a separate filter with the respective
measurement confidence as described below.

For simplification of notation we assume without loss of generality that at most
one hypothesis is observed in every update step k. We define the measurement zk
to consist of the distance dk, the bearing angle αk, and the relative vertical angle
βk between the hypotheses and the robot:

zk =
[
dk αk βk

]T
= h(xj

k,yk) + vk , (2)

where h(·, ·) refers to a nonlinear measurement function that projects the victim’s
position into the world model. xj

k and yk denote the victim’s position estimate and
robot state vector respectively. The random vector vk is unbiased and uncorrelated
Gaussian measurement noise with hand-tuned variance R. The measurement func-
tion also depends on the robot’s state yk, which in turn is estimated with an EKF
independently.

Data association. In order to find an optimal matching between measurements
and existing estimates of victim locations we use the following probability of mea-
surement zk given the index j and the position estimate x̂j

k−1 with variance P j
k−1:

p(zk|j) ∝ N (zk;h(x̂j
k−1, ŷk), R+Hj

kP
j
k−1(Hj

k)T ) (3)

with a first order approximation Hj
k of the measurement function h(x̂j

k−1, ŷk) at
the current estimated means.
Whenever this probability p(zk|j) is above a previously defined threshold, we as-
sociate the new measurement to the best matching estimate with index j∗k =
arg maxj p(zk|j). Otherwise, a new estimate is added to the world model as of
a previously unobserved victim.

Kalman filter updates. We assume the victims to be static in our setting and
therefore no explicit prediction step is needed. The measurement update equations
of the Kalman filter are defined as:

Kj
k = P j

k−1(Hj
k)T

(
Hj

kP
j
k−1(Hj

k)T +R
)−1

(4)

x̂j
k = x̂j

k−1 + λk(zk, sk) ·Kj
k

(
zk − h(x̂j

k−1, ŷk)
)

(5)

P j
k =

(
I − λk(zk, sk) ·Kj

kH
j
k

)
P j
k−1 (6)

where I denotes the identity matrix and sk refers to the initial score of hypothesis k
as will be explained below. The measurement update uses the confidence λk(·, ·) ∈
[0, 1] of an observation as an additional factor to the gain matrix Kj

k to honor the
observation quality and discard uncertain updates. The measurement confidence is
of the form

λk(zk, sk) = sk · φ(zk, d
laser) · ψ(zk), (7)

where dlaser is the distance to the next obstacle measured with the laser scan-
ner. φ(·, ·) imposes a prior on the estimated distance to zk and measured distance
dlaser to the next obstacle and is proportional to a Gaussian with manually defined
variance according to the uncertainty in the sensor measurements. ψ(·) refers to
a Gaussian height prior with mean 80cm (height of upper bodies) and manually
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defined variance. By employing φ(·, ·), we ensure that the size of an hypothesis
approximately matches the size that we expect, and avoid false positives with in-
appropriate estimated and measured distances (see Fig. 2(b)). ψ(·) guarantees that
all objects appear at the expected height from the robot, while unlikely pitch angles
are discarded.

Label confidence update. In the case that a new measurement is associated
to a given estimate, we update the estimate’s label confidence according to the dis-
junctive combination of two binary random events, so that confidence is increased
with every new measurement:

πj
k = πj

k−1 + λk · (1− πj
k−1) . (8)

If no measurement in time step k is available we decrease the label confidence
of all victim estimates within the field of view by employing ”negative evidence”.
Negative evidence is information that arises from the fact that the confidence of
an estimate can decrease if it is not confirmed by sensor observations. Applying
negative evidence to our algorithm helps to decrease the number of false alarms,
as many false positives do not reoccur in consecutive time steps.

The negative update is applied to all objects j that should be visible in the image
according to the current estimated map and positions, but have no detection event
associated for the current time step. Their label confidence is reduced according to

πj
k =

pmiss · πj
k−1

pmiss · πj
k−1 + (1− πj

k−1)
. (9)

The probability pmiss of missed detections is approximated as the inverse probability
of the detector’s recall on the trained dataset.

Implicit vs. explicit integration We evaluate two different fusion schemes:
implicit and explicit fusion. These two approaches differ in the way the comple-
mentary information of sensors is integrated. In our model this boils down to the
treatment of the initial score sk of an hypothesis in Eq. (7).

In the implicit fusion scheme we consider each hypothesis from both the visual
light and thermal sensor as a new measurement that is either associated to a given
estimate or enters the world model as a new estimate. In this setting the sensor
fusion is implicitly handled with the Kalman filter, since the measurements of both
sensors can be used for data association and updating the confidence. Here we
directly use the visual or thermal score as initial score sk:

sk =

{
svisk , if visual light hypothesis

sthermk , if thermal hypothesis
. (10)

In the explicit integration scheme we compute the overall detection confidence
as a weighted sum from the individual scores of complementary sensors, yielding
a single observation model where bearing and distance information is taken from
the visible light bounding box only:

sk = γ1 · svisk + γ2 · sthermk + γ3 · slaserk , (11)

where
∑

i γi = 1 and the coefficients γi are trained with cross-validation. This
additive formulation makes the model robust to sensor failures (e.g. due to partial



Semantic World Models 9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

vis+laser+therm (45.0)

vis+laser (42.9)

vis+therm (43.0)

vis (36.3)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

vis (36.5)

vis+th (39.1)

vis 100 (47.5)

vis+th 100 (51.4)

vis occ (27.2)

vis+th occ (31.1)

(b)

0 0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

visual hazmat signs (60.1)

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

vis+laser+therm early (78.7)

vis+laser early (75.8)

vis+therm early (29.6)

vis early (29.2)

(d)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

 

 

vis+laser+therm late (87.2)

vis+laser late (69.2)

vis+therm late (49.7)

vis late (29.2)

(e) (f)

Fig. 3. (a, b) Single-frame people detection performance for different combination
of sensors on “Hector Data 1” and “Hector Data 2” datasets. (c) Single-frame
hazmat sign detection performance on “Hector Data 1” dataset. (d, e) People
detection performance of the full system on the ”Hector Data 1” dataset for explicit
and implicit sensor fusion schemes. (f) Collection of different hazmat signs.

occlusions) and takes relative importance of different sensors into account. The first
two components of the mixture correspond to the probability of correct detection
given the score of the SVM classifier and the output probability of the thermal
victim detector for the same bounding box as defined in Sec. 3.

While more detailed integration of different sensor modalities is possible and
we plan to explore it in the future, we opt for this re-estimation approach since
it allows to decouple training of the visual object detector from the rest of the
system, does not require exact synchronization between different sensor streams,
and allows to use simple algorithms for integration of thermal and laser sensors.

In order to model slaserk , we fit a log-linear model to a set of jointly observed
bounding boxes and laser range measurements as shown in Fig. 2(a). slaserk is set
to a Gaussian computed at the difference between the predicted distance from the
log-linear model and the median distance measured with the laser range finder.
The variance is set by hand.

5 Experiments

We evaluate the performance of our system on the tasks of people and hazmat sign
detection. In particular we quantify performance gains due to fusion of multiple
sensor modalities and evaluate both detection in single frames and performance of
the full system. For the evaluation we use the dataset, which consists of daylight
images, thermal images, and laser range scanner and odometry measurements col-
lected while robot was driving along the closed path of approximately 120 meters
around the office building. For the sake of single-frame evaluation, we have anno-
tated all people appearing in the daylight images, which are larger then 40 pixels
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in height. The resulting dataset contains 1480 daylight images with 300 annotated
victims corresponding to 10 distinct subjects. Due to difficult illumination condi-
tions, motion blur and large variability in viewpoints, visual people detection in
such data is very challenging. At the same time detection of people in thermal
images is complicated by presence of multiple background heat sources, such as
heating and illumination equipment, computers and other office devices. In order
to evaluate the robustness of our system to partial occlusions, we have collected an
additional dataset of 28 images with 115 annotated people, 69 of which are partially
occluded. We denote these datasets as “Hector Data 1” and “Hector Data 2” re-
spectively 1. In order to demonstrate the generality of our method we do not adapt
visual people detector to our scenario, although this would likely lead to improved
performance, and train our visual detector on the INRIA pedestrian dataset [10],
where we have re-annotated the upper bodies of people. For the detection exper-
iments we report the average precision (AP), which measures the area under the
precision-recall curve. This is a common comparison measure, for which a perfect
detector would achieve 100% AP. In the following we first present the results of
single-frame detection of people and hazmat signs, and then evaluate performance
of the full system. For the single frame detection the confidence of object hypoth-
esis is computed according to the Eq. 11, while for the full system the confidence
is based on the measurements over multiple frames.

Single frame people detection. Fig. 3(a) and Fig. 3(b) show the results of
single-frame people detection of our system on the “Hector Data 1” and “Hector
Data 2” datasets in form of recall/precision curves.

On the “Hector Data 1” dataset, detector based on visual information achieves
36.3% AP, integration of visual and laser range measurements results in 42.9%
AP, and integration of visual and thermal measurements results in 43.0% AP.
Integration of all three sensors leads to the best performance of 45.0% AP. The
missing detections on this dataset mainly correspond to either very small or very
blurry instances.

Similar trends can be observed on the “Hector Data 2”, where images con-
tain less motion blur, but significant number of people is partially occluded. On
this dataset we obtain 36.5% AP using visual detector alone, which improves to
39.1% AP by integration visual and thermal detectors. When evaluating only on
the partially occluded people we obtain 27.2% AP with visual detector, and 31.1%
AP with combination of visual and thermal detectors. These results show that,
despite some drop in performance, our system is still producing meaningful detec-
tion results even in the case when people are partially occluded. The integration
of thermal sensor measurements results in consistent improvement of performance
of around 4% AP.

Hazmat sign detection and classification. Fig. 3(c) shows precision-recall
curve quantifying single-frame hazmat sign detection performance. On this type of
objects we obtain 60.1% AP. Due to smaller intra-class variability the results for
hazmat signs are somewhat better then results for people detection. The missing
detections are often due to motion blur and hazmat signs at extremely small scales.

We further investigate the performance of our system on hazmat sign classifica-
tion task, in which the goal is to distinguish between one of the nine hazmat sign

1 Both datasets are available at http://www.gkmm.tu-darmstadt.de/rescue
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classes depicted in Fig. 3(f). For that purpose, we take the detection windows at
maximum recall and assign them to one of the given classes or background.

For the classification we follow the procedure based on color histograms, de-
scribed in Sec. 3. We evaluate two approaches to histogram computation, one in
which color histogram is calculated on the entire detection window, and another in
which detection window is subdivided into four sub-regions and separate histogram
is computed for each of them. In the latter approach the final descriptor is formed
by concatenating histograms of each sub-region. We obtain the recognition rate of
37.5% using histograms based on the entire window, and 58.3% using sub-region
based histograms. The improvement is mainly due to better discrimination between
hazmat classes with globally similar color distribution, e.g. white/red hazmat signs
“Combustible” and “Flamable Solid” shown on Fig. 3(f). Region-based histograms
provide better representation of the image in such difficult cases, since they are also
capable of capturing the spatial distribution of colors within the detection window.

Full system performance. Finally, we evaluate the capability of our full sys-
tem to correctly detect and localize people in the environment map. The predicted
location and detection confidence of each person hypothesis is infered by temporal
integration of sensor measurements according to the filtering procedure described
in Sec. 4. In contrast to single frame evaluation, the detection performance is re-
ported for the whole series of measurements contained in the dataset. The victim
is considered to be localized correctly if its predicted location on the map is within
1 meter radius the ground truth annotation, obtained my manual labeling. Multi-
ple hits on the same ground truth annotation are only counted once, where each
subsequent hit is considered a false positive.

As can be seen in Figs. 3(d) and 3(e) merging complementary information of
heterogeneous devices (vis+laser+therm) outperforms all other settings by a large
margin. It achieves 78.7%AP (explicit sensor fusion) and 87.2% AP (implicit sensor
fusion) outperforming vis+laser by 2.9% AP and 18% AP respectively. When not
using the laser, our framework suffers from placing the victims too far from ground
truth annotations. vis+therm achieves 29.6% AP for explicit fusion and 49.7% AP
for implicit fusion. The baseline of using only visual information achieves 29.2% AP.
The implicit integration scheme achieves a higher precision for vis+thermal+laser
and vis+thermal than explicit integration while the latter fusing scheme yields
higher levels of recall. Note that in contrast to single-frame evaluation where recall
levels are below 60%, the complete system has recall of 90% for implicit and 100%
for explicit sensor fusion schemes. This is an important result for search and rescue
applications, in which the ultimate goal is to find all of the victims.

6 Conclusion

This paper addresses sensor fusion of heterogeneous sensors with a generic seman-
tic world model. Our framework is able to leverage complementary information
for increased reliability in complex USAR scenarios. Geometric maps are enriched
with semantic interpretation of scenes by detecting victims and possibly hazardous
areas. The importance of sensor fusion and the expressiveness of our model are
experimentally evaluated on a complex real world dataset. In future work we will
address distributed sensor fusion by using multiple robots.
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