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Abstract— Finding injured humans is one of the primary
goals of any search and rescue operation. The aim of this paper
is to address the task of automatically finding people lying on
the ground in images taken from the on-board camera of an
unmanned aerial vehicle (UAV).

In this paper we evaluate various state-of-the-art visual
people detection methods in the context of vision based victim
detection from an UAV. The top performing approaches in
this comparison are those that rely on flexible part-based
representations and discriminatively trained part detectors. We
discuss their strengths and weaknesses and demonstrate that by
combining multiple models we can increase the reliability of the
system. We also demonstrate that the detection performance
can be substantially improved by integrating the height and
pitch information provided by on-board sensors. Jointly these
improvements allow us to significantly boost the detection
performance over the current de-facto standard, which provides
a substantial step towards making autonomous victim detection
for UAVs practical.

I. INTRODUCTION AND RELATED WORK

Finding human victims in post-disaster scenarios is one of
the primary goals of any search and rescue (SAR) operation.
Although significant progress has been made in developing
ground robots for SAR applications, most of these robots
still lack the mobility necessary for autonomous exploration
of disaster sites. However, with the emergence of lightweight
and inexpensive unmanned aerial vehicles (UAVs) it becomes
possible to quickly survey a disaster site from the air in order
to identify humans needing help [8], [21], [29].

In this paper, we focus on victim detection from a UAV
using an on-board daylight camera as our main sensing
device. We envision that the development of powerful vision-
based victim detection methods will lead to a reduction in
the number (and weight) of required on-board sensors and
result in cheaper, smaller, and more power efficient UAVs.
Additionally, robust vision-based detectors have proven to be
an important building block when designing human detection
systems based on multiple sensor modalities [20], [32].

Detection of people in images is a challenging problem.
While significant progress has been made in specialized
areas such as pedestrian detection [13], most approaches
work best when people are fully visible and appear in a
limited range of poses such as standing or walking. The best
performing methods often use a monolithic representation
of people, such as a HOG descriptor [9], and discriminative
classifiers. Models of this type have recently been extended
to incorporate motion [10], [36] and color [35] features. They

Fig. 1. Several examples of people detection obtained with our approach
on images captured from a quadrotor UAV.

have also been applied to upper body detection [18], and
have been integrated within larger systems to enable obstacle
detection in mobile environments [14].

However, models based on monolithic representations are
unlikely to generalize well to complex scenarios encoun-
tered in search and rescue applications [28]. In particular
they are severely challenged by partial occlusions and high
variabilities in poses of people, which frequently occur in
such data. Fig. 1 shows several sample images acquired from
the on-board camera of our UAV1, which demonstrate the
complexity of people detection in the scenario considered
in this paper: People are partially occluded and occur in a
wide range of poses in an environment, which is typically
highly cluttered. Using a monolithic person representation to
detect characteristic full-body shapes is prone to fail in such
a scenario.

A second type of people detection methods – called part-
based models in the following – proceeds by decomposing
complex appearances of humans into multiple components
or parts [1], [5], [17]. In [1] strong discriminatively trained
body part detectors are combined with a flexible body model
based on the pictorial structures framework, allowing to
detect highly articulated people. The approach of [17] also
builds on the pictorial structures framework, but introduces
a training procedure based on an unsupervised discovery
of model parts, which are automatically chosen to optimize

1Shown detections correspond to the confidence level with equal precision
and recall.



detection performance. [5] proposes to address the detection
of articulated and partially occluded humans using a large
number of specialized part detectors that are trained to detect
body regions with characteristic appearances, which are also
informative for the underlying 3D body configuration. In
contrast to the monolithic representations mentioned above,
these part-based models seem better suited to address the
challenging problem of victim detection from a UAV.

The paper makes the following contributions. First, the
paper evaluates and discusses several state-of-the-art visual
people detection methods on a newly recorded dataset of
images taken from a UAV. This evaluation includes both
methods based on monolithic and on part-based represen-
tations. In particular we consider 2 people detectors [9],
[18] based on monolithic representations and 3 part-based
detectors [1], [5], [17] and evaluate their suitability for
detecting articulated and partially occluded people using a
dataset of images seen from an on-board camera. Second,
after having identified the most suitable approaches to people
detection from a UAV, we propose to augment these detectors
with a prior distribution based on the pitch and height of the
UAV measured by the on-board sensors. We demonstrate that
this prior significantly improves the performance of people
detectors and analyze reasons why not all detectors equally
benefit from this. The third contribution of the paper is
that we demonstrate that the considered people detectors are
complementary, and that by combining them we can further
improve the detection performance.

The rest of this paper is organized as follows. After
reviewing related work, section Sec. II describes our quadro-
tor UAV used for data acquisition in our experiments. In
Sec. III we introduce several state-of-the art approaches to
people detection, discuss their strengths and weaknesses,
and describe our extensions. We present an experimental
evaluation of these people detectors and our extensions in
Sec. IV, and conclude and discuss future work in Sec. V.

Related Work. In addition to work on vision-based people
detection discussed above, there exists a large body of liter-
ature on people detection using other types of sensors. Since
many mobile robotic systems are equipped with laser range
scanners, significant effort have been dedicated to using them
for people detection and tracking [3], [2], [7], [19], [31]. The
complementarity between visual and laser based detectors
has been explored in [20], where a laser range scanner is used
both to extract regions of interest in camera images and to
improve the confidence of an AdaBoost based visual detector.
Thermal images have also been extensively used for people
detection using either specifically designed methods [11],
[30] or by directly applying methods originally designed for
detection of people in daylight images [33].

Leveraging complementary information of different types
of sensors was recently proposed in the context of au-
tonomous victim detection [12], [24]. The work of [12]
comes particularly close to ours in that it also addresses
victim detection from UAVs. The authors propose to utilize
a thermal camera to pre-filter promising image locations

Fig. 2. Quadrotor platform used for the experiments.

and subsequently verify them using a visual object detector.
While in [12] people lying on the ground are assumed to be
in upright poses, in our paper we address the significantly
more complex problem of detecting arbitrarily articulated
people. Note that the results of our work can still be used
in combination with thermal camera images, which similarly
to [12] can be used to restrict the search to image locations
likely to contain people or to prune false positives, which
contain no thermal evidence.

While combining multiple sensors for people detection is
clearly beneficial in many scenarios it comes at the cost –
in particular for unmanned aerial vehicles – of an increased
payload for the additional sensors. This paper therefore aims
to evaluate and push the state-of-the-art in visual people
detection in order to minimize sensor requirements for this
task.

II. SYSTEM OVERVIEW

The platform used for our experiments is a quadrotor
helicopter developed at TU Darmstadt (Fig. 2). These kinds
of vehicles are able to take off and land vertically and can
hover at a fixed position, which motivates their application
to search and rescue missions [23]. The propulsion system
using four independently controlled motors and propellers
allows the carriage of comparatively heavy payloads. Our
quadrotor can carry up to 500g of cameras and other sensors
and weighs 1200g including the controller system and bat-
teries for an endurance of approximately 20 minutes. With
a diameter of 80cm it can be easily deployed in outdoor
missions as well as for indoor scenarios.

Due to the instability of a quadrotor, the vehicle’s attitude
and velocity has to be controlled permanently. Therefore it is
equipped with a 3-axis inertial sensor and magnetometer, a
pressure sensor, a GPS receiver, and an ultrasonic ranger to
measure the distance to the ground. The sensor information
is fused using an extended Kalman filter running at 200 Hz
deriving an integrated navigation solution using the algorithm
of [34]. The outputs of the filter are fed to a cascaded
PID controller to stabilize the attitude, height, velocity, and
position of the quadrotor. As the rotational direction of two
adjacent drives differ, the moments about all three axes and
the total thrust can be controlled independently by simply
varying the speed of the individual motors.



The control system is divided into two subparts: a micro-
controller board interfacing the analog and digital sensors
and motors; and a commercial embedded PC platform based
on a current Intel Atom processor [27]. The onboard com-
puter executes the navigation, flight control, high-level mis-
sion control and communication tasks using the OROCOS
Real-Time Toolkit [6]. It interfaces the sensor board using a
real-time enabled ethernet link.

For image acquisition a Logitech QuickCam Pro9000
camera is mounted to the quadrotor, which can transmit video
images to the ground stations using the wireless network.
Additionally, up to five frames per second are stored on
an onboard flash media for after-mission analysis, including
references to the available navigational data. The intrinsic
camera parameters are calibrated using a publicly available
calibration toolkit [4] and the extrinsic parameters relative
to the ground plane are estimated using the height and
attitude estimates provided by the UAV integrated navigation
solution.

III. VISION-BASED PEOPLE DETECTION

Detection of people in images is a challenging problem
and many approaches to people detection have been proposed
over the years. Approaches are often designed with a specific
subproblem in mind, such as detection of pedestrians in street
scenes [9], upper body detection [18], simultaneous detection
and pose estimation [1], or generic people detection [5], [15].

One of the main contributions of this paper is therefore to
evaluate the applicability of these methods to our scenario
and subsequently focus on improving performance of the
best performing methods. While the evaluation is done in the
context of victim detection from a UAV we believe that its
results are applicable to people detection from mobile robots
in general. In addition, we also demonstrate that in the case
of a UAV we can further improve detection performance by
using on-board sensor measurements in order to impose a
prior on the scale of people in the image. In this section
we briefly describe each of the considered approaches, and
present an experimental comparison in Sec. IV.

Monolithic models. One of the most popular and effective
models for people detection proposed to date is the his-
tograms of oriented gradients (HOG) detector [9]. In this
model, histograms of image gradients are calculated and
normalized in a local and overlapping block scheme and
concatenated to a single descriptor of a detection window,
which is densely scanned over all scales and locations in a
test image. We consider HOG a monolithic model because
the evidence of one detection window is encoded in a
single descriptor, which is cast to a discriminative classifier
(e.g., SVM), making a decision about presence or absence
of the object of interest. This pairing with a powerful,
discriminative classifier enables high levels of performance
for object detection in cluttered scenes, e.g., pedestrian
detection in street scenes [13]. HOG was shown to learn a
robust outer shape, which is shared by the positive training
instances and delimits positive from negative samples. The

local, overlapping normalization scheme enables robustness
to illumination changes and to small variations in viewpoint.
However, in the presence of high variability in articulation
and partial occlusion HOG often fails because the model
cannot recover from distorted monolithic descriptors. In our
evaluation we consider two variants of HOG-based methods.
i) The first variant is trained on full bodies of pedestrians. We
make use of the implementation of our colleagues2 [36]. ii)
The second variant is trained on upper bodies of people3 [18].
Such monolithic approaches are a de-facto standard when
it comes to detection of people in settings with relatively
little pose variation. However, it remains unclear, how these
models generalize to the more challenging search and rescue
scenario.

Part-based models. Part-based detection gives the flexibility
necessary to deal with highly varying body poses. We
consider three recently proposed part-based people detection
methods: discriminatively trained part based models (DPM)4

[17], pictorial structures with discriminant part detectors
(PS)5 [1], and poselet based detection (PBD)6 [5].

The PS detector is built on the pictorial structures frame-
work introduced in [16]. Here an object is represented as a
flexible configuration of parts where one such configuration
is denoted by L = {l0, . . . , lN}, with li denoting the location
of part i. In this generative formulation, the posterior over
part configurations L given image evidence E is obtained
via Bayes’ rule: p(L|E) ∝ p(L)p(E|L). In order to enable
efficient inference, PS employs a tree-structured Gaussian
prior on L, and assumes that the overall likelihood can be
decomposed into the product of individual part likelihoods.
Under these assumptions the configuration posterior factor-
izes as:

p(L|E) ∝ p(l0) ·
N∏
i=0

p(E|li) ·
∏

(i,j)∈G

p(li|lj). (1)

Sum-product belief propagation is applied in order to
compute the marginal posterior of the torso, p(l0|E), which
is then used to delimit the detection bounding box. The detec-
tion results often account for multiple overlapping boxes that
are post-processed with non-maximum suppression keeping
only the hypothesis with the highest probability from signif-
icantly overlapping hypotheses.

The PS model employs body parts corresponding to upper
and lower arms and legs, torso and head, and requires
examples with labeled parts for training. Part likelihood
terms p(E|li) are represented with discriminative part classi-
fiers trained with AdaBoost. The pairwise terms p(li|lj) are
estimated with maximum likelihood using the provided part
labels.

2Project page: www.mis.tu-darmstadt.de/tud-brussels/
3Source code available at: www.robots.ox.ac.uk/˜vgg/

software/UpperBody/
4Source code available at: people.cs.uchicago.edu/˜pff/

latent/
5Source code available at: www.mis.tu-darmstadt.de/code/
6Source code available at: www.eecs.berkeley.edu/

˜lbourdev/poselets/



The DPM model also relies on pictorial structures but dif-
fers in the prior imposed on the body parts. Here, a star shape
prior is used, where all body parts are directly connected
to the root part. Another difference is the interpretation of
parts: While PS relies on manually labeled annotations, DPM
automatically discovers the body parts that correspond to
visually salient reoccurring structures in the training data.
The configuration of body parts that maximizes Eq. (1) is
found with max-product belief propagation. The entire model
is trained in a purely discriminative fashion using the max-
margin formalism. The appearance of each body part and the
root part are trained with SVMs, while a deformation cost of
part constellations is obtained with gradient descent. DPM
is specifically optimized for detection. Since no part annota-
tions are required, it can be trained on a significantly larger
training set than PS, which requires such part annotations.

The final approach to part-based people detection consid-
ered in our experiments is the poselet-based detector (PBD)
recently proposed by [5]. Instead of using the pictorial struc-
tures framework with a fixed number of parts, PBD relies
on a large number of part detectors for diverse body regions
denoted as “poselets”, which have consistent appearance and
correspond to similar 3D body configurations. Detections of
different poselets are integrated using a probabilistic voting
procedure resembling the implicit shape model [25] with
weights learned using a max-margin framework [26]. Here
every poselet votes for the location of the torso part, which
in turn delimits the detection bounding box. Since the model
is specifically designed to be robust to viewpoint and articu-
lation changes, poselets often account for body regions that
do not change significantly across articulation and viewpoint
such as frontal faces, or correspond to frequently assumed
body poses, such as legs of a standing person.

A. Proposed extensions
We propose two different kinds of extensions to the de-

scribed vision based models: i) Since the different detectors
focus on different aspects to be modeled, we propose to
combine the complementary outputs of different detectors.
ii) We introduce an extension that combines the vision
based models with prior information obtained by the inertial
sensors of the quadrotor.

Combining multiple models. The pictorial structures frame-
work does not explicitly take the occlusion of body parts into
account even though they frequently occur in our scenario.
They happen due to complex poses in which some body
parts are not visible, due to parts being outside of the view
of the on-board camera, and due to miss-detections of some
of the body parts from extreme foreshortening. In these cases
the occluded body parts are fitted to spurious detections in
the background, which results in a small probability of the
overall configuration. In order to mitigate this problem we
propose to combine the detection results of multiple models,
each of which focuses on a different combination of body
parts.

The DPM implementation used in our experiments is
composed of two components, one upper-body and one full-

Fig. 3. Original image taken by quadrotor at the height of 1.77 meters
(left) and ground plane projection (right). The shown rectangles correspond
to ground truth annotations.

body model. We extend the PS detector in a similar way
and, complementary to a standard full-body detector, train
an additional upper-body model, which is composed of torso,
head, as well as upper and lower arms.

In order to fuse different models, we compute the posterior
probability of each hypothesis k given the detection score dk
of model M as:

p(hk|dk,M)) =
p(dk|hk,M)

p(dk|hk,M) + p(dk|¬hk,M)
, (2)

where hk is a Boolean variable corresponding to k-th hypoth-
esis indicating whether it is correct or incorrect. p(hk|M)
cancels as it is assumed to be uniform. The conditional
distributions p(dk|hk,M) and p(dk|¬hk,M) are assumed
to be Gaussian, and fitted on a set of positive and negative
detections.

The hypotheses of all models paired with the posterior
probability are then cast forward to a joint non-maximum
suppression step. Here, only the maximum scored detection
is retained if several hypotheses overlap significantly. As
the experiments demonstrate, this extension significantly
improves the detection performance, especially on partially
occluded people.

Scale prior based on UAV sensor measurements. The
people detection methods discussed so far operate under the
assumption that the camera position and depth for each image
pixel are unknown. This implies that no prior information
about the scale of the people in the image is available, and
each model has to be exhaustively evaluated over all possible
scales. However, in our scenario the quadrotor system is
equipped with a calibrated camera and sensors capable of
measuring the height and pitch angle of the vehicle. Com-
bining these measurements allows to estimate the distance to
the ground plane for each image pixel. Since our focus is on
detecting people lying on the ground, this in turn provides an
estimate of the scale of the person given an image position,
subject to natural variation in people height and sensor noise.
Similarly, knowing the position of the camera with respect
to the ground plane we can back-project an image onto the
ground plane taking both the homography transformation
and image distortion into account [22]. An example of this
projection is shown in Fig. 3. Note that while the scale of
people differs in the original image, after back-projection it
becomes approximately the same. Additionally, the camera
calibration and back-projection enables the relation of the
height of the detection bounding boxes measured in pixels



to the height of people measured in meters, which in turn
allows to define a prior distribution on the bounding box
height.

In the pictorial structures models, the posterior over
configurations given by Eq. (1) contains the factor p(l0)
corresponding to the prior distribution on the position, scale
and rotation of the root part l0, which is typically assumed
to be uniform. When applying people detectors on back-
projected images, we substitute this uniform prior with a
Gaussian prior

p(l0) = N (f(l0)|µh, σ
2
h), (3)

where f(l0) is a linear transformation that converts the height
of an hypothesis in pixels into metric units, µh = 0.8
corresponds to an average upper body height of the person
in meters, and σ2

h = 0.1. Note that this scale information is
propagated to the other body parts through the body model.

As we show in the experimental section, not all models
equally benefit from these priors. The PS model appears
to be more precise in estimating the scale of people in an
image, compared to DPM. While such precision is often
not necessary when we are interested in detection only, it
turned out to be beneficial when prior information about the
expected scale of the person becomes available.

IV. EXPERIMENTS

A. Experimental setup

Dataset. The test set used in the experiments contains 220
images collected in an indoor office environment under
uncontrolled daylight illumination conditions. During data
collection our quadrotor was flying at a height between
approximately 1.5 and 2.5 meters, capturing the images with
interval of approximately 1 second. The captured dataset
contains 285 ground truth annotations of people. Several
sample images from the dataset are shown in Fig. 1.

When recording the test set we aimed to “simulate”
difficulties typical for a search and rescue scenario: note
the large diversity in poses of people present in the dataset;
also note that many people are only partially visible, either
because some parts of the body appear outside of the image,
or due to self-occlusion, or due to occluding objects present
in the scene. Obviously, in an ideal world, we would have
access to a real and representative dataset from a real search
and rescue situation. Besides the practical issues of obtaining
such a dataset it is also unclear what such a “representative”
dataset would be. So in order to increase the realism and
difficulty of our evaluation, we decided not to train any of
the evaluated people detection methods specifically for this
scenario, but rather relied on the training sets provided with
the respective method. Therefore, we explicitly evaluate the
generalization performance of these methods to our test set,
while simulating difficulties typical for search and rescue
scenarios.

Evaluation methodology. In our dataset we annotated upper
bodies of all people visible to at least 50%. For the evaluation
we use the same criterion as in [18], where a detection

Fig. 4. Comparison of people detection methods

hypothesis is considered correct if the ratio of the intersection
over the union of ground truth annotation and detection
rectangles exceeded 0.25. We have chosen to define the
detection task as detecting the upper body of the person,
since all people detection methods considered in this paper
are either designed to detect upper bodies [5], [18] or can be
easily adapted to do so. For each of the methods included
in our comparison we are using the implementations and
trained models made publicly available by the authors.

Our experiments consist of three parts: i) we compare
different state-of-the-art methods of visual people detection,
ii) we evaluate the importance of adding a scale prior to the
model, and iii) we evaluate the performance of combinations
of different detectors. For all of our experiments we report
the equal error rate (EER) and show precision-recall curves.

B. Comparison of people detection methods

In our first experiment we evaluate the suitability of several
recently proposed people detection methods for detecting
articulated and partially occluded victims seen from our UAV.

The results are shown in Fig. 4 as recall-precision curves.
Even though very common, the HOG based global template
matching methods are not competitive in our setting. The
HOG detector of Dalal and Triggs [9] achieves 15.1%
EER. The conceptually similar upper body detector “HOG-
upper” of [18] performs significantly better than the full
body detector, but still achieves only 21.9% EER. Both
HOG detectors do not perform well due to their monolithic
structure, which does not take spatial variability in position
of body parts into account. Several example detections of
the full-body HOG detector are shown in Fig. 5 (first row).
Note that while the HOG detector successfully copes with
simple poses (e.g., bottom-left person in image (a)), it fails
when body articulations vary significantly or when parts of
the person become occluded as in images (b) and (c).

The poselet detector [5] achieves 32.0% EER. Several
example detections are shown in the second row of Fig. 5.
Compared to the monolithic HOG detectors, the poselet
detector appears to be more robust to partial occlusions. Note
the correct localization of partially occluded people in images
(a), (b), and (c). However, the poselet detector appears to be
challenged by poses in which characteristic parts of the upper
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Fig. 5. Several examples of detections at EER obtained with a full-body
HOG detector [9] (1-st row), the poselet detector [5] (2-nd row), the DPM
detector [15] (3-rd row), the full-body pictorial structures detector [1]
(4-th row) and the combined detector augmented with scale prior proposed
in this paper (5-th row). True positive detections are plotted with yellow
and false positives with red color.

body are not visible, e.g., the rightmost person in Fig. 5(c).
Additionally poselets seem to lack localization precision:
Upper bodies are frequently localized with slight offsets from
the correct position and scale, e.g. Fig. 5(b).

The two best performing detectors are both built on the
pictorial structures framework. The PS detector [1] and
the DPM detector [17] achieve 42.5% and 51.5% EER
respectively. Note that this corresponds to a performance
improvement over the monolithic model [9] by 27.4% EER
and 36.4% EER. The difference in performance between the
PS and DPM detectors is most likely due to a significantly
larger number of images used to train the DPM detector and
the fact that the DPM model internally combines 2 models
corresponding to a full-body and an upper-body configu-
ration, while the PS detector uses a full-body model only.
We have found that, although the DPM model yields better
detection performances, it is often less precise in localizing
people compared to the PS detector (see Fig. 5 images (b)
and (c)). Such behavior might be due to the discriminative
training procedure employed in the DPM model, which is
specifically optimized for detection. This procedure does not
reward improvement in localization beyond the limit set by
the bounding box matching criterion. In contrast, the PS
model is specifically designed for localization and body part
detection and uses generative learning to estimate parameters
of pairwise part relationships.

(a)

(b)

Fig. 6. Comparison of performance with and without scale prior (a), and
evaluation of different model combinations (b).

(a) (b) (c)
Fig. 7. Examples of people detection at EER obtained with the full-body
pictorial structures detector [1] without scale prior (first row) and with
scale prior (second row).

C. Integration of scale prior

Even the two best performing models [1], [17] frequently
suffer from false positive detections. One source of such false
positives are detections at incorrect scales. An example of
such false positives produced by the PS model is shown in
the fourth row of Fig. 5(a). Note that these false positives
frequently correspond to unreasonable sizes of the human
body when back-projected into world coordinates. For exam-
ple the false positive detection in the fourth row of Fig. 5(a)
would correspond to a person with a height of approximately
3.5 meters. As described in Sec. III-A we can reduce the
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Fig. 8. Distribution of the height of false positive (left) and true positive
(right) detections for PS [1] (top row) and DPM [17] (bottom row) detectors.

influence of this kind of false positives by extending the
detectors with a prior distribution on the height of detected
people. This is accomplished by first projecting images onto
the ground plane and subsequently introducing a Gaussian
prior using known relations between pixels and metric units.

We compare the influence of the scale prior on the
detection results for the two best performing methods in our
evaluation. The results are shown in Fig. 6(a). While both
models benefit from the scale prior, the improvement for the
PS model is almost 16% EER, and is more significant than
the improvement for the DPM model, which improves only
slightly overall without improving the EER. An insight into
these different behaviors can be gained by examining the
distribution of scales of the true and false positive detections
in the images projected onto the ground plane. These distri-
butions are shown in Fig. 8 for the PS and DPM methods.
Note that the PS model distribution of true positives has a
clear peak around 120 pixels, which roughly corresponds to
the upper-body height of 85 cm. False positives on the other
hand occur mostly at small scales. For the DPM model the
height of true positives is distributed almost uniformly in the
range between 80 and 120 pixels. The DPM model appears
to be less precise in scale estimation, which however is not
reflected in the recall precision curve in Fig. 4 due to the
rather loose bounding box matching criteria. However, this
imprecision turns out to be a handicap when information
about the detection scale is available from other sources.
Fig. 7 shows several examples of detections of the original
PS model, and the PS model augmented with the scale
prior. Note that in addition to removing false positives as
in images (a) and (b), the back-projection to the ground
plane removes effects of perspective distortions, which also
improves detection results, as for example in image (c).

D. Combination of multiple detectors

Although both the PS and DPM detectors are built on the
same pictorial structures framework, they differ significantly
with respect to which parts are used in the model, which re-
lationships between parts are considered and how the model
parameters are learned from training data. The DPM model

(a) (b) (c)

Fig. 10. Missing recall (top row) and false positive (at ERR) detections
(bottom row) of the detector combining upper- and full-body PS, and DPM
models.

utilizes generic body parts that are automatically learned
so that they are both discriminative and easy to localize
in images. The DPM model appears to be more robust to
occlusions since model parts are not fine tuned to detect
particular parts of the body. This is in contrast to the PS
model, which is designed to detect the actual body parts such
as legs, torso, and head. As we found in our experiments,
the PS model is superior to the DPM model in estimating
the scale of a person, due to its more sophisticated body
model enabling it to take advantage of a larger portion of the
image evidence. In order to explore the complementarity of
the PS and DPM detectors we derive a new detector based
on their combination following the procedure described in
Sec. III-A. In addition to the original DPM and full-body
PS detectors we also train an upper-body PS detector. The
results of this experiment are shown in Fig. 6(b). In isolation,
the upper-body PS detector did not perform nearly as well as
the full-body PS detector, however the combination of these
two detectors improves the EER from 58% for the full-body
PS detector to 62%. A similar performance improvement
is achieved when combining the full-body PS and DPM
detectors. The best results are obtained by the detector
combining full-body PS, upper-body PS and DPM detectors,
which achieves 66% EER.

Several examples of correct detections and false positives
are shown in Fig. 5 (bottom row) and Fig. 9. Note that
compared to previously proposed detectors, our improved
detector is able to find people occluded by the armchair in
Fig. 5(a) and the strongly articulated person in Fig. 5(c).
Top row of Fig. 10 shows several examples of people not
detected by our system. Note, that such missing detections
correspond to people with either especially severe occlusions
as in images (a) and (c) or particularly complex articulations
as in image (b). Such complex cases in which only few body
parts are visible, appear to be beyond the capabilities of state-
of-the-art detection methods. The bottom row of Fig. 10 also
shows a couple of false positives obtained by our system
at EER. While some of them correspond to nearly correct
detections as in image (a), the detector also occasionally fires
on background structures as in images (b) and (c).

V. CONCLUSION

This paper evaluated the applicability of several state-of-
the-art people detectors for victim detection from a UAV



Fig. 9. Examples of detections at EER obtained with the detector combining upper- and full-body PS, and DPM models, and scale prior.

in a challenging search and rescue scenario. An important
result of this comprehensive evaluation is that part-based
models are better suited for victim detection than monolithic
models, because they are able to represent variations in
articulation and are robust to partial occlusions. As an
extension to previous vision-based detectors we proposed to
leverage complementary information of i) several detectors
and ii) visual detectors and inertial sensor data of the
UAV. Experimentally, we demonstrated that our extended
framework substantially improved the detection performance,
thus making a step towards autonomous victim detection in
real world scenarios. We will make the collected images and
the corresponding sensor measurements publicly available
in order to foster further research on victim detection with
UAVs.
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