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1 INTRODUCTION

This paper describes the procedure, methodology and results of
static calibration of an extended parametric forward kinematic
model for industrial robots with rotational joints using a simple
CCD camera. We present a novel problem formulation for the
occurring positioning deviations avoiding three disadvantages
inherent to the existing approaches: (1) the use of additional ex-
ternal measuring systems, (2) the use of the internal robot error
model, and (3) the difficult, time-consuming and cost-intensive
determination of the robot base.

Absolute accuracy of industrial robots is required in various
applications. Accurate manipulators can be installed as mea-
suring tools, e.g. in the area of mounting and spot-welding of
bodywork. The capturing of welded points by so called control
robots represents an important area of application. Incorrectly
welded points and their late notice lead to problems and delay
times of the production. Therefore, it is highly important to no-
tice such problems early in the production process. Recently
an even higher tendency towards the replacement of machine
and special tools by industrial robots can be observed. Figure 1
shows the in-line measurement cell for car body inspection with
KUKA KR45 robots.

Reliable and fast warning systems, though, require absolutely
accurate robots. Hardware modification, i. e., revising the robot
mechanical structure or design and imposing tighter tolerances
in manufacturing the robot parts, is one common way to im-
prove the accuracy of industrial robots. Considering economi-
cal criteria, however, it is a more cost-effective solution to build
a manipulator with relaxed tolerances and to modify the math-
ematical model in the controller, i. e., to achieve high accuracy

through software rather than hardware modification.
This method is a useful tool and widely known as robot cal-
ibration. It is a very practical problem facing those involved
in the implementation of advanced automation. After calibra-
tion, often a drastic improvement of almost two orders of mag-
nitude can be reported, for instance from 1 cm down to 0.2 mm
(Wiest, 2001). Robot calibration methods can be distinguished
into three types:

• Error Registration, i. e., the identification of deviations
from the nominal behavior without assigning them to er-
ror sources. The robot acts as a black box system, where
a command pose in Cartesian space is entered and an at-
tained pose is received. If the observed Cartesian values
do not correspond to the desired ones, the Cartesian devia-
tions are stored in a kind of look-up table. The robot error
for any command pose can be predicted through interpola-
tion and then compensated for.

• Static calibration, i. e., identification of an accurate model
covering all the physical properties and effects that influ-
ence the static and time-invariant positioning accuracy of
the manipulator.

• Dynamic calibration, i. e., identification of the dynamic
model including all motion characteristics of the manipu-
lator (forces, actuator torques, accelerations) and dynamic
effects that occur on a manipulator, such as friction and
link stiffness.

This work conducts a feasibility study on achieving absolute
positioning accuracy through static calibration. To the best of
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our knowledge, there exists currently no experimental setup that
facilitates the use of an industrial robot as a measuring instru-
ment without the requirement of an external measuring system.
To achieve this goal, we performed the necessary steps com-
mon to calibration procedures, also shown in Figure 2: mod-
eling, measuring, identifying the parameters, compensating the
errors, and validating the results. The structure of the paper is as
follows. In Section 2 we present a short survey of the existing
calibration approaches including the experimental setups. Sec-
tion 3 introduces the developed parametric model that takes into
account the geometric and nongeometric effects of the structure
of an industrial robot. The developed problem formulation as
well as the different calibration methodologies depending on the
amount of existing absolutely accurate measurement data: one -
, three - and six-dimensional calibration and the subsequent pa-
rameter identification are the focus of Section 4. Numerical
aspects and optimization issues, such as optimal starting values,
are the subject of Section 5. The replicated experimental setup
consisting of an industrial robot, a CCD camera, and several
calibration objects is discussed in Section 6. The simulation of
the setup and the numerical results of the application of the de-
veloped calibration procedure to a typical industrial robot are
outlined in Section 7. Finally we analyze the obtained results
and the achieved accuracies.

2 STATE OF THE ART

For calibration, so-called kinematic-loop methods, introduced
by Hollerbach and Wampler (1996), are used by most research
groups and implemented by many commercial calibration pack-
ages. Kinematic-loop methods can be applied with a variety
of TCP measurement options (Hollerbach and Wampler, 1996).
These methods can be divided into three different groups:

• Open-loop methods are applied to setups where an exter-
nal metrology system measures the complete or partial end
point pose of an end effector. Hereby, the number of mea-
sured pose components can vary from just one component
of pose to six (full pose). By moving all joints, individual
poses are attained. The kinematic parameters are deter-
mined from a nonlinear optimization of the total pose set
(Mooring, Roth, and Driels, 1991). In general, the term
open-loop refers to an end point that is positioned freely in
space.

• In closed-loop methods calibration is performed using only
joint angle sensing, without any external measuring system
(Bennett, Hollerbach, and Geiger, 1991).

• Screw-axis measurement methods identify individual joint
axes as lines in space, i. e., an analytical solution to the
kinematic parameters is possible.

In reality, though, the distinction among these methods is of-
ten small and arbitrary. By considering the external measuring
system as forming a joint that closes the base with the end ef-
fector, all methods can be considered as closed-loop methods
(Wampler and Arai, 1992).

The goal of the measurement is to determine accurately the
complete end effector pose or some subset of the pose for a par-
ticular set of robot joint angles. The result of the measurement
process is thus the collection of data sets containing the joint
displacements and some portion of the end effector pose for a
number of robot configurations for the parameter identification.

There are different approaches for position measurement with
industrial robots: touching reference parts, using supersonic
distance sensors, laser interferometers, theodolites, calipers or
laser triangulation. In general, the measurement devices and
techniques always differ depending on the necessary mathemat-
ical model’s set of parameters that need to be identified. They
also differ because of the wide variety of sizes and geometries
with which robots are commercially available. Furthermore, the
measurement devices change with the amount of calibrated di-
mensions. In other words, they are structured according to the
amount of obtained pose. These mutual dependencies are also
shown in Figure 3. The used measuring system should ideally
be at least one order of magnitude more accurate than the de-
vice being calibrated and at least two orders of magnitude more
accurate than the desired accuracy of the robot calibration.

Obviously, the less dimensions are calibrated the more data
is necessary to correctly identify the robot’s model. An ideal
measuring system would acquire the position and orientation of
the manipulator since this would incorporate the maximum in-
formation for each position of the arm (Driels, Schwayze, and
Potter, 1993). Therefore, particularly the use of a 6D measure-
ment system based on a contact-less principle is recommended
(Schröer, 1998). Of course the more data is calibrated the more
the computation time increases. Despite higher computation
time, though, it is clear that the higher the number of cali-
brated dimensions the better the results will be due to the higher
amount of information of the measurement data.

To avoid the use of a separate measuring system, in many
robotics based applications it is preferred to use robots as mea-
suring systems for work-cell calibration. This solution, how-
ever, implicitly includes some important assumptions subject
to the condition that the robots are not provided with a self-
calibration ability which is the goal of this work. First, the
visual inspection of the target points on the workpiece is the
weak point of the procedure because its accuracy cannot be con-
trolled. Second, if non-calibrated robots are used, then the re-
sulting transformation between workpiece reference frame and
robot base incorporates a local approximation of all robot er-
rors. In some cases, this is desired because the achieved accu-
racy may be sufficient for a certain robot task.

To conclude, there is no “best” measurement system for robot
calibration. The appropriate measurement device needs to be
selected regarding the desired precision and the planned cost
of the system. The most desirable system represents the best
compromise between cost, ease of use, and precision for a given
calibration task. Existing calibration techniques, no matter how
sophisticated, make use of external measuring systems, i.e. a
laser tracker that measures the position and orientation of the
end effector w. r. t. the robot base, as demonstrated in Figure 4.

Both internal and external metrology equipment is essen-
tial as it determines the problem formulation for the parameter
identification of the robot whereas the parameter identification
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method is essential for retrieving the errors in the parameters.
The identification procedure computes those model parameters
ν∗ that result in an optimal fit between the actually measured
position and that computed by the model. An investigation of
various options for formulating an objective function that nu-
merically solves this optimization problem leads to the conclu-
sion to use least-squares or modifications of the least-squares
method that are effected by scaling and probabilistic consider-
ations. Usually, the objective function is defined as the error
between the pose xmodel predicted by the internal model and the
real pose xmeasured determined by using external measurement
devices:

min
ν

nm

∑
j=1

∥∥∥xmeasured
j −xmodel(ν ,q j)

∥∥∥2

2
, (1)

where nm stands for the number of measured different joint con-
figurations. qj denotes the vector for the configuration of all
joints. In the current approaches the information of the pose
contains position and orientation, only position, or only the dis-
tance of a point, mostly the end effector, w. r. t. the robot base.
Note that the formulation in Equation 1 will be referred to as
‘common problem formulation” from here onwards.

Wiest (2001) presents a 6D calibration method that requires
an external measuring system. The external measuring system
determines the position and orientation of an immobile calibra-
tion object w. r. t. the world frame. Other necessary measure-
ments are performed by means of a camera system attached to
the robot flange.

A different experimental setup is proposed by Beyer (2004)
and Beyer and Wulfsberg (2004). The measurement tool is at-
tached to the flange, and measures the positioning deviations
from the internal robot error model in the x-, y-, and z-direction.
The parameters of the kinematic model are identified by using
an external measuring system.

Ji, Sun, and Yu (2007) make use of a coordinate measure
machine for the robot calibration. Additionally, only geomet-
ric parameters are identified. It is stated, however, that in or-
der to achieve better accuracy, nongeometric parameters need
to be calibrated, too. Gathar et al. (2007) suggest a methodol-
ogy based on a laser attached to the end effector; their approach,
however, also incorporates only the geometric parameters.

The goal of this work is to provide a given robot with a self-
calibration ability. The parameter identification is based on an
extended accurate model that incorporates the geometric and
nongeometric parameters and is carried out by means of an at-
tached camera. Our experimental setup consists of an industrial
robot with revolute joints, a camera that is attached to the robot
flange, and appropriate calibration objects. The actual position
of the robot flange is retrieved indirectly by the attached camera
system. It is therefore not necessary that the flange is visible.
In a experimental setup using an external measurement system,
the flange would have had to be visible in all joint configura-
tions. Our approach and experimental setup enable both 6D and
3D calibration. A 1D calibration is possible as well but is not
expected to retrieve comparable good results as 3D or 6D cali-
bration. When performing 1D or 3D calibration, the changing
number of required measurement data needs to be considered.
For 3D and 1D, the necessary measurement data set is twice and

six times as large as the measurement data set provided for 6D
calibration respectively. The larger amount of data is necessary
in order to keep ensuring high accuracy ranges of the results.
6D information, if not available, might be reproducible from
3D data by applying the Gram-Schmidt algorithm.

3 EXTENDED ROBOT KINEMATIC MODEL

Based on the three basic requirements completeness, model
continuity, and minimality, that every kinematic model should
meet (Schröer, Albright, and Grethlein, 1997), a parametric ex-
tended forward kinematic model incorporating both geometric
and elastic effects for the parameter identification stage was de-
veloped. This model was introduced by Radkhah (2007) and is
based on the famous Denavit-Hartenberg convention (Denavit
and Hartenberg, 1955).

To each link i, including the end effector, with i ranging from
0 to n for an n-degrees-of-freedom (DOF) manipulator, a frame
Si is attached. The final coordinate system Sn is referred to as
the end effector or tool frame. The position and orientation of
a reference frame Si w. r. t. the previous reference Si−1 is rep-
resented by a 4×4 homogeneous matrix i−1T DH

i . Each homo-
geneous transformation i−1T DH

i is a product of four basic trans-
formations:

i−1T DH
i := R(z;oi)Tr(z;di)Tr(x;ai)R(x;αi)

=


coi −soicαi soisαi aicoi

soi coicαi −coisαi aisoi

0 sαi cαi di
0 0 0 1

 , (2)

with c. = cos(.), s. = sin(.). R represents a rotation and Tr a
translation. The four quantities oi, ai, di, αi are parameters as-
sociated with link i, i = {1, . . . ,n} and given the names joint
offset, link length, link offset and link twist. To every joint i, the
corresponding joint variable qi is associated. This joint variable
is either the angle of rotation in the case of a revolute joint or
the joint displacement in the case of a prismatic joint, see Fig-
ure 5. The composition of all homogeneous transformations in
this kinematic chain represents the relationship of a given set of
joints and the position and orientation of the end effector. In our
model, the joint offset o is modified to include the constant off-
set θ and the variable joint angle q, oi = θi + qi. The elements
of the matrix i−1T DH

i depend directly on the joint configuration
parameters q ∈ IRn. The matrix 0T DH

n , describing the position
and orientation of the end effector frame w. r. t. the base frame,
is formed by multiplying all i−1T DH

i matrices in the kinematic
chain from S0 to Sn:

0Tn = 0T1 · 1T2 · . . . · n−1Tn.

In the remainder of this paper, the term DH within the equations
is replaced by the appropriate name of the corresponding model.

We overcome the limitations of the DH-convention by defin-
ing and adding necessary parameters that account for the vari-
ations in the kinematic model. We take into account both geo-
metric and nongeometric effects; particularly the elastic effects
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are expected to be essential. Therefore, two parameters sx,i and
sy,i describing distortions of the axis of motion zi from its ideal
orientation were included in the proposed model. Additionally,
three spring constants kx,i,ky,i,kz,i representing the elastic ef-
fects in each axis of a link frame were added such that the com-
plete extended forward kinematic model DH,s,e is formulated
as:

i−1T DH,s,e
i := R(x;sx,i)R(y;sy,i)R(z;qi)R(z;θi)R(z;γz,i) ·

R(y;γy,i)R(x;γx,i)Tr(z;di)Tr(x;ai)R(x;αi).

γx,i,γy,i,γz,i represent the resulting rotation angles caused by the
elastic deformations. For further details we refer to Radkhah et
al. (2009)

Our model is similar to that proposed in Wiest (2001). How-
ever, our model experimental setups not contain the three repre-
sentative orientation and translation parameters of each homo-
geneous transformation matrix in the forward kinematic chain.
Rather the developed model exactly considers the assigned ge-
ometric and nongeometric parameters. We believe that such
structured and well-developed model is of utmost importance.
Particularly when considering that based on the foundations laid
in this work it becomes possible to conduct further studies such
as the determination of the relevant parameters to be considered
by means of experiments in the compensation step.

4 PARAMETER IDENTIFICATION

The problem formulation has a great impact on the results of the
calibration and depends on the experimental setup. Usually the
objective function for the parameter identification of an indus-
trial robot is formulated as the minimization of the sum of the
squared differences of the measured information and the same
information calculated by the developed model. Such an objec-
tive function is also known as least-squares regression function.

Existing approaches make use of an external measuring sys-
tem in order to determine the robot base. A highly accurate
determination of the robot base, however, is not feasible. On
the other hand, the possible number of calibrated dimensions is
automatically laid down by the experimental setup.

The feasibility of multi-dimensional calibration clearly de-
pends on the used metrology system and the experimental setup
as a whole. If possible a multi-dimensional calibration should
be given priority to because of the obvious advantages. The
most important advantage is that the calibration of n dimensions
requires only 1

n of the required number of measurements for the
corresponding 1D calibration. In most experimental setups, it
is common to perform either a 6D or a 3D calibration. In these
setups, a 6D calibration considers both the position and the ori-
entation of the robot flange w. r. t. the robot base:

xmodel(q) =


0rmodel

n
φ model

θ model

ψmodel

 ,

whereas in a 3D calibration only the position is interesting:

xmodel(q) =
(

0rmodel
n

)
.

xmodel depends on the joint configuration q and denotes the
position 0rn and orientation of Sn w. r. t. frame S0. The ori-
entation can be represented by Roll-Pitch-Yaw angles. This
parametrization is possible for the DH-model where modeling
errors are excluded. Depending on the experimental setup, the
robot geometry, and the measuring systems, it is possible that
besides the orientation and position of the robot flange further
information is available such that even more than 6 dimensions
can be considered in the formulation of the problem.

Nonetheless, the difficulties of determining the rotation an-
gles given the rotation matrix should be taken into account. This
task involved in a 6D calibration is not necessarily performed
with ease since the exact and real geometry of the robot arm
needs to be considered. A solution in closed-form is highly un-
likely since the real model is more complex and nonlinear. Pro-
posed methods in Sciavicco and Siciliano (1996) and Spong,
Hutchinson, and Vidyasagar (2006) cannot be applied since
they presume an ideal geometry of the robot arm kinematics.
Furthermore, the probability of unique solutions is not ensured
without any additional information from the robot controller for
instance.

It should be also noted that the dimension of the problem
formulation strongly depends on the accuracy of the provided
information. The accuracy of the provided information is also
important considering further necessary calculations. In cases
where, for instance, the orientation cannot be measured directly
but can be retrieved from sufficient positioning information, it
is essential to determine with which accuracy these further cal-
culations can be performed.

In this paper the presented calibration procedure is designed
for 3D calibration. Considering the additional computational ef-
forts involved in 6D calibration where the orientation of frames
w. r. t. the internal camera frame needs to be calculated and
hence the decreasing accuracy of computed information be-
cause of truncation and roundoff errors, it is recommendable
to carry out 3D calibration.

4.1 Experimental Setup

We propose an experimental setup consisting of an industrial
robot and several calibration objects (Fig. 6). The only mea-
suring system is a camera mounted on the robot flange. The
robot executes various motions based on different joint config-
urations. In each joint configuration, the camera records an im-
age of a block of points. Under the circumstance that at least
three points not lying on a common line are measured within
the same image, the orientation of the image frame w. r. t. the
camera frame can be calculated. In some cases, this informa-
tion is indispensable. Therefore, it is crucial that the camera
measurements are reliable and accurate.

Depending on the visual range of the attached camera, it may
be possible to determine the position of points on every side of
the calibration object w. r. t. the fixed internal frame. It may
be also possible to generate this information by means of a reli-
able and accurate data sheet for the technical specification of the
calibration object. Depending on the size and geometry of the
robot, and the number of geometric and nongeometric parame-
ters that need to be identified, it may be also necessary to know
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the position of points on one calibration object w. r. t. positions
of points on another calibration object. Depending on the area
that is encircled by the calibration objects, the camera field of
view may be insufficient for the determination of the connect-
ing vectors. A once performed external measurement may be
then required. However, this information can also be provided
otherwise. For instance, by using a larger calibration object of
a size equal to the area encircled by the smaller calibration ob-
jects, we reduce the problem to the subproblem of determining
the positions of points w. r. t. the fixed internal frame. Thus, the
necessary measurement data are:

• joint positions,

• position of points on the calibration objects w. r. t. the cam-
era frame,

• position of points on the calibration objects w. r. t. the in-
ternal frame of the objects, and

• relative position of points on different calibration objects.

4.2 Novel Problem Formulation

The nonlinear least-squares regression function consists only of
relative accurate data; consequently, the position of the end ef-
fector or a point on the objects w. r. t. the base frame is not
measured. Instead, this information is inferred from comparing
two different joint configurations that result in the same end po-
sition with minor accuracy deviations. Note that the position of
points on the calibration objects within the base frame, either
calculated or measured, is from here onwards also referred to as
“end position”. In other words, the accurate absolute position
xmeasured

j (cf. Equation 1) is replaced by another calculated end
position, xmodel(ν ,qk). The objective function is thus formu-
lated as

min
ν

∑
h∈H

ρh

∥∥∥xmodel(ν ,q j)−xmodel(ν ,qk)+
−→
UV
∥∥∥2

2
, (3)

where H is the set of the different tuples h = (k, j) with j and k
representing two joint configurations. The weights ρh > 0 may
account for measurement errors if chosen different to ρh = 1.
The vector

−→
UV represents the vector difference between the two

end positions xmodel(ν ,q j) and xmodel(ν ,qk) that result out of
the two joint configurations and is explained more thoroughly
in the subsections below. As can be noticed from Equation (3),
the sum of the differences between measured and calculated end
positions is modified to the sum of the differences between two
calculated end positions. This formulation involves the simulta-
neous consideration of two different joint configurations k and
j in three operational coordinates of the above regression func-
tion. qj, qk represent the two joint configurations and ν is the set
of identification parameters. In the following we will describe
more in detail the single components of the vectors xmodel .

4.3 Computation of the End Positions

As already mentioned, the experimental setup consists of a CCD
camera attached to the end effector that measures only accurate

relative data, the position of points on the calibration objects
w. r. t. the origin of the camera frame. Consequently, the posi-
tioning vectors of the end positions in Equation (3) include the
information of the whole transformation chain from the robot
base to the end effector

0T model
n = 0T model

1 · 1T model
2 · . . . · n−1T model

n ,

the transformation from the flange frame Sn into the camera
frame Sc

0T model
c = 0T model

n · nTc,

and the direct measurement information of the camera from the
origin of the camera frame to the recorded points. Two points
U and V that are measured by the camera are denoted as cu and
cv respectively. As an example the end position of a point U
with the corresponding measured positioning vector cu can be
computed w. r. t. the robot base as follows:

ûmodel(ν ,q j) = 0T model
n (ν ,q j)nTc

cû,

with ûmodel , cû ∈ R4:

ûmodel =
(

umodel

1

)
, cû =

(cu
1

)
.

Further additional information and computations for the nonlin-
ear least squares regression functions depend on the necessary
calculations for the vector difference

−→
UV and are described in

the subsection below.

4.4 Computation of the Vector Difference

Depending on the measurement setup, it is possible to look at
only one joint configuration, as long as it does not directly re-
sult in the same end positions. This is the case only when the
camera measures the position of several points within the same
joint configuration. The open chain between the calculated end
positions is closed by the corresponding accurate relative posi-
tion
−→
UV respectively the connecting vector of the two points in

the workspace.
In our experimental setup we differentiate between four possi-
ble tuple categories for the joint configurations:

• The end positions are located within the same image
(c.f. Fig. 7).

• The end positions are located within two different images
on the same side of the calibration object (c.f. Fig. 8).

• The end positions lie on two different sides on the same
calibration object (c.f. Fig. 9).

• The end positions lie on two different calibration objects
(c.f. Fig. 10).

To close the open chain between the points U and V within
the same image, the vector connecting these points as well as
the orientation of the internal frame of the calibration objects
S0 w. r. t. camera frames need to be known. This information
can be retrieved by application of the Gram-Schmidt algorithm,
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unless the recorded images do not contain at least three points
that do not lie on the same line.

By considering configurations that result in end positions lo-
cated not too close to each other, the workspace where the robot
operates with high accuracy can be enlarged. Therefore, it is im-
portant to select a space-filling design of configurations in the
joint value space. The importance of such space-filling design
of joint configurations is also emphasized in Radkhah, Hemker,
and von Stryk (2008).

5 APPROACH TO THE NUMERICAL SOLUTION

A reliable solution of the nonlinear least squares occurring in
the calibration requires both well chosen initial estimates resp.
boundaries and an optimal order of identification steps.

5.1 Initial Estimates and Boundaries

According to Wiest (2001) and Schröer (1993) the real posi-
tioning deviations cover a quite small range of ± 1 cm at maxi-
mum. Therefore, we use as starting values for the standard DH-
parameters the nominal values provided by the manufacturer.
For all other novel additional parameters such as the distortions
or elastic deformations, the starting values are set to zero as
these parameters are assumed not to exist in an ideal model.

Due to the small occurring positioning deviations, we set
neither lower nor upper boundaries on the angular parameters.
Rather, it is necessary to set boundaries on the occurring length
deviations of the links since the numerical optimization method
tends to compensate the positioning deviations by means of
length modifications of the links (Wiest, 2001).

5.2 Sequence of Identification Steps

Simulative tests revealed that reliable results can be retrieved by
the following sequence of identification steps:

1. The offsets θi of the joint zero positions are calibrated in a
first step and then used as constants afterwards.

2. The remaining angular parameters αi,sx,i, and sy,i are cal-
ibrated in a separate sequence. Their values are used as
constants in the subsequent steps.

3. The elastic deformations kx,i,ky,i, and kz,i are determined in
the third step.

4. A last step follows for the identification of the length pa-
rameters di, ai. Since the length parameters change only
minimally, they are released together with the above pre-
calibrated parameters in the last step for identification resp.
for re-identification.

This simultaneous identification in the last step is possible due
to the pre-identification of the angular and the spring parame-
ters prior to this last step. Consequently, there is no danger that
runaways are produced by wrong compensation of deviations,
e.g. the compensation of deviations in reality caused by the an-
gular parameters by modifying the length parameters. Rather,

this issue occurs, if the length parameters are identified sepa-
rately. The optimization algorithm might be “trapped” at local
minimizers.

5.3 Jacobian of the Extended Forward Kinematic Model

In order to enhance the identification algorithm, an analytical
expression for the identification Jacobian or the gradient should
be included. The Jacobian J is the model function’s Jacobian
containing the partial derivatives of the model parameters ν .

The derivation of the Jacobian or gradient is a highly time-
consuming process which, however, is the price to be paid, if
the application needs dictate a fast identification step. We pro-
vide an iterative method for determining the Jacobian matrix
analytically by applying the chain and the product rule of dif-
ferentiation and re-using the components already calculated by
the forward kinematics routine.
During the identification process, Jacobian matrices w. r. t. dif-
ferent parameter sets are necessary. This is due to the dis-
tinguished treatment of the parameters in several identification
steps. For the compensation of the errors the Jacobian matrices
of the extended parameterized forward kinematic model con-
taining the partial derivatives w. r. t. the joint configurations is
required.

The partial derivatives of the parameters
νDH,s = {oi,ai,di,αi,sx,i,sy,i} of the extended model
DH,s incorporating only the geometric parameters are relatively
straightforward obtainable using the product rule of differenti-
ation.
The iterative differentiation formula of the complete extended
parameterized forward kinematic model for all parameters
νDH,s,e = {oi,ai,di,αi,sx,i,sy,i,kx,i,ky,i,kz,i}, however, are
more difficult to obtain because the elastic deformations
considered in the model depend on all parameters and the joint
configurations. In other words, particularly the retrieval of the
partial derivatives w. r. t. νDH,s of the complete extended model
DH,s,e involves complexity and tediousness.

The Jacobian of the extended model DH,s,e w. r. t. the cali-
bration parameter set ν with nν = |ν | is formulated as follows:

JDH,s,e
ν :=

∂xDH,s,e

∂ν
∈ IR3×nν

where xDH,s,e ∈ IR3×1. ν may in principle denote any combi-
nation of the standard DH-parameters νDH = {oi, ai, di,αi},
the distortion angles sx,i, sy,i, and the spring constants kx,i, ky,i,
and kz,i.

6 CASE STUDY

The novel problem formulation is applied to the model of a
KUKA KR 125/2, an industrial robot with six revolute joints.
In order to enhance the comprehensibility, a visualization tool
was developed that can simulate the complete robot cell. The
tool enables the observation and visibility of the robot move-
ments to each point in Cartesian space and the calibration pro-
cess. The robot is visualized through its first three joints; the
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last three joints are shown as one part, i.e., axes 4, 5, and 6 are
combined into the wrist.

The robot’s workspace contains three calibration objects that
are of similar shape as the rectangular 3D surfaces in Section 4.
On every side of a calibration object, points in fixed distances
of 40 mm are marked in the plain. To simplify the processing
of the position of the points on the calibration objects, To each
point on the calibration objects, a tuple (m,n) indicating the
row m and the column n is assigned. The mounted camera com-
pletes the kinematic chain from the robot base to the measured
points on the calibration objects and can be considered as 8th

link connecting the robot and the calibration objects. It yields
the position of the points on the calibration objects. During
the recording of one image, the robot stands still. The camera
records on every side six images, i.e., each of the three blocks
is captured in two different joint configurations. In total 36 im-
ages are available. Every image resp. every block contains four
points.

We assume the elastic deformations to be most important in
the first three joints, i.e. any elastic deformations caused by the
wrist, consisting of joints 4, 5, and 6, are ignored. In total, nine
nongeometric and 36 geometric parameters are released for the
identification.

7 NUMERICAL RESULTS

7.1 Replica of the Real Experimental Setup in Simulations

In order to examine the novel problem formulation, complete
measurement data sets for the real experimental setup were gen-
erated. The idea was to obtain most realistic results from the
simulations in order to facilitate the comparison of simulation
and experimental results.

7.1.1 Generation of Simulation Data

The systematical generation of a complete measurement data
set is given below:

• The joint angles are provided by real motion executions on
the given robot in rad.

• The parameters for the transformation of the flange frame
into the camera frame are also provided and assumed to be
sufficiently accurate.

• The locations of the calibration objects in the robot cell are
known by means of tool center point measurements with
the uncalibrated robot. However, since we are aiming at
sub-mm accuracies, precisely manufactured objects with
previously calibrated dimensions must be used. Therefore,
based on accurate position data of three corner points of a
side of a calibration object w. r. t. the robot base and the
production drawing, the positions of the remaining points
on the calibration object are generated. This process is
repeated for the other calibration objects.

• The robot specific technical data such as the DH-
parameters and the dynamic parameters are provided by

the manufacturer. Various parameter settings can now be
tested by modifying the values of the nominal parame-
ters and setting possible occurring changes for the addi-
tional model parameters. The used parameter deviations
are based on experiences on the approximate changes of
the angular and length parameters of a typical KUKA 6-
DOF industrial robot with a payload of 125 kg gained by
Wiest (2001), Gräser (1999), and Schröer (1993).

• Based on the above measurement data set, the correspond-
ing position of the points on the calibration objects within
the camera frame can be determined.

Let us indicate the accuracies of the provided measurement
data and the generated data:

• The joint angles are read reliably to three decimal places.

• The position of the origin of the camera frame w. r. t. the
flange frame is indicated in sub-µm accuracy whereas the
orientation is given in arcsec.

• The position of the points on the calibration objects is
given at the range of ±1e-4 m.

• The generated camera measurements are given at the µm
range.

.

7.1.2 Measurement Noise

Real time data series such as camera measurements often indi-
cate an additional noise component that is subsequently over-
laid. To ensure that the used algorithm is robust enough to
produce highly reliable results despite the existence of mea-
surement noise, we conduct our tests both with and without in-
put noise on the camera measurements. The mean, variance,
and distribution for the artificial noise are motivated by the as-
sumed accuracy of appropriate CCD cameras. We test our ap-
proach with normally distributed errors with mean 0, variance
σ2 = 1e−8m, and standard deviation σ = 1e−4m. The mea-
surement errors lie within the interval [1e-5 m,1e-4 m].

7.2 Problem Formulation for the Validation

In order to validate the novel problem formulation, we addition-
ally make use of an external measurement system in the simula-
tions, introducing a slightly modified nonlinear regression func-
tion. The external measurement system provides the position of
the points on the calibration objects w. r. t. the robot base. This
is unknown as presented in Section 4.2. An obvious advantage
of such setup is the possibility of repeated calibration between
the working cycles of the robot once the position of all points to
be measured w. r. t. the robot base is known. We show the setup
partially in Figure 11.

The position of point U is computed by:

ûDH,s,e(ν ,q j) = 0T DH,s,e
n (ν ,q j)nTc

cû.
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The analog measured information is represented by umeasured
j .

The equation for the parameter identification is similar to Equa-
tion (1):

min
ν

∑
h∈H

∥∥∥umeasured
j −uDH,s,e(ν ,q j)

∥∥∥2

2
.

In the simulations ρh is set to one when measurement noise was
not considered. The above problem formulation introduced for
the validation can be also referred to as common problem for-
mulation since it represents existing experimental setups.

7.3 Simulation Results

As already indicated, parameter identification for an industrial
robot is not performed by simple application of an algorithm.
Moreover, an optimal numerical approach is necessary for the
solution of the nonlinear least squares.

We look at the identification of the extended model DH,s per-
formed with the steps given in Table 1. The table shows the pa-
rameters released in every step, the function value at the end of
every step, and the number of iterations for each step. The visu-
alization of the real and the identified points show that the ge-
ometry of the calibration object is well identified, i.e., the func-
tion value is tried to be minimized but the identified points are
displaced from the real points about a few centimeters in almost
all three dimensions. The results obtained after the identifica-
tion of the extended model are at least two orders of magnitude
worse than the initially created deviations with the DH-model.
The mean distance between the real positions and the positions
computed with the DH-model deteriorates from 0.0006588 m
to 0.119 m after the identification procedure. The optimization
method does not find a solution in the sense of a global min-
imum; the positioning deviations seem to be compensated by
means of length modifications of the links.

An optimal arrangement of steps is however not the only
crucial factor for determining the real parameter values. We
also need to increase the amount of operational coordinates of
the nonlinear least-squares regression function. In total, about
3000 operational coordinates, the amount suggested by Schröer
(1993) for the identification of about 45 parameters, are used.
Most important, however, is the consideration of configurations
that result in end positions located further away from each other,
i.e., pairs of points that lie on two different calibration objects.
The achieved accuracies in a run performed with the optimal
order of steps and obtained with the common problem formula-
tion with the extended model are two magnitude of orders bet-
ter. The results obtained with the novel problem formulation
are even slightly better than those obtained by the common for-
mulation, see Figure 12 and Figure 13. The enlargement of
the workspace, i.e. space-filIing design of joint configurations,
turns out to be essential, since only by the addition of pairs of
points on different objects it became possible to retrieve accu-
rate results applying the novel problem formulation. Table 2
indicates the used order of identification steps. The termination
of the algorithm was based on the following conditions:

• maximum number of function evaluations allowed,

• maximum number of iterations allowed,

• tolerance on the function value < 1e−5m, and/or

• tolerance on the parameter values < 1e−6m resp. rad.

In order to validate the suggested problem formulation for the
parameter identification, further tests were conducted with (1)
different parameter values, and (2) measurement noise on the
camera measurements.

Table 1: Identification of the extended model DH,s.
Step Norm of residual Iterations

oi 4.5065e-6 m 6
di,ai,αi,sx,i,sy,i 2.0189e-7 m 4001

oi,di,ai,αi,sx,i,sy,i 2.4874e-14 m 13

Table 2: Identification of the extended model DH,s,e.
Step Norm of residual Iterations

oi 0.809270 m 9
αi,sx,i,sy,i 0.046253 m 17
kx,i,ky,i,kz,i 0.043284 m 2005

oi,αi,sx,i,sy,i,kx,i,ky,i,kz,i,di,ai 2.3396e-6 m 61

8 DISCUSSION

The above results are evaluated by estimating the accuracy that
the manipulator would achieve if the identified parameters were
to replace the nominal parameters in the robot control model.
That means, the two forward kinematic solutions based on the
actual and the standard kinematic parameters are computed.
Subsequently the differential displacement is computed to de-
termine the positioning accuracy of the calibrated manipulator.
If the identified parameters result in a higher accuracy than pre-
viously achieved by the standard DH-model, then the calibra-
tion process is considered to be successfully carried out. Based
on this methodology for estimating the accuracy of the obtained
results, we were able to produce with both the common and
novel problem formulation results within a high accuracy range.
High accuracies were achieved even when measurement noise
on the camera measurements was considered. Various sets of
positioning deviations were tested; in all cases the identifica-
tion process was carried out successfully. The end positions
on the calibration objects were hit with the desired accuracy in
the [1e-5 m,1e-4 m] range. Note that this accuracy range was
achieved although the actual positioning deviations prior to the
parameter identification lied within the [7e-3 m,2e-2 m] range.
Consequently, a drastic improvement of at least two orders of
magnitudes were achieved.

The results obtained by the common approach were expected
to be precise due to the higher amount of information of mea-
surement data input. Moreover the accuracy improvements are
particularly remarkable because of the lower amount of infor-
mation that characterizes the inputs of the novel problem for-
mulation.
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By applying the statistical practice of cross-validation, it
could be shown that high accuracies are also achieved for
joint configurations that were not considered in the calibration.
Points that were not considered in the calibration were identified
with almost the same accuracy as the calibrated ones. Such in-
vestigations facilitate making a statement about the workspace
in which sufficiently accurate robot movements can be granted.

A failure of the identification process can be due to various
reasons. It does not necessarily indicate too relaxed measure-
ment accuracies. Furthermore, there was no evidence of run-
aways in the course of iterations in none of the identification
runs.

Let us summarize the important aspects that need to be con-
sidered for successfully preforming a calibration:

1. optimal order for the parameter identification,

2. no separate step for the identification of length parameters,

3. enough pose measurements, and

4. enlargement of the closed kinematic chain within the oper-
ational coordinates of the regression function by selecting
pairs of end positions that lie on different calibration ob-
jects.

The few requirements that need to be met by the experimental
setup are:

1. a highly precise model of the calibration objects,

2. sufficiently accurate camera measurements, and

3. accurate internal sensors (such as the position encoders).

9 CONCLUSIONS

This paper presented a completely novel problem formulation
facilitating an easier and a more affordable experimental setup
for the calibration of industrial robots. We made use of an ex-
tended forward kinematic model taking into account both geo-
metric and nongeometric effects. An appropriate procedure for
the optimal and quick solution of the nonlinear least squares ap-
pearing in the calibration of the model parameters has been de-
veloped. Based on different experimental setups, different prob-
lem formulations have been tested and evaluated thoroughly to
investigate the best method of finding an appropriate parameter
set for the calibration. The tests were based on data generated
for a replicated real experimental setup. The developed calibra-
tion method was applied simulatively to a typical 6-Degrees-
of-freedom (DOF) industrial robot arm. The numerical results
showed that the novel problem formulation can improve effec-
tively and significantly a manipulator’s accuracy without requir-
ing cost-intensive metrology equipment. The errors between the
real end positions and the end positions predicted by the stan-
dard kinematic DH-model could be decreased by at least two
orders of magnitudes after application of the parameter identi-
fication with the novel problem formulation. Highly accurate
results were obtained also for joint configurations that were not

considered in the calibration process. This work lays the foun-
dations for the cost-minimal and effective realization of indus-
trial robots as measuring instruments.
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sis. Universität der Bundeswehr Hamburg, Hamburg, Ger-
many.

Mooring, B.W., Roth, Z.S. and Driels, M.R. (1991) Funda-
mentals of Manipulator Calibration, New York: Wiley In-
terscience.

Radkhah, K. (2007) Model-Based Approach to Calibration of
Industrial Robots Considering Geometric and Elastic Effects.
Diploma thesis. Department of Computer Science, Technis-
che Universität Darmstadt, Darmstadt, Germany.



Preprint of paper which appeared in: International Journal of Mechatronics and Manufacturing

Systems, Vol. 3, No. 3/4, pp. 187-209, 2010

Radkhah, K., Hemker, T. and von Stryk, O. (2008) ’A Novel
Self-Calibration Method for Industrial Robots Incorporating
Geometric and Nongeometric Effects’, Paper Presented at
the 2008 IEEE International Conference on Mechatronics
and Automation. August 5 - 8, 2008. Takamatsu, Japan.

Radkhah, K., Hemker, T. and von Stryk, O. (2009) ’Towards
the deployment of industrial robots as measurement instru-
ments - An extended forward kinematic model incorporating
geometric and nongeometric effects’, Paper Presented at the
2009 IEEE/ASME International Conference on Advanced In-
telligent Mechatronics. July 14 - 17, 2009. Singapore.

Schröer, K. (1998) Measurements and Testing: Handbook on
Robot Performance Testing and Calibration: Improvement of
Robot Industrial Standardisation IRIS, Stuttgart: Fraunhofer-
IRB-Verlag.
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Figure 1: In-line measurement cell for car body inspection with
KUKA KR 45 Robots (Lettenbauer, 2002).

Figure 2: The developed calibration approach consists of the
stages: Modeling, measuring, identification, compensation, and
validation.
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Figure 3: Important aspects to be considered when selecting the
measurement techniques and devices.

Figure 4: Laser tracker measuring the position and orientation
of the end effector w.r.t. the robot base frame (Beyer, 2004).
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Figure 5: Denavit-Hartenberg frame assignment (Spong,
Hutchinson, and Vidyasagar, 2006).
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Figure 6: Measurement system records an image of one block
of four points on the considered calibration object.
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Figure 7: 1) Case: End positions lie within the same image.
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Figure 8: 2) Case: End positions lie in two different images on
the same side of the calibration object.
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Figure 9: 3) Case: End positions lie on different sides of the
calibration object.
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Figure 10: 4) Case: The end positions lie on different calibra-
tion objects.
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Figure 11: Position of point U on the calibration object w.r.t. the
robot base is determined by an external measurement system.
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Figure 12: Comparison of obtained numerical results with the standard DH-model on the left and with the common problem
formulation on the right.
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Figure 13: Results obtained with the novel problem formula-
tion.


