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Legged locomotion of autonomous humanoid robots is advantageous but also

challenging since it inherently suffers from high posture instability. External
disturbances such as collisions with other objects or robots in the environ-

ment can cause a robot to fall. Many of the existing approaches for instability

detection and falling prevention include a large number of sensors resulting
in complex multi-sensor data fusion and are not decoupled from the walking

motion planning. Such methods can not simply be integrated into an existing
low-level controller for real-time motion generation and stabilization of a hu-

manoid robot. A procedure that is both easily implementable using a minimal

number of affordable sensors and capable of reliable detection of posture in-
stabilities is missing to date. We propose a simple, yet reliable balance control

technique consisting of a filtering module for the used data from two-axes-

gyroscopes and -accelerometers located at the trunk, an instability classifica-
tion algorithm, and a lunge step module. The modules are implemented on our
humanoid robots which participate at the yearly RoboCup competitions in the

humanoid kid-size league of soccer playing robots. Experimental results show
that the approach is suited for real-time operation during walking.

Keywords: balance control; legged locomotion; posture instability; reflex mo-

tion.

1. Introduction

The Zero-Moment-Point (ZMP) (Ref. 1) is an often used dynamic stabil-
ity criterion, particularly in conventionally built humanoid robots such as
Honda’s Asimo. However, this criterion can describe the large versatility of
human bipedal locomotion only to a small extent. Impacts or hits against
the robot torso are difficult to handle and exceed the limits of what control
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strategies can achieve. As with human beings falling avoidance can then
only be achieved by reflex based motions.

Höhn et al. (Ref. 2) use pattern recognition to detect and classify in-
stabilities. The classification is based on feature vectors, consisting of the
translational/rotational velocities, tilts of the torso and foot, the CoP and
the gait phase. In Ref. 3 a similar approach is described, with the difference
that five particular reflex motions are hard-coded for an optimal reaction
to instabilities. An emergency stopping method, divided into four phases
according to the role of the ZMP, is proposed by Morisawa et al.4 In each
phase approximate analytical solutions of the Center of Gravity dynam-
ics are used to generate the motion. The above concepts require several
sensors and high computational power which is not always available on
an autonomous robot. Another approach, coupling walking motion and its
stabilization, is proposed by Behnke et al.5 Sensor readings during undis-
turbed omnidirectional walking are captured and modeled for predefined
gait speeds, including means and standard deviations of the tilts about
the x- and y-axis and their derivatives. For intermediate walking speeds,
a linear interpolation is performed and a stability indicator is computed
comparing actual sensor readings to the predefined models. Depending on
the indicator strength, one of two reflexes is activated to stabilize the robot.
The method requires up to several hundreds of walking experiments.

The goal of this work is to provide a simple control methodology
based on sensor data provided by two-axes-accelerometers and -gyroscopes
mounted at the hip. The proposed balance control procedure consists of a
filtering module based on the Kalman filter for the detection of collisions or
impacts, a classification algorithm for the definition of the instability mea-
sure, and a stabilization sequence by means of reflex based lunges, leading
to the system structure shown in Fig. 1. Our strategy allows to detect in-
stabilities during both walking and special motions such as standing or
kicking. The adjustment to special motions requires solely a fine tuning of
the degrees of freedom and bounds as presented in detail in the following.

Inertial
sensors 

 Filter

Robot

ω
Decision 
algorithm 

      Stabilization

sequence

a
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Fig. 1. System structure of our balance control procedure. Angular velocities and ac-
celerations provided by the inertial sensors are denoted as ω and a, respectively. Based

on these data the filtering module determines the attitude φ and filtered velocity ω∗.



November 17, 2010 15:40 WSPC - Proceedings Trim Size: 9in x 6in main˙preprint

Preprint of paper which appeared in the Proceedings of the

13th International Conference on Climbing and Walking Robots and the

Support Technologies for Mobile Machines

2. Filtering Module

A problem common to all gyroscopes and accelerometers is that of drift and
shock sensitivity, respectively. We use gyroscopes to measure local changes
in rotation and accelerometers to measure external forces acting on the
robot. In the first part of our methodology we describe the model and
measurement for the Kalman filter, and subsequently present the algorithm
for determining the attitude φ and angular velocity ω∗ of the robot in the
x- and y-axis.

2.1. Model

The gyroscope data is integrated with discrete time steps δta to maintain
an ongoing estimate of the orientation of the robot. The correction by the
accelerometers, i.e. comparison to the gravity, turned out being sufficient
for the compensation of the drift. The system dynamics x̂−i = (Φ̂−i , ω̂

−
i )T is

therefore formulated as follows:

Φ̂−i = Φ̂i−1 + ω̂i−1δt ,

ω̂−i = ω̂i−1 .

2.2. Measurement

Assuming that the acceleration of gravity is measured by the accelerometers
and not considering the noise, the angle θ for the orientation of the robot
can be estimated. When the robot is tilted, the accelerometers measure
~g∗ = ~g+ ~g0. The projection of ~g on the robot axes reveals the forces gx, gy

and gz. The angle is computed as follows:

Φx = arcsin( gy

g )

Φy = arcsin( gx

g )

with g = 9.81m/s2. For the clarification of the notation, the delivered
sensory data is denoted as follows:

• accelerometers: zãx , zãy , zãz , and
• gyroscopes: zω̃x

, zω̃y
, zω̃z

.

Both information resources, model x̂−i and measurement zi, enable us to
optimally estimate the roll and pitch angles. Since the accelerometers do
not provide any useful information regarding the yaw angle, we can not

aδt is the time step at which new data is available and lasts 10 ms.
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compensate the drift in the gyroscopes by a fusion and therefore do not
further consider the yaw angle.

2.3. Algorithm for Integer Numbers

By using invariant matrices A and H and constant matrices Q and R

which were experimentally determined, and starting with a random error
covariance P0, the Kalman gain can be computed offline. The selection of
the scaling factors fdt, fa, fω requires a compromise between accuracy and
avoidance of an overflow. For further details we refer to Radkhah et al.6

Expressions in brackets shall signify integer numbers which can be handled
more efficiently than floating point numbers by the microcontroller:

Stepi: Model (Predict) ∈ Z

(fω · fdt · Φ̂−i ) = (fω · fdt · Φ̂i−1) + (fω·fdt·ω̂i−1)
fdt

(fω · fdt · ω̂−i ) = (fω · fdt · ω̂i−1)

Stepi: Measurement ∈ Z

(fa · zΦi
) = ∓zãi

, arcsin(x) ≈ x
(fω · zωi

) = zω̃i

Stepi: Correct (partially ∈ R due to K)

(fω · fdt · Φ̂i) = (fω · fdt · Φ̂−i )

+ K11

[
(fa · zΦi) ·

fω·fdt

fa
− (fω · fdt · Φ̂−i )

]
+ K12

[
(fω · zωi

) · fdt − (fω · fdt · ω̂−i )
]

(fω · fdt · ω̂i) = (fω · fdt · ω̂−i )

+ K21

[
(fa · zΦi

) · fω·fdt

fa
− (fω · fdt · Φ̂−i )

]
+ K22

[
(fω · zωi) · fdt − (fω · fdt · ω̂−i )

]
Due to the linearization of arcsin the algorithm produces inaccurate results
for large angles (≈ ±90◦). For the stability detection, however, this is not
relevant since only angles in the interval [−20◦, 20◦] are essential.

2.4. Experimental Results

Fig. 2 shows the accelerometer data on the left and the gyroscope data
on the right, both recorded during a walking motion. The accelerometers
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Fig. 2. Determination of the orientation using accelerometers (at the left) and using

gyroscopes (at the right) during a walking motion. The accelerometer data is very noisy

(dashed line on the left) compared with the filtered data (solid line on the left). Accu-
mulation of the drifts increases the total drift error in the gyro based results (dashed

line on the right) compared with the filtered data (solid line on the right).

are highly sensitive to vibrations as can be easily recognized. Hence the
measurements are very noisy compared with the results when using the
Kalman filter. An alternative determination of the orientation represents
the integration of the gyroscopic angular velocities. It can be noted that
gyroscopes alone do not provide any reliable information due to the drift.

The Kalman filtering approach proposed in this paper incorporates both
accelerometer and gyroscope based data for the computation of the orien-
tation. As expected, this way the drift of the gyroscopes and the shock
sensitivity of the accelerometers can be eliminated.

3. Instability Classification

Most important for the detection of an unstable posture is the definition
of a stability measure based on the results of the filter module. The pur-
pose of such decision algorithm is the correct triggering of the stabilization
sequence.

3.1. Basic Idea for the Definition of an Instability Measure

The inputs of the decision algorithm are chosen to be [Φx, ωx] and [Φy, ωy].
Two independent instability measures based on these inputs will be com-
puted: Lx and Ly for the roll angle and the pitch angle, respectively. These
values are then combined to an instability vector indicating the direction
and intensity of a shock. Considering that computations are directly to be
performed on the microcontroller, a simple basic idea consists of defining
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lower and upper bounds for the weighted sum of the angle and velocity:

L := αΦ · Φ + αω · ω

with L ∈ [Lmin, Lmax]. The system is defined as stable unless the limits
are exceeded. The weights αΦ and αω specify the influence of Φ respectively
ω on the measure.

3.2. Robustness in the Presence of Drift or Incorrect

Calibration

Absolute bounds are always sensitive towards a shift of the measurement
data. In order to address this problem, our neutral position NL is chosen
to be a dynamically changing value. It iteratively emerges from averaging
instability measures L predicted for the near future:

NLi := (1− β) ·NLi−1 + β · Li,

where NL0 = 0 and the weighting factor range 0 ≤ β ≤ 1. A position
that is held for longer time is assumed to be stable and hence becomes the
new neutral position NL. By changing β a compromise between robustness
and inactivity of the mean value can be made. In Fig. 3 an example of an
incorrectly calibrated accelerometer is given. As can be noticed, after only
half a second the correct neutral position is found.

Fig. 3. Estimation of the instability measure in the case of an incorrectly calibrated

accelerometer.
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Fig. 4. At the left the instability measures are plotted against the filtered orientations

about the x- and y-axis. On the right-hand side the instability measure Lroll is plotted
against Lpitch.

3.3. Experimental Results

On the left-hand side in Fig. 4 the instability levels Lroll and Lpitch are plot-
ted against the roll and pitch angular positions recorded during a walking
motion. It is noticeable that the instability measures run ahead of the orien-
tation outputs, but behave like the orientation outputs. Ongoing deflections
do not lead to a larger instability measure. Rather they are identified as
desired tilts. For instance, during forward locomotion the robots have a vis-
ible supine position. The amplitudes in the instability measure are caused
only by jerky transitions such as transitions from standing to walking and
reverse. A compromise between robustness and inactivity as well as fore-
warning time and accuracy can be made by tuning the parameters.

The instability measures Lroll and Lpitch indicate the direction and
velocity of a fall. To clarify the entropy of these measures, have a look
at the rightmost plot in Fig. 4. It represents the level trajectories around
the robot in the bird’s-eye perspective. Imagine the robot is standing at
the origin of the plot and looking in direction of the positive y(pitch)-axis.
To detect an instability, it is sufficient to compute the absolute value of
the trajectory vector (Lroll, Lpitch)T and the difference between its angle
and a reference direction such as the robot’s viewing direction (0, 1)T . It
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seems to be plausible to set bounds rather on the trajectory vector instead
separately on each instability level. The bounds on the trajectory vector
certainly require a dynamic treatment similarly to the other parameters
discussed above. For instance the robot tends to tilt faster forwards than to
fall over to its sides. A higher bound for the measure Lroll therefore seems
to be recommended.

4. Stabilization Sequence and its Demonstration

The third module is responsible for moving the robot from an unstable
into a stable posture. By means of the calculated attitude and velocity of
the robot, a new foot position for the swing leg is computed. Using inverse
kinematics, a novel stable trajectory for all leg joints can be determined.
The demonstration of the correct execution of all modules can be seen in
Fig. 5. Further details can be found in Radkhah et al.6

Fig. 5. After being pushed backwards the humanoid robot triggers a stabilization se-

quence, making a step backward with its right foot to stabilize itself. For further infor-

mation about our robot system we refer the reader to Friedmann et al.7

5. Discussion

Compared to existing methods, the approach proposed in this paper is
advantageous in several aspects. The following suggestions for extensions
are interesting, given more computational power. Also, note that some of
the below extensions may complicate the currently well working system
unnecessarily.
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5.1. Improving the Kalman Filter

The application of the Kalman filter offers a few important degrees of free-
dom and flexibility which can both be used for improvements and exten-
sions of the implementation. The matrices Q and R for the system and
measurement uncertainties, for instance, could be adjusted to the posture
or locomotion pattern of the robot, i.e. the model should not be trusted, the
faster the robot moves. Furthermore, it might turn out necessary to com-
pute both matrices online as soon as they change with each time step. In this
case either the computation is completely performed online on the micro-
controller or, for simplification purpose, a look-up table for pre-calculated
Kalman gains K(i)

∞ for the corresponding Qi is created.

5.2. Extension of the Classification Module

The goal of the second module is defining an instability measure that out-
puts at each time step the degree of stability of the current posture of
the robot. The implementation on the microcontroller requires an efficient
determination of the measure. Improvements for this measure include

• extension by transformation and pattern recognition running on a
more powerful computer and their evaluation at specific cycles, and
• comparison to visual information retrieved by a camera.

It is also imaginable to integrate a memory for incorporating the previ-
ous measures in the current computation of the instability measure. For
instance, an unstable attitude should be rated more critical, the longer it
is taken up.

5.3. Improving the Stabilization Sequence

For the determination of the stabilization sequence it must be noted that
truly optimal reaction in each situation can not be realized. The exhaust-
ing generation of special actions for the stabilization sequences is a way
to respond to many instabilities. Currently, we are working on the smooth
run of the strategy during all motions with dynamically changing bounds.
In order to support the automatic choice of a stability sequence, it is also
possible to memorize the result of a reaction, i.e. to learn from false reac-
tions. A successful reaction, for instance, could result in a better weighting
or adjustment of necessary parameters.
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6. Conclusions

During walking, standing and many other intended motions of a humanoid
robot, it is desirable to avoid falling, since falling robots might damage
themselves or parts of their environment. We proposed a strategy for re-
liable detection of instabilities and reaction to them. The minimal sensor
input is not a limiting factor considering the obtained results. The insta-
bility events can be detected by the proprioceptive sensors in real-time.
Due to limitations of onboard computational power, the idea of a simple
set-up of the hardware and software system for a balance control strategy
seems to be justified. Furthermore, decoupling the balance control from the
generation of walking motion simplifies its implementation on a real robot
platform and allows easy adaption of the system to other robots. Finally,
there is no need for installation of further sensors like feet-ground contact
force sensors at places that require complicated wiring.

7. Acknowledgements

Parts of this research have been supported by the German Research Foun-
dation (DFG) under grant no. STR 533/7-1.

References

1. M. Vukabratovic and B. Borovac, Int. J. Humanoid Robotics 1, 157 (2004).
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