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Abstract

In this paper a case study of cooperation of a strongly heterogeneous autonomous
robot team, composed of a highly articulated humanoid robot and a wheeled robot
with largely complementing and some redundant abilities is presented. By combin-
ing strongly heterogeneous robots the diversity of achievable tasks increases as the
variety of sensing and motion abilities of the robot system is extended compared to
a usually considered team of homogeneous robots. A number of methodologies and
technologies required to achieve the long-term goal of cooperation of heterogeneous
autonomous robots are discussed including modeling tasks and robot abilities, task
assignment and redistribution, robot behavior modeling and programming, robot
middleware and robot simulation. Example solutions and their application to the
cooperation of autonomous wheeled and humanoid robots are presented in this case
study. The scenario describes a tightly coupled cooperative task, where the hu-
manoid robot and the wheeled robot track a moving ball, which is to be approached
and kicked by the humanoid robot into a goal. The task can be fulfilled successfully
by combining the abilities of both robots.
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1 Introduction

With the growing importance of autonomous mobile robots in industrial and
research applications the need to execute successfully challenging missions and
tasks has also grown. To fulfill a large diversity of tasks with a sufficient reli-
ability in the robot system, teams of robots are used instead of single robots
with many different abilities. The majority of research in robot teams con-
siders homogeneous robots, most of them based on wheeled locomotion. The
investigated tasks differ in the complexity of structure and cooperation, start-
ing from basic tasks as foraging [12] or exploration of an area without a specific
cooperation [25] up to problems with high communication and synchroniza-
tion demands, e.g., cooperative box pushing [18] or cooperative surveillance
of an area [2,14] or soccer playing [9,35,36]. A classification of different stages
of cooperation is given in [8].

Robots of a homogenous team are usually equipped with identical types of sen-
sors and actuators which usually differ only slightly, e.g., because of different
wear and tear. Therefore, the diversity of tasks which can be accomplished by
a homogeneous robot team is quite limited. This drawback can be overcome in
principle by a team of heterogeneous robots, each or several of them equipped
with different sensing, perception, motion and onboard computing capabil-
ities. Several applications have been investigated with robots, which differ
only slightly in their capabilities. Although these robots are not fully identi-
cal, commonly they are still considered to form a homogeneous robot team
[27]. Depending on the level of heterogeneity robots in a team are classified
as weakly or strongly heterogeneous. An application with a strongly heteroge-
neous robot team has been developed, e.g., for aerial surveillance [24], where
different robot types, a blimp, an airplane and a helicopter, cooperatively
monitor a rural area for detecting forrest fires.

Another strong motivation for investigating cooperation of heterogeneous au-
tonomous robot teams comes from the assumption that in one or two decades
robot teams will usually consist of strongly heterogenous and not homogenous
robots. Also many different autonomous robotic systems of different genera-
tions and capabilities will have to cooperate to achieve common tasks, pre-
sumably in an ambient intelligent environment.

Basic requisites for heterogeneous robot teams are complementary sensing,
planning as well as motion and physical interaction abilities based on different
hardware (e.g. sensors, actuators, computational units) and software modules.
To ensure a large variety of different skills present in the robot team not
only complementary but also redundant, competing abilities are required for
different robots to achieve fault tolerance through sufficient redundancy in
case of failures of single sense, plan or act abilities.
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Fig. 1. Strongly heterogeneous, autonomous robots used in the case study: Wheeled
Pioneer 2dx robot and humanoid robot Bruno.

The paper is organized as follows. In Sect. 2 the robots used in the case study
are presented. Sect. 3 discusses tasks and robot abilities and describes the
mission scenario for the case study. Models of robot abilities are used for task
assignment based on a utility function in Sect. 4. Also in Sect. 4 behavior
modeling, programming and control are discussed. Sect. 5 focuses on enabling
technologies, robot middleware and simulator, which are mandatory for the
investigation of complex applications of heterogeneous robot teams. Results
for the case study are presented in Sect. 6. Conclusions are drawn in Sect. 7.

2 Heterogeneous Robots Used in the Case Study

In this case study two strongly heterogeneous robots for indoor applications
are investigated: a humanoid robot and a wheeled robot (Fig. 1).

The motion capabilities of the 55 cm tall humanoid robot Bruno (Fig. 1(b)) are
based on 21 rotary joints actuated by servo motors (6 in each leg, 1 in the waist,
3 in each arm, and 2 in the neck, see Fig. 1(c)) which enable versatile walking,
ball kicking and getting up abilities. The walking motions are inertially sta-
bilized using gyroscopes attached to the robot’s hip at a rate of 100 Hz. The
maximum forward walking speed is 0.4m/s. Internal sensors measure each
joint angle. As only external sensors the robot uses two identical off-the-shelf
CCD cameras but with different lenses. The articulated head camera offers
a (horizontal) field of view of 45 deg and is used for the perception of small
objects like a small ball. The second camera is attached to the robot’s chest
and is used to obtain a more peripheral view of the environment with a field
of view of about 95 deg. The chest camera is not used in the present scenario.
The humanoid robot has two onboard computers. For feedback control on the
”reflex layer” a micro-controller board with a Renesas SH7145 32-bit proces-
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sor running at 50MHz and 1 MByte of RAM which is programmed in C and
is used for the planning and execution of humanoid leg and arm motions by
coordination of multiple joints and for postural stability control. The ”cogni-
tive” computing layer includes the computations for robot vision, localization
and behavior control as well as WLAN communication which are performed
on an off-the-shelf Pocket PC with an Intel PXA272 processor with 520 MHz,
128 MB SDRAM, 64 MB Flash ROM and integrated power supply. The op-
erating system is Windows Mobile 2003 CE. The two cameras are connected
to this onboard computer via USB. The autonomous robot also carries the
batteries for energy supply of the motors and the controller board. To enable
fast and stable bipedal walking motions a careful overall lightweight design of
the robot including all payload had to be made. For further information about
the humanoid robot Bruno, model 2006-2007, the reader is refered to [9].

The Pioneer 2dx robot from MobileRobots is a widely used, differential drive
platform with two driven wheels and one rear castor wheel. The locomotion
abilities on a planar surface are versatile, stable and fast. For example, the
robot can rotate on the spot as well as locomote straight ahead at a maxi-
mum speed of 1.6m/s, which is reduced carrying an additional payload of up
to 20 kg. Unlike the humanoid robot it cannot locomote on a diagonal path.
The used version of the robot is equipped with a gripper with two degrees of
freedom and a maximum opening of of 21.5 cm. The robot carries a standard
laptop as additional computational unit, connected via RS232, replacing the
built-in onboard computer by a faster processor, namely 1.6GHz with 1GB
RAM under Windows XP, and WLAN communication ability. With the grip-
per the robot can lift up objects with a mass of up to 2 kg and carry at least
3.5 kg. The gripper can be extended by a seat for the humanoid robot. The
power supply is given by two 9V lead batteries. The robot is equipped with
a sonar sensor ring consisting of 16 units operated at a rate of 25Hz and a
camera as external sensors. In this scenario the camera of the wheeled robot
is not used to create a more heterogeneous robot team in combination with
the humanoid robot.

3 Tasks and Robot Abilities

3.1 General Considerations

To achieve a mission’s objective it must be decomposed in suitable tasks which
can be assigned to individual robots for completion through sequential or par-
allel operation in time and space. The distribution of specific tasks as well
as robot behavior control not only depend on the mission objective but also
strongly depend on the individual robot’s abilities. These consist mainly of
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Fig. 2. Left: To achieve a mission’s objective through physical interaction with the
environment proper abilities in sensing and perception, onboard computing and
planning as well as physical motion and interaction are required in a robot team.
Right: Models provided by a human expert are needed as prerequisite for mission
achievement through autonomous task allocation by the robot team.

abilities in the categories (Fig. 2 left) of (i) sensing and perception, (ii) phys-
ical motion and interaction (like locomotion or manipulation), (iii) onboard
computing and planning and (iv) communication. The approach investigated
in this paper for task modeling and distribution is based on models of the spe-
cific sense, plan and/or act abilities available in one or several robots which
are required to achieve certain tasks. Therefore it differs from standard ap-
proaches and taxonomies for multi-robot task allocation like [11,14,25] which
operate on more abstract levels that do not directly take into account specific
sense, plan or act abilities of the robots.

The composition of the robot team including the allocation of proper robot
abilities required to achieve certain tasks autonomously depends on the avail-
ability of proper robot hardware and software and is under the responsibility
of human experts (Fig. 2 right). If the robot team consists of mainly comple-
mentary robot abilities then quite diverse tasks can be achieved in principle,
but reliability in case of failure of one robot’s abilities is low. If the robots
have mainly similar, redundant and competing abilities then reliability in case
of failure of one robot is higher but the diversity of potential tasks is much
smaller. On the other hand having many robots and each with only a few,
but quite diverse abilities is more reliable in case of failure of one robot than
having only very few robots but with a multitude of diverse abilities.

3.2 Tasks and Robot Abilities in the Case Study

The mission scenario includes a close cooperation of autonomous mobile robots,
represented by the humanoid and the wheeled robot (Sect. 2). The autonomous
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Fig. 3. Sketch of the mission scenario: A team of two robots has to find and follow
an object (a ball) over a potentially long distance and finally to kick or push the
ball into a goal.

robot team has to find and to track the moving ball, to reach it and to push
it into a yellow goal (Fig. 3). Different abilities are required to fulfill the tasks
needed to complete the mission: To find and track the ball for a possibly long
distance, the robot team must be able to perceive and track the ball by a
camera and must also be able to follow it sufficiently fast. To push the ball
into a yellow goal pushing or kicking abilities are needed.

These tasks can be achieved better by combining the abilities of both robots
than by one robot alone. Both robots offer competing and complementary
abilities. Both have versatile locomotion skills, but with different maximum
speeds and payloads. The wheeled robot can push the ball in principle but
the humanoid robot can perform much stronger and better directed kicks.
Both robots are equipped with computational units and wireless LAN for
communication with each other as well as with other nodes. However, they
have quite different perception abilities. Only the humanoid robot can perceive
the ball and the yellow goal with its head camera. In some cases, it could be
able to complete the mission itself, but in others its locomotion speed may be
to small and its operation time may be too short to follow the moving ball.
The payload abilities of the wheeled robot can be used to carry the humanoid
robot at high speed while tracking and following the ball. Thus the scenario
includes the possibility of a tight cooperation task, where the humanoid robot
is carried by the wheeled robot and navigates the latter to follow the ball.

To achieve a possibly fast and reliable accomplishment of the mission, the
required major tasks

• Ball Finding and Following: Searching for the ball, tracking the located
ball, following it by robot navigation

• Preparation for Kick and Ball Kicking: Proper positioning towards
the ball, ball kicking

are extended for a team of heterogeneous robots with different abilities in
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perception, locomotion and payload, to

• Boarding: Boarding of one robot onto another robot (Fig. 8 (a) - (c))
• Ball Finding and Following: Searching for the ball and following it by

the robot team where one robot may transport another (Fig. 8 (d))
• Preparation for Kick and Ball Kicking: Dismounting of the robots,

positioning towards the ball, ball kicking (Fig. 8 (e) - (f)).

An optimal assignment of tasks to the robots must account for their differ-
ent abilities. Furthermore, it is assumed that all tasks of this mission are
executed in a tight cooperation of the robots, where the robots continuously
communicate with each other by WLAN to exchange information using UDP,
e.g. on currently perceived objects and robot behavior, for successful mission
completion.

3.3 Models of Robot Abilities

The human experts are expected to provide models of the tasks as well as of the
individual robot’s sense, plan, and act abilities as prerequisites for autonomous
(re-)distribution of tasks between the robots (Fig. 2 right). For the purpose
of this paper, the ability of a robot r to perform a certain, basic task a is
described by a parameter c = c(r, a). The range of the (relative) characteristics
is 0 ≤ c(r, a) ≤ 1. The value of c = 0 describes that the robot is not capable
of a specific basic task at all, e.g. to locomote well over a certain terrain or to
perceive certain objects in the environment. On the other hand c = 1 denotes
a robot ”perfectly” capable of a task. The value of c can be based on a task
specific metrics (like the average maximum speed over certain terrain) and on
the relation between a robot and the robot best capable of this task. However,
for the purpose of task distribution an ”exact” determination of c(r, a) is not
required. A coarse approximation may be sufficient as long as the order of
robot characteristics c(ri, a) ≤ c(rj, a) is representing the relation of certain
abilities of two robots correctly.

The robots used in this case study (Sect. 2) offer both complementary and
redundant abilities. Complementary capabilities enlarge the diversity of solv-
able tasks. In the case study several of the capabilities are complementary,
e.g. object perception or transportation. Only the skills of locomotion, ball
manipulation and communication are available on both robots but the first
two with different properties. Therefore a failure of locomotion of one robot
may compensated by the other.

Based on the qualitative rating of the robot abilities given in Table 1 a quan-
titative rating with weights c(r, a) is applied to each ability a of a robot r as
described above, see Table 2. In this case, the weights are based on expert
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Table 1
Qualitative rating of complementary and competing abilities of humanoid and
wheeled robots

robot type locomotion object transportation communication
perception

wheeled ++ – ++ ++

humanoid + ++ – ++

Table 2
Quantitative rating of robot abilities

robot type locomotion object transportation communication
perception

wheeled 0.7 0 0.9 1

humanoid 0.4 0.7 0 1

knowledge of the robots and a rule of thumb. The skill communication is as-
sumed to be very well developed for both robots. Otherwise the envisioned
tight cooperation would be very difficult to implement. It is important to note
that all values c(r, a) can in principle be updated online during the execution
of the mission to account for occuring failures. If a robot ability a degrades
or fails accordingly updated weights c(r, a) can be taken into account in a
redistribution of tasks between robots (cf. Sect. 4.1). Further data associated
with each robot are a unique robot number and a IP address which can be
extended by a team number in case of several robot teams.

4 Task Assignment and Behavior Control

4.1 Task Modeling and Assignment

The mission is decomposed into basic tasks, which can be assigned to one or
several robots for execution (Sect. 3.1). This decomposition is organized by a
human expert as it is usually done, see e.g. [18,19]. The tasks can be modeled
as dependent tasks, which have a child and/or a parent task and are connected
via time by them, or as independent tasks, which can be executed on their
own. Dependent tasks are also used to model a cooperative parallel execution
of several tasks. For implementation each task is modeled by

• a unique task ID,
• required robot abilities and cost for completing the task,
• any predecessor and/or successor tasks and
• the current state of execution (assigned/not assigned or executable/being
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executed or executed/solved).

Basic tasks may be executed either sequentially, when no communication be-
tween robots during operation is required, or in parallel by several robots,
dependent or independent of each other, which requires communication dur-
ing execution between participating robots. Furthermore, lists of dependent
and independent tasks with priorities are maintained during operation. Ro-
bustness against failures is achieved by

• communication to successor tasks about the current state of execution of a
task,

• maximum time limits allowed for the execution of basic tasks and
• redistribution of tasks to robots if a predecessor task cannot be solved (fast

enough) by a robot.

All tasks are classified based on the robot abilities, which are required for
their completion. Each task demands one or more robot abilities a which are
weighted with a relative factor c(r, a). Each task receives a utility factor by
which tasks more important for mission completion are ranked higher than
others when they are assigned to robots.

Performing task assignments for multi-robot coordination based on utility
or quality functions is not new, cf. e.g. [11,13,14,25]. However, unlike most
previous approaches the utility function used in this paper is based on the
specific sense/plan/act abilities of the robots required to achieve certain tasks
(Sect. 3.3). For each task tk a utility value

u(k, i) =
∑

l=1,m

c(ri, al)

is calculated where ri, i = 1, ..., n, represents one of the n robots of the team,
al, l = 1, ..., m, the abilities required to fulfill this task and c(ri, al) ∈ [0, 1]
the characteristics of the ability al of the robot ri (Sect. 3.3).

A task is assigned to the robot ri, which is best qualified, i.e. currently has
the highest utility value u(k, i) for the task tk. If several robots share the
same utility value, then the robot ropt with the lowest task load loadi and the
smallest robot number is chosen

ropt : u(k, opt) = max
i=1,...n

loadi · u(k, i) with loadi =
(mall − pi)

2

(mall)2

where mall denotes the number of all tasks in the mission and pi the number
of tasks currently assigned to robot ri.
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Tasks are modeled with different states of execution and a maximum time
allowed for execution. If a task has been assigned but not been solved after
this time span, a redistribution of tasks is initiated. In this case it is likely
that a task cannot be solved by the currently selected robot. Another, related
approach for incorporating execution time for reallocation of tasks has been
described in [26].

The tasks are distributed in a decentralized manner using a contract-net
type negotiation approach [33] based on robot communication. The original
contract-net protocol is modified in such a way that all tasks are rated by
one robot first by computation of the utility values. Then the results are com-
municated to the next robot for rating. The last robot of the team receiving
the tasks for rating communicates to the other team members the resulting
distribution of tasks to robots. This approach ensures that tasks which can be
executed in parallel are allocated to a robot before their initiation. The effort
consists of O(m · n) communication steps in case of m tasks and n robots. If
the number of robots is moderate, then for the number of tasks m > n can be
expected as more robots than tasks would be an usual situation.

4.2 Behavior Modeling, Programming and Control

Modeling, programming and control of complex behaviors for cooperative
multi-robot applications are challenging tasks in the dynamic environments
of many real-world problems. Besides different methodological approaches for
behavior control like reactive or deliberative paradigms mature technologies
are required for programming robot agent behaviors. These must be able to
cope with necessary real-time requirements, only partial or noisy observability
of the environment, and the unpredictability of dynamic environments. Tech-
nologies for programming and control of robot behavior should met further
requirements (cf. [30]) including

• Modularity: Highly complex robot behavior can only be managed if it can
be structured in a modular way. Modularity is also a prerequisite to enable
several human experts to develop and program robot behavior simultane-
ously. Modularity also supports reusability of single modules of a complex
robot behavior control for other robots or applications. It also enables the
composition of complex robot behavior from more basic behavior modules.

• Portability: The technology for programming robot behavior should be in-
dependent from a specific robot plattform or application.

• Flexibility: There should be no restrictions on the type of behavior control
which can be implemented, i.e. any type of reactive or deliberative, discrete
or continuous behavior should be enabled.

• Usability: The programming of robot behaviors should be supported through
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monitoring and debugging facilities.

A number of formal specification methods for programming robot and agent
behaviors efficiently have been proposed and applied like the Behavior Lan-
guage [4], the Reactive Plan Language [3], the Configuration Description Lan-
guage [21], the Planning Domain Definition Language [22], the Task Descrip-
tion Language [32], COLBERT [17], Petri Net Plans [37] and the Extended
Behavior Programming Language (XABSL) [20,30,31]. However, most of them
do not meet all of the requirements mentioned above. Several of the mentioned
specification methods are based on finite state machines or make use of them,
e.g. [4,17,20,30].

In this paper XABSL [20,30] is applied for behavior modeling, programming
and control of heterogeneous multi-robot teams. XABSL is based on hierar-
chical state machines, enables deliberative as well as reactive behavior con-
trol paradigms and was developed to meet the above mentioned requirements
[30]. It consists of several components: a modular behavior architecture based
on concurrent hierarchical, finite state machines, a specification language for
describing hierarchical state machines, a compiler generating documentations
and intermediate code to be parsed by the runtime system, and a C++ runtime
library used to execute the behavior inside an agent software environment.

Common features between XABSL and Petri nets as an alternative formal
approach for modeling robot behavior as described in [37] are hierarchical de-
composition of complex behaviors, concurrent execution of partial behaviors,
and support for multi-robot cooperation. In principle modeling of robot behav-
ior with Petri nets (PNs) and hierarchical finite state machines (HSMs) have
a similar expressiveness as also concurrent behavior execution is possible with
XABSL. However, it seems that HSMs as used in XABSL are more intuitive
than PNs becaus of more compact behavior descriptions. An advantage of PNs
formalism is the possibility of the analysis and verification of certain formal
properties of the specified behaviors (like reachability or liveness). Some for-
mal verification (like reachability of states) is also possible with HSMs. Further
details about a comparison between Petri Net Plans and XABSL can be found
in [31]. In this context it should be noted that in [38] a graphical behavior
modeling tool using PNs has been developed which automatically generates
XABSL source code.

In XABSL the hierarchy of finite state machines consists of agents, options
and basic behaviors. An agent represents the whole robot behavior, e.g. of one
robot in the team. The options of this agent denote different sub-behaviors.
The lowest level of the hierarchy is represented by basic behaviors by which
different types of executable motion primitives or output signal can be imple-
mented. The agent can be described by a directed, acyclic graph with options
as nodes and one root option als designated initial node. Standardized vari-

11



Fig. 4. Option graphs of robot behavior for the tasks Ball Finding and Following:
humanoid robot (left) and wheeled robot (right).

ables (e.g. as integer or real variables), so-called symbols, are used in XABSL
as input, output or internal variables and can be connected by mathematical,
e.g. arithmetical or logical, operations. The options can be controlled by a
decision tree through the values of the symboles which are set in functional
modules, e.g. with the current distance of the robot to an object of interest.
The current state of the HSM describing an agent is given by the so-called
option activation tree of active options or basic behaviors starting from the
root option. This state is updated in certain time steps depending, e.g. on the
frequency of incoming new information from sensing and perception modules.

The XABSL source code of an option is written in a C++ like description
language and contains decisions and transitions depending the current value
of symbols and actions which are to be performed while a specific state is
active and which is interpreted from a plattform independent runtime engine.
XABSL also offers tools for editing, visualization, monitoring and debugging
of behavior programs and is used by about a dozen research groups currently.
It is available from www.xabsl.de.

4.3 Behavior Modeling for the Case Study

The options available in an agent representing a robot’s behavior can be as-
sociated to specific tasks to be performed by the robots. The option graphs
used for the behaviors of the humanoid and the wheeled robots are displayed
in Figs. 5 and 4.

In the option find-ball in Fig. 4 left, executed by the humanoid robot, the robot
searches for the ball. If a valid ball is recognized in the camera image, then
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Fig. 5. Option graph of the humanoid robot behavior (left) for the boarding task,
the agent for its head control (middle) and one option of the head control (right).

the position of the ball and a reliability which depends on the recognition
quality in the image are communicated to the wheeled robot. The humanoid
robot starts the option look at ball, which controls the head motors to keep the
recognized ball in the middle of the camera image. When the ball is lost, the
behavior calls the option search for ball, which executes a search path for the
head camera by the neck joints. This search path is precalculated to cover the
area in front of the robot, where the ball is likely to be. If this search is not
successful specific search locomotions of the humanoid robot or the wheeled
robot transporting the humanoid robot could be initiated. The transitions
between options denoted by edges depend on the state of the current world
model included in the current value of the symbols which in this case depend
on the results of the ball recognition in image processing.

The option follow-ball in Fig. 4 right describes the behavior of the wheeled
robot transporting the humanoid robot. It depends on the information about
the current state of the world model, mainly the currently perceived ball po-
sition, communicated by the humanoid robot. The robot can move to the left
or right with different turning angles depending on the current ball position
resp. move forward. If no ball position is communicated to the wheeled robot
within a certain time the wheeled robot stops. It only starts to move again, if
the reliability of a communicated ball position is sufficiently high. The wheeled
robot tries to keep the ball in a center position in front of it.

5 Enabling Technologies for Heterogeneous Robot Teams

For efficient development, operation and maintenance of heterogeneous au-
tonomous robots in research and industry further enabling technologies are
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becoming increasingly important, namely robot middleware and robot sim-
ulator. Their availability and further development are indispensable for the
efficient investigation and realization of more complex and more reliable multi-
robot applications in the future [6].

5.1 Robot Middleware

Modularity and reusability of hardware and software modules of heteroge-
neous, autonomous robots can only be achieved by a flexible and standardized
robot middleware which ensures not only timely and consistent communica-
tion between the various hard- and software modules. A number of efforts
have been made in the past and are still underway, e.g. Microsoft’s Robotics
Studio and and Willow Garage’s Robot Operating System to name only two
prominent, commercial activities. However, there are yet no solutions available
that meet all requirements and are widely accepted.

In this paper the software framework RoboFrame [29] is applied which has been
developed to address the special needs of heterogeneous teams of autonomous
robots with a large variety of hardware and software components. Its main
characteristics are platform independency, modularity and high efficiency and
that it is also bundled with a library of common components for robot control
software, which provides much more support to the robot programmer than a
robot middleware alone.

RoboFrame has been designed as a framework that can also be applied to
robots with only small-scale onboard computing abilities. It offers flexible
communication mechanisms either based on messages (ring buffers) or shared
memory (black boards) and supports a variety of operating systems like Linux,
FreeBSD, Windows 2000/XP/CE 5. Main elements are modules, processes and
connectors (as generalization of communication interfaces). Modules capsule
functional components of a robot control software like image perception, lo-
calization, world model, behavior control, motion planning and generation.
Instead of hard-wired interfaces between modules descriptive specification of
in-/out-going data are used. Processes are the runtime environments for mod-
ules which can be executed asynchronously on a single or distributed on sev-
eral onboard computers. Processes are implemented as threads of the oper-
ation system. Modules are executed thread-safe at variable or given execu-
tion times. The platform abstraction layer offers multi-threading and synchro-
nization mechanisms as well as file and network functions and mathematical
functions. A graphical user interfaces offers debugging capabilities and vi-
sualization of algorithm performance. More information about RoboFrame,
which is available to interested researchers upon request, can be found at
www.dribblers.de/roboframe.
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Fig. 6. Software-in-the-loop testing of robot control software using a robot simulator.

5.2 Robot Simulator

The development of behavior control software for teams of autonomous robots
is a highly challenging task. Reasons for lack of performance as well as for fail-
ure are extremely difficult to analyze by experimental evaluation only, because
an autonomous robot usually consists of a highly interacting set of different
software and hardware modules. Therefore one of the most valuable tools
supporting the development of control software is software-in-the-loop testing
using simulation of a robot’s sensing and/or motion system under real-time
conditions (Fig. 6). The benefits of simulation are manifold and include testing
of robot software under repeatable and controllable conditions and unlimited
availability which is not possible with real robot hardware.

The general requirements on the simulator differ significantly depending on
the scope of the simulation experiment, e.g. testing of localization algorithms
depending on perceived environmental information and odometry or testing
of behavior control algorithms with different levels of localization accuracy.
High physical accuracy may be mandatory for some scenarios, e.g. for inves-
tigations in postural stability control of fast humanoid robot locomotion, but
may be not important for other, e.g. testing of team coordination strategies.
Furthermore, physics-based robot simulation may impact the real time per-
formance of a simulator severly. If a simulation depends on external packages
for physics simulation or other purposes, adjusting the accuracy and level of
physical detail of the simulation is difficult if not impossible. One possible
solution is to use different simulators for different purposes but this requires
consistent interfaces to different simulators. This approach is used, e.g., with
Gazebo [16] for 3D physics and Stage for 2D simulation, but is not practical
for other simulators. There is also another tradeoff between accuracy and level
of physical detail of the simulation and size of the robot team investigated.

A variety of 3D robot simulators exist. Most of them rely on external packages
for physics simulation. Quite often the Open Dynamics Engine [34] is used,
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e.g. in Webots [23] and Gazebo [16]. Other packages used are PhysX [1] by
NVIDIA (used in Microsoft Robotics Studio) or game engines like the Unreal
Engine [7] (used in USARSim [5]). Most of the existing robot simulators are
tuned for real-time computations and physical plausible but not necessarily
accurate simulation results. For example, the level of physical detail in robot
dynamics, e.g. multibody system dynamics, simulation as well as the numer-
ical integration method of motion dynamics, e.g. fixed step size Euler versus
variable step size higher order methods, which strongly influence the fidelity
of simulation, can not be changed. Another drawback of existing robot sim-
ulators is that validation and calibration of robot simulation for rating and
adaption of the simulation accuracy by a systematic comparison with data
from robot experiments is not supported well.

To overcome these limitations the multi-robot simulation framework is being
developed (MuRoSimF [10]). It allows the flexible and transparent exchange
and combination of any of the algorithms used for the simulation of robot
motion or sensing systems in a scenario with individual level of realism. Also
different algorithms can be selected for different robots, e.g. a dynamics sim-
ulation for the humanoid robot’s and a kinematic or point mass model for
the wheeled robot’s locomotion. Different level of details in the robot sensing
system can, e.g., account for different distortions of camera images or for the
effects in a data record of distance sensors from a laser scanner or a sonar
ring resulting from motion of the robot during recording of data. Further in-
formation about MuRoSimF, which is available to interested researchers upon
request, can be obtained from www.dribblers.de/murosimf.

For the purpose of testing the control software of the hetereogeneous robot
team in the case study, the wheeled robot is modeled with two actuated wheels
and an articulated 2-axes gripper which is needed in other scenarios. The
humanoid robot kinematics is modeled with 21 articulated joints (Fig. 1(c)).
Its the head camera with simulation of focal length and distortion has been
calibrated from real head camera images.

5.3 Multilevel Testing

Conventional testing and debugging mechanisms used in software engineering
to ensure that software is free of errors are applicable to robot control software
only to a very limited extend because of large uncertainties in robot perception
and motion, the high dimension of possible robot and environmental states
and real-time requirements. However, it should be noted that a tailored robot
middleware, like RoboFrame, integrated with a simulator, like MuRoSimF,
enables multilevel testing strategies for robot control software. These include
component tests, online and offline tests as well as software-in-the-loop tests in
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(a) View of the begin-
ning of the simulated
task of the humanoid
robot boarding onto
the wheeled robot

(b) Simulated
image of the hu-
manoid robot’s
head camera in
the scene left

(c) View of an ex-
periment of the hu-
manoid robot start-
ing to board onto the
wheeled robot

(d) Head cam-
era image of the
humanoid robot
with recognized
objects

(e) View of the sim-
ulated ball following
task of the robot
team

(f) Simulated
head camera
image of the
humanoid robot
while following
the ball

(g) Experiment of the
ball following task

(h) Head cam-
era image of the
humanoid robot
with recognized
ball

Fig. 7. Results from simulated and real experiments for the beginning of the board-
ing task (top row) and the ball finding and following task (bottom row) where the
wheeled robot transports the humanoid robot which navigates both.

combination with real robot hardware or an adequate robot simulation [28].

6 Results

6.1 Simulation Results

Fig. 7 depicts scenes from the simulation of the tasks Boarding and Ball Follow-
ing. In the first scene the humanoid robot recognizes the pose of the wheeled
robot with a color-based perception of the red color of the wheeled robot and
the orange color of a second ball used as marker on the wheeled robot. The
wheeled robot turns based on the communicated pose until the orientation
and distance is suitable for the humanoid robot to board onto it. The hu-
manoid robot determines the distance to the wheeled robot with a size-based
projection of the recognized orange marker. The recognition of the wheeled
robot is robust enough to account for differences in the size of the recognized
red area of the wheeled robot. The results of the simulated and real scenarios
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depicted in Figs. 7 (a) and (c) as well as (e) and (f) match reasonably well.
The simulated camera image in Figs.. 7 (b) and (f) as well as the real ones in
Figs. (d) and (h) show the recognized objects of interest (the wheeled robot
and the orange marker or the ball).

6.2 Runtime of Task Assignment

The runtime measurement for the task assignment described in Sect. 4.1 has
been tested for two different types of tasks: Three dependent tasks with 10
subtasks each and 10 independent tasks. The measurement in Table 3 has been
accomplished both for simulation on a Windows XP Laptop (1.6 GHz), which
is also used as onboard computer for the wheeled robot, and the Pocket PC
with Windows CE (512 MHz), the main onboard computer of the humanoid
robot.

Table 3
Runtime measurements for a set of dependent and independent tasks, both executed
in simulation and on the humanoid robot’s Pocket PC

dependent tasks independent tasks

Simulation ∅ 4 ms, max. 31 ms ∅ 5 ms, max. 15 ms

1 robot ∅ 13 ms, max. 25 ms ∅ 5 ms, max 11 ms

3 robots ∅ 14 ms, max. 24 ms ∅ 11 ms, max. 12 ms

6.3 Experiment of Mission Scenario

One of the several experiments performed has been documented in a video
which is available online [15]. The whole mission takes about 3min. After
both robots have entered the scene it takes about 3 s for the humanoid robot
to recognize and localize the wheeled robot. About 15 s later the robots have
prepared for the beginning of the boarding task (Fig. 8(a)) which takes about
27 s (Fig. 8(c)). After the ball has been detected the robot team follows the ball
which is moved by a human by the help of a cord attached to the ball more
than 15 m through a hallway (Fig. 8(d)). For more than 40 s the humanoid
robot navigates the wheeled robot to follow the ball. For test purposes, the
ball is then moved out of the field of view of the humanoid robot by the
human. The wheeled robot stops and the humanoid robot starts to search for
the ball by purposely moving its neck joints. After about 8 s the ball is put
back in front of the robots and moved again followed by the robot team. When
the ball comes to rest close to a yellow goal (Fig. 8(e)) the humanoid robot
dismounts from the wheeled robot, prepares for kicking and kicks the ball into
the goal (Fig. 8(f)) to complete the mission.
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(a) Communication about
robot position

(b) Autonomous boarding (c) Boarding completed

(d) Ball Following (e) Preparation for ball
kicking

(f) Kicking the ball

Fig. 8. Tasks required for mission achievement as performed in the experiment:
The humanoid robot mounts onto the wheeled robot (upper row) and navigates
the wheeled robot to follow the moving ball in a fast and reliable way and finally
completes the mission by kicking the ball into a goal after dismounting from the
wheeled robot (lower row).

7 Conclusions

A new mission scenario for a team of strongly heterogeneous, autonomous
robots, a humanoid and a wheeled robot, requiring tight cooperation has been
presented and successfully investigated. Several methodologies and technolo-
gies required to achieve the long-term goal of cooperation of truly hetero-
geneous autonomous robots have been discussed. Example solutions for task
distribution based on a utility function rating robots sense/plan/act abilities
required for task achievement, robot behavior modeling and programming us-
ing the extensible agent behavior specification language XABSL, robot mid-
dleware using the robot software framework RoboFrame and robot simulation
using the multi-robot simulator framework MuRoSimF have been presented
and applied successfully to the robots in the case study. The methods and
technologies presented in this paper are not limited to this specific scenario,
but aim at more general heterogeneous robot teams and missions.
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