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Abstract. Developing control software for teams of autonomous mobile
robots is a challenging task, which can be facilitated using frameworks
with ready to use components. But testing and debugging the resulting
system as teached in modern software engineering to be free of errors
and tolerant to sensor noise in a real world scenario is to a large extend
beyond the scope of current approaches. In this paper multilevel test-
ing strategies using the developed frameworks RoboFrame and MuRoSimF

are presented. Testing incorporating automated tests, online and offline
analysis and software-in-the-loop (SIL) tests in combination with real
robot hardware or an adequate simulation are highly facilitated by the
two frameworks. Thus the efficiency of validation of complex real world
applications is improved. In this way potential errors can be identified
early in the development process and error situations in real world op-
erations can be reduced significantly.

1 Introduction

Development of control software for teams of autonomous robots imposes many
challenges on the developer. The software is usually highly complex, containing
modules for very different tasks (like motion generation, sensor data fusion or
behavior control). To ensure operation of such systems, each module of the con-
trol software must (1) be free of errors and (2) tolerate noise and errors from
other sources. A special class of robots targeted at in this paper are ”lightweight”
robot systems characterized by inertially stabilized high motion dynamics and
limited onboard sensing and computing capabilities due to payload restrictions
like small humanoid robots, small unmanned aerial or marine vehicles.

As autonomous mobile robots are operated in environments with large uncer-
taines, the software must be tolerant to noise and disturbances. To examine the
abilities of an autonomous robot all individual modules of the control software as
well as the complete system have to be tested extensively. Testing the software
for autonomous mobile robots is a complicated challenge, which can only be met
if the developer is equipped with appropriate tools. One major problem when
testing such software is the fact, that the source of an error is often not obvious.
An error can usually be caused by one of the modules involved, or it can be
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caused by external influences like changing environmental conditions. Errors in
the control software can also be shadowed by such external influences, so that
such an error does not become obvious. E.g. if the tracking of an oject fails, the
reason may be in the vision module, a calculation error in the world model, in
the behavior control or an unexpected input like a falsely recognized new other
object in the scene. It may also be possible that an error exists in the sensor
fusion module which is misinterpreted as an effect of noisy sensor data.

In this paper several ways of ensuring the quality of robot control software
through testing are discussed. These methods include component tests of the
control software before using it, testing the software with software-in-the-loop
(SIL) simulations, monitoring the performance of the control software during
real world operations and using offline evaluation afterwards. Crucial for the
efficiency of such tests is the availability of a robot middleware with potential
capabilities for flexible monitoring and remote debugging as well as simulations
of the robots capabilities for sensing of and interacting with the physical world
on different levels of detail depending on the current SIL test.

For facilitating the testing process, the used software architecture should
therefore in general provide the following features:

– Extendable testing framework to allow implementation of new component
tests,

– modular design to test different parts of the control software independently,
– flexible and easy to use communication mechanisms to enable data exchange

with a remote computer for debugging,
– an extendable graphical user interface for visualization,
– built-in features allowing offline debugging e.g. a recording/playback tool,
– and a simulation framework allowing different layers of realism.

2 Existing Technologies

2.1 Robot Control Software

In the last decades several architectures for robot control software have emerged.
All of them try to facilitate the challenging and thus error-prone task of the
developers by providing solutions for common problems as tested and ready
to use components. Current approaches especially differ in the targeted robot
platforms and the scope, for which components are provided.

Frameworks like Microsoft Robotics Studio [1] and the CORBA [2] based
Miro [3] are focused on systems with a significant amount of computational
power, e.g. multi processor systems, and provide effective communication mech-
anisms. For ”lightweight” robot systems with only very limited onboard com-
putational power these frameworks have the disadvantage of a relatively large
overhead which further restricts computational resources available to robot con-
trol software.

Robot device interfaces try to standardize the access to sensors and actors by
providing an easy to use driver layer. CLARAty [4] for example contains reusable



components which can easily be adapted to different robot platforms but does not
support teams of robots. The Player Project [5] provides an interface to access
different hardware over a network and supports multiple programming languages
i.e. C++, Java and Python. There exists drivers for the simulation frameworks
Stage (2D) and Gazebo (3D) [6], which allows development of robot control
software without the real hardware. URBI [7] follows a similar approach, but only
supports a C++ like scripting language. These device interfaces do not perform
very well in the development of complex robot control applications for teams of
autonomous robots due to the lack of flexible communication mechanisms which
are essential for modular large scale applications.

Integrated robot control software architectures like Webots [8] or Saphira
[9] allow the development of software for robots like the Pioneer 2DX, Bioloid
(Robotis), AIBO (Sony) and Nao (Aldebaran Robotics), mainly for educational
or research purposes. They contain graphical user interfaces and a simulator and
provide components to construct own robots from commonly used sensors and
actuators. Webots also allows the development of sofware for swarms of robots
and evolutionary algorithms. Due to the focus on a specific plaform, it is not
possible to develop software for teams of heterogeneous robots.

2.2 Robot Simulations

Most existing 3D simulations rely on external packages for physics simulation.
Very often the Open Dynamics Engine (ODE) [10] is used, e.g. in Webots [8],
SimRobot [11] or Gazebo [6]. Other packages used are PhysX [12] by NVIDIA
(used in the Microsoft Robotics Studio [1]) or game engines like the Unreal
Engine [13] (used in USARSim [14]).

Depending on the current testing task, requirements on the robot simulation
vary widely. High physical accuracy may be necessary under some circumstances
(e.g. for motion optimization), but not important for other scenarios (e.g. testing
of team coordination). Also physics-based robot simulation may impact the real
time performance severly. Often there is a tradeoff between accuracy of the
simulation and size of the team.

If a simulation depends on external packages for physics simulation or other
purposes, adjusting the accuracy (and thus the real-time performance) of the
simulation is complicated. One solution to this problem is using different simu-
lations, e.g. Gazebo [6] for 3D physics simulation and Stage for 2D simulation
of large teams. As long as the simulations provide the same interface to the con-
trol software (as is given in the Player/Stage/Gazebo project), this approach is
practicable. If this precondition is not fulfilled, it becomes necessary to model
the robots and to provide suitable connections to the control software for each
simulation.

2.3 Testing Strategies

Automated tests are a widely used tool in software engineering today. In contrast
to formal verification, which is not feasible for complex systems, automated tests



check the correctness of a software component for a predefined set of samples.
Testing can only be used to detect the effects of errors, but not the reasons
for the errors. The absence of failed tests is not a proof for the correctness of
the software as long as the perfomed tests do not cover all possible inputs and
internal states.

To ensure a specified functionality automated unit-, regression-, integration-
and stress-tests [15] are used during the development process of software com-
ponents and applications. But even if there are many tools available to simplify
the process of testing, studies show their acceptance heavily depends on the time
needed to setup up and perform the tests [16]. As a consequence usefull tools
actively have to support the developers by keeping the efforts of testing to a
minimum.

2.4 Summary of Existing Technologies

Existing solutions for robot control software and 3D simulation packages aim at
supporting the developers by providing easy to use components. The process of
testing and validating the resulting system in real world applications is neverthe-
less mostly beyond the scope of the current approaches, especially for scenarios
where multiple heterogeneous robots interact with each other. The capabilities
of first approaches using logfiles and graphical user interfaces for later offline
analysis [17] are quite limited. For a more detailed analysis during runtime, the
debugging mechanisms should be tightly integrated into the whole system, easily
accessible via small interfaces and with a low processing overhead.

The previously mentioned testing strategies from software engineering are
only applicable to the low-level functionality of robot control software. It is
impossible to specify test cases which cover all possible input data which could
occur in an environment which is far from being fully predictable because of the
infinite many situations of sensing of and interaction with the physical world.
Due to potential hardware wearing, numerous automated tests with the real
robot system may not be desired. For this reason the standard strategies of
software engineering are only of limited use to test robot control software.

In situations where multiple components are developed independently, it is
also necessary to enable tests of individual components. Depending on the test
case it may also be desired to simplify the surrounding system by partly re-
placing other components using an adequate simulation matching the current
situation. This approach reduces the overall complexity of the test scenario and
thus facilitates the identification of the source of an error.

3 Developed Technologies

3.1 RoboFrame

RoboFrame [18, 19] has been developed in the authors group to meet the special
requirements of heterogeneous teams of lightweight autonomous robots. The



source code is available for non-commercial research and educational usage. It is
implemented in object oriented ANSI C++ and contains a platform abstraction
layer to support Windows 2000/XP/Vista/CE as well as various Linux and Unix
derivates and Mac OS X as underlying operating system. Due to short develop-
ment cycles of new robot hardware components and fast changing requirements
caused by complex scenarios, RoboFrame provides flexible communication mech-
anisms and easy exchangeable modules, which encapsulate algorithms for image
processing, world modeling, behavior control and motion generation. Modules
can be added to multiple threads, which can be executed at a given frequency
or if new data to process arrives.

For data exchange between the modules in one application a shared memory
can be used. The preferred way of data exchange of smaller data packages is
a message based communication, which allows transparent communication even
via network. Messages can be of arbitrary type or complex data structures to
support any kind of application specific message. To handle application specific
messages advanced serialization mechanisms are provided. Modules can request
messages from other modules without having to worry about the current process
layout. All data packages automatically get a source address to identify the
sender of a message and are timestamped.

For communication via network, both unreliable, but fast UDP and reliable
TCP is supported. Depending from the required reliability and performance, the
appropriate protocol can be selected. Usually the faster UDP is used for team
communication between the robots while TCP is used for debugging or remote
control connections.

For debugging, monitoring and remote control purposes a graphical user
interface (GUI) which allows connections to multiple robots is part of RoboFrame.
All messages within an application or additional data for debugging purpose,
which is only generated if requested, can be send to the GUI and can be visualized
in their respective context by application specific dialogs. It is also possible to
send data to an application, i.e. to reconfigure the application or a module or to
test certain modules.

The GUI also contains a dialog to record messages sent from the connected
applications. The messages can be replayed for later analysis or can be sent to
the application. This allows repetitive tests with the same data and thus enables
the investigation of changes made to the modules.

In contrast to other existing architectures RoboFrame itself does not make any
assumptions about the applications on top of it. Neither any message types nor
any modules are provided by the framework itself. Instead RoboFrame enforces
the development of components which can be reused in different applications.

3.2 MuRoSimF

The Multi-Robot-Simulation-Framework [20] enables to create simulations for
heterogeneous teams of autonomous mobile robots. A key feature of MuRoSimF
is that algorithms used for the simulation (e.g. simulation of robot motions or
sensors) can be exchanged transparently. As algorithms for the same purpose



exist on different levels of physical detail resp. computational complexity (e.g.
robot motion simulation based on kinematics or multibody system dynamics),
simulations can be tailored to be adequate to a given testing task with respect
to the level of detail and precision of simulation as well as number of robots
simulated simultaneously at real-time.

MuRoSimF provides several algorithms for simulation of biped, quadruped and
wheeled locomotion on different levels of detail. Algorithms for the simulation of
external sensors like cameras and laser scanners as well as for internal sensors like
gyroscopes, accelerometers and joint encoders are provided. All can be extended
or replaced.

3.3 Integration of Simulation and Control Software

Simulations created with MuRoSimF can be connected easily to control programs
based on RoboFrame. External software can be connected to the simulation us-
ing serial communication (virtual or real RS232 connections as well as TCP).
MuRoSimF provides so called controllers which are software modules allowing
to communicate with sensor and actuators of the simulated robots. Within the
control application modules exist which can communicate with the respective
controllers of the simulation. When connecting the control software to the simu-
lation instead of the real hardware, only these modules have to be adapted while
the core modules of the application remain the same. In case the real robot is
connected by RS232 to the control computer, the connection to the simulation
will be completely transparent, as RS232 is provided as a way of communication.

Many robot designs (e.g. [21]) incorporate special controller hardware for real
time control of a reflex layer (e.g. gait generation and control for walking robots
or motion control for wheeled vehicles). Such controllers have significant parts
of software of their own. To enable the SIL-testing of this software, it is possible
to recompile the central functions into a dynamic link library and execute these
functions within the simulation.

The simulation framework also provides the capability to extract information
from the scenario like ground truth data of the simulated objects. These informa-
tion can be used to bypass some processing components in the real application
to simplify the complexity of the application for testing purposes.

4 Multilevel Testing Strategies

In this section strategies for testing the control software for teams of autonomous
robots will be discussed. Depending on the abstraction level of the software
modules under consideration of a test, different approaches will be most useful.
The following three testing strategies might all be carried out either without
any hardware, with real robots or with simulated robots: (i) component tests, (ii)
online testing, (iii) offline testing.

Even if these testing strategies are common knowledge in modern software
engineering it may be more or less difficult to perform these tests depending on



the software architecture. The used software architecture and tools can vastly
reduce the required affords to setup different types of test scenarios. Using a
message based communication it becomes very handsome to alter the data flow
of the application and to intercept or inject messages during runtime.

In the scenario of a team of autonomous soccer playing humanoid robots
described later on some testing strategies are used as showcases. This scenario
provides many challenges, as (1) noisy off-the-shelf sensors and limited onboard
computation capacity, (2) the software involved has a high degree of complexity
and different levels of abstraction and (3) communication between the robots
is unstable. Similar challenges can be found in many other real world applica-
tions (e.g. cooperative search and rescue, exploration operations). The software
architecture for the example scenario consists of several modules like image pro-
cessing, world modeling, behavior control, motion generation and inter-robot
communication (cf. Fig. 1).

Fig. 1. Software architecture (left) for a team of autonomous soccer playing humanoid
robots (right). Modules are depicted as boxes, messages as ellipses. Inter-robot com-
munication is not stable and may be faulty.

4.1 Component Tests

In a deterministic and finite dimensional world unit tests would have a code
coverage of nearly 100%. However, this is not ture for such a complex, real world
application, since the efforts for creating unit tests for high level functionality
are highly increasing. Therefore it is only applicable to parts of the software.
In general the low level functionality which involves less source code is better
testable using component tests than complex high level functionality.



To ensure the correctness of the message passing system, serialization mech-
anisms and the shared memory subsystem of RoboFrame these parts are covered
by a set of component tests.

A prime example for unit tests in robotics are mathematical operations. Their
tests do not involve any hardware and the functions are easily testable - mostly
even in very small unit, which makes it even simpler to write the component tests.
Since algorithms based on mathematical formulars are also better testable than
other high-level functionality, some of the application specific models are also
covered by component tests, e.g. the odometry model accumulates the odometry
of the robot which is measured multiple times per second. Several internal robot
modelings, e.g. the relative ball model and the self localization, are based on
the integrated odometry model which performs the computations required by
other models for different time intervals. A set of unit tests assures its correct
functionality.

But other component tests might utilize simulated robots to assure that e.g.
inter-robot communication of their own localization is working flawlessly. But the
component test is neither implying that there is really any self localization done
nor that the robot is really walking or driving around. Therefore an adequate
simulation, which provides oracle data of exact robot poses and a simplified
odometry reduces the amount of software to be covered by testing enormously
by factoring out the influence of the not used code.

4.2 Online Testing

For several high level components unit testing is not a feasible approach. This
also applies to cases where the data to check vary in a non-trivial matter e.g.
because of noisy input data. A human can easily determine the correctness of the
computed output data, where implementing a unit test would be quite expensive
if not impossible. Therefore the application architecture must provide a rich set
of features to monitor and debug a running application. Especially in mobile
robotics the demand to work remotely is significant.

A good example to demonstrate the online testing capabilities of RoboFrame
is the self localization in the scenario of Fig. 2. The humanoid robot uses an
articulated, directed camera to determine it’s position and orientation on the
soccer field using a particle filter method. The self localization is based on a large
set of input data: on one side the odometry model feed by the internal sensors,
on the other side various objects recognized by an image processor software like
goals, poles, field lines etc. Determining the quality of self localization is not only
a test for correctness but even more a benchmark for accuracy of the localization
method.

A component test can by its definition only detect the effects of an error
but not the reason itself. For this test a different strategy must be used which
involve the judgment of a human. Due to the large amount of data the GUI
must be capable of visualizing these information in a way a human can easily
comprehend any necessary details. These testing strategy allows a human to test
a high level component based on the comprehensive visualization.



Fig. 2. Graphical user interface visualizing the detected field lines (white lines), po-
sition and orientation computed by the self localization (blue arrow) and the ground
truth information provided from a ceiling camera or simulator (black arrow).

4.3 Offline Testing

In some scenarios it is not feasible to do testing online in real time. Even the
best visualization might not be suitable when the state changes frequently. Fur-
thermore it is not possible to use a debugger during online test to track down
the reason of an error. Therefore the third testing strategy involves the logging
and replay capabilities of RoboFrame.

Any messages saved to a logfile during a former online test can later be
replayed and visualized with the same tools used for the live testing which have
been described before. This allows feeding the application with e.g. saved sensor
messages to repeatedly test the components with the same known input data.

4.4 Software in the Loop Testing

As described in Sect. 3.3 RoboFrame and MuRoSimF provide communication ca-
pabilites allowing SIL-testing of the control software. Depending on what kind
of SIL-test is to be performed, different information may be transfered from the
simulation to the control application. MuRoSimF is capable of providing adequate
simulations for a wide variety of testing-scenarios. For testing the complete soft-
ware the simulation can act as a replacement for the real robot’s sensing and
motion capabilities, processing motion requests from the control application and
providing camera images in response.

Besides the normal sensor information of the robot, the simulation can pro-
vide any information on the state of the simulation, like position of simulated
robots or ball. This ground truth data can be used in multiple ways. A simplified
structure of robot control software and simulation is shown in Fig. 3.

One possibility is to verify the performance of a robot’s self localization.
To do this a complete robot is simulated and the simulation provides further



Fig. 3. Data exchange between control application and simulation. Solid lines indicate
data similar to the data exchanged with the real robot. Dashed lines are additional
informations provided by the simulation. The simulation can be extended to teams
of robots by duplicating the robot data models and attaching the new models to the
simulation algorithms used.

information on the robots current position and orientation. This information is
compared to the output of the self localization modules of the control application.

Another possibility is testing behavior and communication for a team of
robots. In this case, the function of the image processing parts of the robots are
not investigated as their (potentially wrong) output may shadow errors in the
modules under investigation. To perform an adequate test, the simulation will
not provide simulated image data and just propagate position information to
the control software, removing sources of errors not under investigation.

When testing the low level parts of the robot control software, even less
information must be provided (and thus) simulated. If only the motions of the
robot are of interest, only motion simulation must be simulated. For evaluation
of a robot’s actions it is possible to augment the simulation of the simulation
with additional data, c.f. Fig. 4.

4.5 Selection of Adequate Testing Strategy

The choice to select one of the strategies for a specific test is always left to
the developer of the application. Each and every of the depicted types of test-
ing options have their advantages and disadvantages for a specific purpose as
summarized in Table 1.

5 Summary and Outlook

Existing approaches used in modern software engineering are only of limited use
for meeting the challenges involved in testing software for a team of autonomous



Fig. 4. Evaluation of a robot’s walking motion. The simulated robot is augmented with
the trajectories of feet and hip.

Table 1. The suitability of the test strategies for different test goals. (+) marks good,
(-) marks bad suitability, (o) marks uncertain

Ensure correct Evaluate algorithms with Track down
Test strategies computations noisy input data source of an error

Component tests + o -

Online test - + o

Offline test - + +

mobile robots operating in an uncertain environment. They must be extended
by further testing techniques. Depending on the application the developers have
to consider which testing strategy fits each part of the software best.

The software architecture RoboFrame was designed to meet the special re-
quirements stated at the end of Sect. 1. It enables multilevel testing from unit
testing over live testing of heterogeneous teams to offline testing with recorded
real world input data. Due to the message based communication mechanisms
and the dynamic runtime configuration of the framework the efforts to set up a
test environment are highly reduced compared to other approaches. The frame-
work MuRoSimF enables an adequate robot simulation for each different scenario.
The algorithms vary from complex dynamics simulation for testing the motion
generation in the loop to simple kinematics but providing ground truth data
to concentrate on high level team behavior tests. Furthermore, any of the algo-
rithms can be replaced by custom implementations to provide tailored solutions
for any requirement. The source code of RoboFrame and MuRoSimF is available at
no cost for research and educational purposes from the authors. Both developed
software frameworks actively support the developers in testing and debugging
their applications and thus improve the efficiency which speeds up the develop-
ment process and results in a higher reliability of the final application.
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