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The modeling of the time dependent, dynamic behavior of the human musculoskeletal system results in a large scale
mechanical multibody system. This consists of submodels for the skeleton, wobbling masses, muscles and tendons as
redundant actuators. Optimization models are required forthe simulation of the muscle groups involved in a motion. In
contrast to the inverse dynamics simulation the forward dynamics simulation enables to consider very general problem
statements in principle. The paper presents a new approach to the forward dynamics simulation and optimization of hu-
man body dynamics which overcomes the enormous computational cost of current approaches for solving the resulting
optimal control problems. The presented approach is based on a suitable modeling of the dynamics of the musculoskeletal
system in combination with a tailored direct collocation method for optimal control. First numerical results for a human
kick demonstrate an improvement in computational time of two orders of magnitude when compared to standard methods.

1 Introduction

The kinetic analysis of a measured human motion as well as thegeneration of an optimal goal oriented human motion
both lead to the problem of finding suitable activations of the muscles involved. This paper presents first steps of the
integrated development of new methods for efficient modularand object oriented kinetic modeling and also for simulation
and control of the human muscle-skeleton-apparatus with optimal control methods. The overall aim is to solve forward
dynamics simulation for investigation of dynamic human motions involving many muscle groups, the treatment of general
muscle models and general objective functions for the control of redundant muscle groups with a much higher efficiency
than currently possible. New methods with higher order of efficiency can pave the way for completely new types of
investigations in ergonomics, medicine and biology.

The paper is structured as follows. Section 2 states the problem and gives a brief survey of current literature. In
Section 3 dynamics algorithms for the human body are described. Section 4 introduces our new approach to solving the
forward dynamics simulation and optimization problem. First numerical results are given in Section 5. The paper concludes
with Section 6.

2 Simulation and Optimization of Dynamic Biomechanic Motions - State of the Art

2.1 Problem Statement

In biomechanical systems, redundancies occur in two different ways: First, one overall motion of legs and/or arms from an
initial to a final position generally may be performed by an infinite number of joint angle trajectories; second, as human
joints are actuated by redundant muscle groups a specific kinematic joint angle trajectory may be realized by an infinite
number of different activations of the muscles involved. The central problem statement addressed in this paper is as
follows: Find the activationsu(t) = (u1(t), ..., unm

(t))T of each of thenm muscles involved so that the resulting calcium
ion concentrationγi caused by the activationui of each musclei leads to forcesFi, i = 1, . . . , nm, which cause a motion
of all nq joints (i.e. joint angle trajectoriesq(t) = (q1(t), ..., qnq

(t))T , 0 ≤ t ≤ tf ) which
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1. is equal or as ”close” as possible to the kinematic and/or kinetic data of a human body motion measured in experiments
(inverse problem), or

2. best fulfills some motion goal like maximum jump height or width or fastest possible walking or running (forward
problem).

While in the first case only the redundancy of the muscles actuating one joint must be considered, the second case incorpo-
rates also the additional level of redundancy with respect to the overall movement. ”Close” in the first case may be measured
by an objective function, e.g. the integral over the difference of measured and calculated joint angle trajectories. The goal
achievement in the second case can be measured as well by a suitable objective function as time or energy required.

Accurate and efficient numerical investigation of the forward problem in case of the dynamic behavior of large parts of
or even the complete human body, consisting of coupled submodels for skeleton, wobbling masses, muscles and tendons
and the control mechanisms of the redundant muscle groups involved in a movement, is yet not satisfyingly solved. Kinetic
modeling of the muscle-skeleton-apparatus leads to very large systems of differential equations. Usually a large number
of controls results from the many redundant muscle groups involved. Moreover, several different hypotheses on suitable
objectives and constraints exist for determining the controls of each single muscle involved by simulation and optimization.

Therefore,forward dynamics simulationof a human motion leads to high dimensional, nonlinear optimal control prob-
lems. Current approaches even for problems with reduced models of the whole human body require computation times
of days or weeks on workstations, cf. [2]. Forward dynamics simulation based on a validated dynamics model and model
parameters has the important potential ofpredictingcertain motions. While forward dynamics simulation is state of the art
in vehicle and robot dynamics, e.g. [25, 28, 52, 53], it is still at an early stage in the area of human motion.

On the other hand,inverse dynamics simulationinvestigates given kinematic position and velocity trajectories of a
human motion (e.g. by measurement). Together with appropriate modeling approaches it allows a comparatively fast
numerical calculation of the controls of each muscle group if very restrictive assumptions on the underlying model like
special objective functions for control of the muscles involved are made. Inverse dynamics simulation for a measured
human motion gives aninterpretationof the acting forces and torques on the level of the single muscles involved.

2.2 Dynamics Modeling

Modeling of the dynamics of human motion involves mainly thefollowing three components of motion generation: (i)
skeleton and wobbling masses as a mechanical multibody system (MBS), (ii) muscles and tendons as the (redundant)
actuators of the system with inherent dynamic behavior, (iii) control concepts for the activation of the muscle groups
involved in generating the motion.

2.2.1 Multibody Dynamics Modeling of Skeleton and WobblingMasses

Several methods and programs for modeling and simulation ofthe dynamics of general multibody systems of various
structures exist which are in principle also applicable to the dynamic modeling of the human motion apparatus, for modeling
walking or grasping motion of parts of or the whole human body, e.g. ADAMS, DADS or SIMPACK [52, 53].

The assumptions underlying these general-purposemethodsdo usually not allow to exploit special structure in MBS. E.g.
a standard formulation of MBS with constraints is the descriptor form resulting in a possibly large system of differential
algebraic equations (DAEs) of index 3 [52]. By exploitationof special properties of the MBS, e.g. a smaller system of
ordinary differential equations (ODEs) may be obtained which can numerically be solved more robustly and efficiently.
Furthermore, only few general purpose tools for MBS modeling and simulation are prepared for the numerical solution of
an optimal control problem of the redundant muscle groups involved in a motion.

On the other hand, for four-legged and bipedal walking robots efficient methods for modeling of the robot dynamics have
been established in recent years. Dynamic motion behavior of walking robots is characterized by a high number of degrees
of freedom and many actuated joints and a tree structured MBSwith switching contact situations. Recursive methods
like [10, 33] are especially well suited for MBS with a large number of degrees of freedom. For tree structured MBS
with constraints and inverse kinematics models (like four-legged or bipedal walking robots) modeling of the constraints by
DAEs may be transformed using a reduced dynamics approach toa numerically more efficient and robust solvable system
of fewer ODEs [25]. It is therefore worth to investigate the extension from modeling the dynamics of humanoid robots [32]
to human body dynamics.

2.2.2 Dynamics Modeling of Muscles and Tendons

For modeling of the dynamic motion and force behavior of muscles as contracting actuators with serial and parallel
elasticities and active contractile elements a number of well investigated models have been developed. They describe
the muscle forces in relation to muscle length, muscle velocity and muscle activation as the many models based on the
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fundamental approaches of Hill and Huxley, cf. [43, 45]. Almost all models from literature assume that the muscle forces
act at a point. For non-punctual areas of force application the muscles are divided into several muscles with single points
of actuation. Several approaches exist for modeling the muscle paths as the straight line method (modeling the muscle path
to connect the points of application in a straight line), thecentroid line method (modeling the muscle path to connect the
centers of mass of the muscle cross sectional areas) or the obstacle set method (modeling the muscle path to move freely
sliding along the bones). A survey of these approaches may befound for example in [14, 45].

2.2.3 Control of Redundant Muscle Groups

Investigation of the real control mechanisms of muscles, that apply to reflexes or controlled motion by the central nervous
system, is still a wide open subject of research in neurophysiology. Up to now, only few validated approaches for mathemat-
ical models exist. In biomechanics, however, it is a widely accepted hypothesis, that the control of the redundant muscles
involved in a motion usually follows some optimality criteria. For different types of motion and different test persons
different optimality criteriaJ have been suggested, e.g. uniform distribution of the weighted forcesF = (F1, ..., Fnm

)T

needed for a certain joint motion to the muscles involved in somek-norm, wherek = 1, 2, 3, 4 or∞, see e.g. [43, 50]. The
weights are positive characteristicsN = (N1, ..., Nnm

)T of the muscle’s capability like cross sectional areas or maximum
muscle strength. Fork = ∞ minimization is performed with respect to the maximum load of the muscles:

J =

nm
∑

i=1

(

Fi

Ni

)k

= ‖F ./N‖
k
k , k ∈ {1, 2, 3, 4} resp. J =

∥

∥

∥

∥

Fi

Ni

∥

∥

∥

∥

∞

= max
i

(F ./N). (1)

Here,F ./N denotes the elementwise quotient like in MATLAB notation. Another approach is to minimize the energy
consumed by all muscles, consisting of resting heat, activation heat, maintenance heat, shortening heat, and the mechanical
work performed [66].

2.3 Simulation of Dynamic Motion

Simulation of time-dependent behavior of a human motion that is modeled according to the previously mentioned details
not only means the numerical integration of an ODE or DAE system of large size, but also the solution of a static or dynamic
optimization problem for the controls of the redundant muscle groups involved. If a sequence of static frames (snapshots)
of a motion is considered, this results in a sequence of static optimization problems. Their solution however is only forvery
slow motions an acceptable approximation to the solution ofthe dynamic optimization (i.e. optimal control) problem over
the continuous time span of the whole motion, see, e.g. [4, 23].

2.3.1 Inverse Dynamics Approach

Inverse dynamics simulation for a given, usually measured,motion obtains the activations for the muscle groups involved
under the assumption of certain criteria for solving the redundancy problem. Thus, practically only given motions can be
analyzed; predictions of motions that are goal-oriented asoptimal reaching of a certain position, jumping as high or far as
possible, running as fast or energy-efficient as possible etc. can not or can only very limitedly be obtained, e.g. [8].

Approaches to extend inverse dynamics simulation to the optimization of human motion are based on very special
assumptions (like min/max criteria) to the optimality criterion for solving the redundancy problems of the muscles anduse a
low dimensional parameterization of the free parameter space for being able to numerically solve the resulting optimization
problem efficiently, see. e.g. [49, 50]. For slow motions dynamic properties of the wobbling masses do not effect the
quality of the solution, and only for slow motions special min/max criteria for solving the redundancy problems of the
human motion apparatus on the level of muscles and tendons are justified. Distribution of the total forces that act at one
joint and of the torques to the muscles then is done accordingto different parameters of the muscles. But if faster motions
shall be investigated, other optimality criteria must be used.

From a biomechanical point of view it is desired not only to investigate fast motion but also to use and evaluate different
optimality criteria. Up to now there are no methods to solve these problems with inverse dynamics simulation satisfyingly.
First approaches to the efficient treatment of loops that occur due to parallel muscles, may be found in [39]. Inverse
dynamics there also is not solved for general optimality criteria. In an approach of two stages first the joint torques and
then the muscle forces are calculated.

2.3.2 Forward Dynamics Approach

With forward dynamics simulation, on the other hand, both analysis of given motion and calculation and optimization of
free motion are possible in principle. Starting from the muscle activations (which are to be determined) forward dynamics
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simulation calculates the resulting motion. Analysis of motion of parts of or even the whole human body is possible with
it and leads to a high dimensional nonlinear optimal controlproblem. Advantageous with the analysis of human motion
by forward dynamics simulation and optimization is the fact, that differences of measured and calculated motion may be
included in the optimality criterion by an additional term consisting, e.g. of the integral of the square of the deviation.
Thus, measurement errors may be compensated for, while withinverse dynamics simulation small measurement errors in
the given kinematic trajectories may lead to large errors inthe calculated muscle forces.

Numerical optimization using forward dynamics simulationcurrently most often is treated by application of methods of
transforming the optimal control problem by parameterization of the controls (direct shooting) [64] to a finite-dimensional,
constrained, nonlinear optimization problem, which is solved by methods of sequential quadratic programming (SQP)
type. These approaches are usually not tailored to the problem structure. For the numerical calculation of gradients ofthe
objective function and constraints with respect to the optimization parameters of the control parameterization the sensitivity
matrix of the solution of the (ODE or DAE) state differentialequations with respect to the optimization parameters has to be
calculated [36]. For human motion dynamics this is often done by external numerical differentiation (END) with difference
approximation [40, 46, 59]. END is not only computationallyvery expensive because the differential equations have to be
integrated at least as often as the number of grid points in a piecewise polynomial discretization of the controls and, thus,
leads to extremely high computation times for motions with alarge number of muscle groups. But also additional errors
caused by uncoordinated variable step size integration maycancel many if not all valid digits of the gradient approximation.
Therefore, so-called internal numerical differentiation(IND) methods are preferable [36] which efficiently and reasonably
accurate compute the sensitivity matrix with an extended numerical integration method and using the ODE Jacobian as
additional input.

For example the calculation times for vertical jumping motions of a planar leg model with 9 muscle groups [9, 58] on
a workstation have been reported to be within days [56]. For aspatial model of the whole human body with 54 muscle
groups even computation times on workstations in the regionof months have been reported [2]. In [5] computation times
using a normal computer are compared with those using MIMD parallel and vector parallel computers. The method from
[46] is applied to a 14 dof model with 46 muscle tendon groups.Computation times range from one to three months on a
normal computer (SGI Iris 4D25), 77 h on a vector parallel computer and 88 h on a MIMD parallel computer.

2.4 Application Scenarios Investigated

Due to the high computational effort for treating the whole human body, currently only parts of the human body and its
interaction with the world are considered, e.g. [2, 18, 26, 41, 42, 68]. In [6, 17, 34, 40] cycling motion is investigated,in
[17] to find an optimal cycling machine. In [34] to solve the optimal control problem, the differential equations are not,
like commonly done, treated by direct shooting but with a direct collocation approach. A model of a single leg is used for
handling a vertical jumping motion in [58]. In [3] a walking motion is optimized. Here, a three dimensional model with 10
segments, 23 dof (including a 6 dof free floating base) and 54 muscle-tendon-units is used. In [22] approaches for foot and
muscle modeling for generating stable walking motion have been investigated. Skeletal dynamics, muscle paths, muscle
tendon actuators and the relationship between muscle activation and muscle contraction have been examined in [45]. An
extended approach to muscle path modeling may be found in [13]. From data of the ”Visible Human Male” project [1] and
in vivo measurements a dynamical model has been established[14] whose kinematic structure was published in [12]. The
necessity of taking into account the special properties of wobbling masses was stated in [21, 37]. Approaches to coupling
of wobbling masses to the rigid body model of the skeleton maybe found in [20, 37, 54]. Properties of 26 muscle groups
of shoulder, elbow, and hand joint are presented in [15]. In [47] a three dimensional model of the knee may be found.
Geometric data was gained from dead bodies. The contact areas of thigh and tibia are modeled to be deformable, those
between thigh and patella to be rigid. 12 elastic elements describe ligaments and capsules; in total 13 muscle-tendon-units
are modeled. An optimization is performed not for a completemotion, but for single points of time. Investigation of control
concepts, which are supposed to be applied in bipedal walking in nature, have been made in [29].

3 Dynamics Algorithms for the Human Body

3.1 Recursive Multibody Systems Dynamics Algorithm ABA

General multibody system dynamics is modeled by the well known differential equations

M(q)q̈ = τ − C (q, q̇) − G (q) + Jc(q)T fc, (2)

whereq are the joint angles,τ are the total torques,M is the mass matrix,C are the Coriolis and centrifugal forces,G
the gravitational forces, andJT

c fc the contact forces. For solving these equations, theO(N) Articulated Body Algorithm
(ABA) [10, 51] has been shown to be an accurate and numerically stable algorithm superior to the Composite Rigid Body
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Algorithm (CRBA) [28, 38] as it introduces less cancellations of terms [44]. It exploits the linear relationship between
accelerations in a rigid-body system and the applied forces; in particular, the definition of the articulated body inertia,
the inertia of the ‘floppy’ outboard chain of rigid bodies notsubject to applied forces, has permitted the construction of a
recursive algorithm for the forward dynamics [10]. The similarities to the Kalman filtering and smoothing algorithms led
to an alternative decomposition of the mass-inertia matrix, which in turn led to anO(N) closed-form expression for the
inverse mass matrix [51] (see also [25] for details):

M = HTφTMφH (Newton-Euler Factorization)
M = [I +KφH ]TD[I +KφH ] (Innovations Factorization)

M−1 = [I −KψH ]D−1[I −KψH ]T .
(3)

From the above operator formulation, new operator identities may be established which result in the alternative innovations
factorization [24, 51]. An object-oriented C++ toolbox also based on these algorithms is described in [31, 32], where also
first extensions to sensitivity calculations are described.

3.2 Muscle Modeling

Each muscle exhibits some characteristic behavior due to its internal structure. We state the resulting relations and brief
explanations of them. The models are widely used and based onthe Hill type phenomenological model [43]. A survey of
all relations may be found in [55]; the structure itself shall not be discussed here. The following relations hold for each
musclei, i = 1, . . . , nm. The indexi is omitted for the sake of brevity in the formulae of the following subsections. The
values of all parameters and details on the right hand sides of the formulae are given in Section 5.

3.2.1 Force-Velocity Relation

The active force a muscle may exert depends on its velocityvM [62, 65, 11, 35]. It is equal to the muscle maximum
isometric force at zero velocity and equal to zero at the maximum contraction velocity. The active force is higher than
the maximum isometric force if the muscle has excentric velocity. The overall relation not only depends on the maximum
velocityvM

max but also on parametersc3, c4 that indicate how fast the force converges to zero with contractive velocity resp.
how fast the force converges to the maximum force with excentric velocity. For fast musclesc3 ∈ [0.25, 1], while for slow
muscles,c3 ∈ [0.1, 0.25]. c4 is given byc4 = −0.33

2
c3

1+c3
. The overall force-velocity relation is given by:

fFV

(

vM
)

=



























1− vM

vM
max

1+ vM

vM
maxc3

, vM ≤ 0

1−1.33 vM

vM
maxc4

1− vM

vM
maxc4

, vM > 0.

, i = 1, . . . , nm. (4)

Figure 1 shows two examples of the force-velocity relation for a fast and a slow muscle.

3.2.2 Tension-Length Relation

Muscle forces result from biochemical structures that gripinto each other and thereby cause the movement respective force.
The more overlapping structures exist, the higher are the forces that may be established. If the muscle is expanded, less
overlapping area and thus less force exists. If the muscle onthe other hand is shortened, the structures obstruct each other
and also less force may be exerted. This property is modeled by the following equations, wherelM is the length of the
muscle,lM0 its rest length,c1 andc2 are parameters for the effect of decrease of forces when expanding resp. shortening
the muscle [16, 48]. Figure 2 gives an example of the relation.

fTL

(

lM
)

=















e
−

1

c1
(1− lM

1.1lM
0

)3

, lM ≤ 1.1lM0

e
−

1

c2
( lM

1.1lM
0

−1)3

, lM > 1.1lM0

(5)

3.2.3 Activation Dynamics

Muscles may not exert force instantaneously [27]. Muscle excitationu leads to an increased calcium ion concentrationγ
in the muscle which finally results in force exertion. This property is modeled with suitable parametersb1, b2, b3 by:

γ̇ = b2(b3u− γ) (6)
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Fig. 1 Force-velocity relation for a slow muscle (c3 =
0.1, c4 = 0.02; left) and for a fast muscle (c3 = 1.0, c4 = 0.1;
right).

Fig. 2 Tension-length relation
for example parameter values
(c1 = 0.017, c2 = 0.015)

Fig. 3 Muscle activation dy-
namics (solid line isu, dotted
line isγ, dashed line isfAD)

How the calcium ion concentration relates to the force exerted is given by the following equation:

fAD (γ(u)) =
(b1γ(u))

3

1 + (b1γ(u))3
(7)

The overall muscle activation dynamics (u, γ, fAD) is shown in Figure 3.

3.2.4 Muscle Path

The muscle lengths and velocities needed for the relations above may be expressed by joint angles and angular velocities

lM = l(q1, q2, ...), vM = v(q1, q2, ..., q̇1, q̇2, ...). (8)

To calculate the torques that result from the linear muscle forces, the muscle paths, i.e. the points and directions of appli-
cation (or the resulting lever directly), have to be modeled. The resulting lever depends on the joint angles only (the first
index i indicates the number of the muscle or muscle group, the second indexj the number of the joint, the muscle has
effects on; not all combinations ofi, j are needed):

di,j = di,j(q1, q2, ...), i = 1, . . . , nm, j = 1, . . . , nq. (9)

3.2.5 Elastic and Damping Elements

Serial elastic and parallel damping elements are describedby:

FPEE(lM ) = k1(e
k2(lM−k3) − 1) + k4(e

k5∗(l
M

−k6) − 1) andFDE(vM ) = k0v
M . (10)

3.2.6 Total Muscle Force

With the factors given in the previous section and forces generated by parallel elastic elements and damping elements, the
total muscle force may be stated as:

F (γ, lM , vM ) = F iso
maxfAD(γ)fTL(lM )fFV (vM ) + FPEE(lM ) + FDE(vM ). (11)

3.2.7 Resulting Active Torques

The torque in jointj that results from the applied muscle forces is (with appropriate index setsIj that indicate which
muscles have effect on jointj):

τj,a =
∑

i∈Ij

di,jFi(γi, l
M
i , vM

i ), j = 1, . . . , nq. (12)

3.2.8 Passive Torques

In addition to the active torques, passive torques that depend onlM ,vM ,γ (bold letters indicate the vector of all occurring
lengths, velocities, calcium ion concentrations), and thejoint angles have to be considered [30, 67]. These model passive
effects of tendons, ligament and the connective tissue (especially at the boundaries of the feasible joint angle intervals)

τj,p = τj,p(l
M ,vM ,γ, q). (13)

The total torque applied to jointj is τj = τj,a + τj,p. It should be noted that for robotic systemsu usually describes the
torques in the actuated joints which are equal to the controlin the optimal control problem if no detailed motor model is
used. For biomechanic systemsu denotes the controls (i.e. the muscle activations) andτ = (τ1, τ2, ...) are the torques for
the dynamics calculations.
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4 A New Approach to Efficient Forward Dynamics Simulation andOptimization

To improve the computational cost of forward dynamics simulation by two orders of magnitude we suggest a new approach
based on a combination of tailored MBS dynamics modeling andnumerical optimal control methods.

4.1 Formulation of the Forward Dynamics Optimization Problem

In the biomechanics forward dynamics optimization problem, the muscle activationsu = (u1, ..., unm
)T are to be deter-

mined so that for goal oriented motion the objective functionJ is minimized (e.g.J = tf for minimum time), whereas for
analysis of measured motionqm(t), 0 ≤ t ≤ tf , the objective function usually is chosen to beJ =

∫ tf

0 (q(t)−qm(t))2dt.
One summand for distributing load to the muscles involved, cf. Subsection 2.2.3, may be introduced as well.

The biomechanical multibody system is constrained to behave according to the MBS differential equation (2). The total
torqueτ consists of passive and active torques, cf. Subections 3.2.8 and 3.2.7. In addition to the MBS ODEs which are
computed using a recursive ABA method (cf. Section 3.1), thedifferential equations for activation dynamics (cf. Subsection
3.2.3) must be included in the problem formulation. Boundary constraints, e.g. for initial or final position, and nonlinear
state and control constraints, e.g. for geometric constraints, depend on the motion to be computed.

4.2 General Optimal Control Problem

The differential equations of motion of second order are transformed into a set of double size of differential equationsof
first order. The vectorx of state variables then isx = (q1, ..., qnq

, q̇1, ..., q̇nq
, γ1, ..., γnm

)T , whereqi, q̇i are the joint angles
and velocities of jointi, γj are the ca2+ ion concentration in musclej, nq is the number of joints andnm is the number of
muscles or muscle groups. The vectoru of controls isu = (u1, ..., unm

)T , whereuj is the activation of muscle (group)j.
Thus, the biomechanics optimal control problem may be stated in the following form of a general constrained optimal

control problem for state differential equations of first order:

minu J = minu(ϕ(x(tf ),x, tf ) +
∫ tf

0
L(x(t),u(t),p, t)dt) Minimize the objective functionJ consisting

of Mayer (scalar) and Lagrange (integral) term
subject to
ẋ(t) = f (x(t),u(t),p, t) system of ordinary differential equations
r(x(0),x(tf ),p, tf ) = 0 boundary constraints
gi(x(t),u(t),p, t) ≥ 0, i = 1, ..., ng, 0 ≤ t ≤ tf nonlinear state and control constraints

wherex = (x1, ..., xnx
)T are the states,u = (u1, ..., un)T are the controls andp are constant (but to be optimized)

parameters.

4.3 Direct Collocation Method

There are many different approaches for solving optimal control problems. Here, we consider the computation of optimal
trajectoriesx∗, u∗ subject to a large and highly nonlinear dynamical system. For this class of problems, so-called direct
(transcription) methods have been developed in recent years showing remarkable performance [7, 64]. Instead of using one
of the direct shooting approaches mentioned in Section 2.3.2 which require feasibility with respect to the ODE constraints
in each iteration of the optimization method a simultaneousapproach for solving the ODE integration and optimization
problems inherent in the optimal control problem is selected. In direct collocation the implicit integration for a sequence
of steps from initial to final time is included as a set of explicit nonlinear equality constraints in the optimization problem.
Without the restriction to feasibility to the ODE constraints in each iteration as in direct shooting only the final solution of
direct collocation iteration must satisfy them. Without the restriction of feasible iterates and with much easier computable
gradients the solution may be obtained much faster.

The direct collocation method DIRCOL [63] is based on the discretization of both the states and the controls, i.e.x(t)
andu(t) are approximated bỹx(t) andũ(t) on a grid0 = t1 < t1 < ... < tnt

= tf :

x̃(t) =
∑

l

αlx̂l(t), x̃ ∈ S4
∆ (cubic), ũ(t) =

∑

j

βjûj(t), ũ ∈ S2
∆ (linear),

wherex̂l, ûj are basis functions (e.g. monomials or Hermite basis functions).αl, βj are the coefficients of the piecewise
polynomial approximation of the states resp. controls and become the variables in the resulting nonlinear constrained
optimization problem (NLP). Thus, the resulting large-scale NLP becomes:

y = (α1, α2, ..., β1, β2, ..., tnt
)T , min

y
φ(y) s.t.a(y) = 0, b(y) ≥ 0,

where the equality and inequality constraintsa andb are the following:
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˙̃x(t⋄) − f(x̃(t⋄), ũ(t⋄), t⋄) = 0, t⋄ = tk, tk+1/2, tk+1 collocation constraints at the grid points
and the midpoints of all intervals[ti, ti+1]

r( ˙̃x(t1), ˙̃x(tnt
,p, tnt

)) = 0 boundary values
gi(x̃(tk), ũ(tk),p, tk) ≥ 0, i = 1, ..., ng, k = 1, ..., nt inequality constraints.

By solving the NLP, the differential equations of motion aresolved simultaneously with the optimization problem. This
leads to a considerable improvement of efficiency compared to standard methods if all structure and sparsity in the NLP
is utilized using a sparse sequential quadratic programming method of [19]. The time grid is refined based on local error
estimates resulting in a sequence of NLPs with increasing dimensions which are solved successively.

5 Numerical Results: Kicking Motion

A time optimal kicking movement has been investigated [60, 61]. Kinematic and kinetic data of the musculoskeletal system
as well as muscle model parameters and measured reference data have been taken from Spägele [55, 58]. The model (cf.
Figure 6) consists of two joints, two rigid links and five muscle groups. The problem is formulated as an optimal control
problem with 9 states (hip angleq1, knee angleq2, the corresponding joint velocities and 5 calcium ion concentrations) and
5 controls (activations of the muscles). The kicking movement was optimized to be time optimal, i.e. the objective function
is J = tf . The muscle lengths (cf. Equation 8, subscript here denotesthe number of the muscle) are calculated according
to [55]

lM1 = 0.287 − 0.0497q1
lM2 = 0.300 + 0.0330q2
lM3 = 0.517 + 0.045 cos(1.128q1 + 0.748) + 0.033q2
lM4 = 0.483 − 0.062 cos(1.047q1 + 0.838) + 0.07 cos(1.076q2 + 0.28)
lM5 = 0.088 + 0.019 cos(1.16q2 + 0.464) .

(14)

The velocities are the time derivatives of the lengths,vM
i = l̇Mi , i = 1, . . . , 5. The resulting lever arms (Equation 9) are

also taken from [55]:

d1,q1
= 0.024 + 0.0188q1

d2,q2
= 0.036 + 0.03e−4.33(0.17−q2)

2

d3,q1
= 0.052 cos(q1 − 0.63)− 0.002

d4,q1
= 0.037 cos(1.309q1 − 0.916) + 0.026

d4,q2
= 0.058(q2 + 0.685)2e−1.187q2

d5,q2
= 0.055 .

(15)

The passive moments (Equation 13) are stated in [55] to be:

τ1,p = 0.8e−3.41q1 + 0.084e−15q1 − 0.753e2.55q1 − (7.9e−2.72q1 + 0.09e1.8q1)q̇1
τ2,p = 1.25 · 10−7e8.5q2 − 6.3e−2.9q2 − 20.1e−16.1q2 + 2.1 − (0.3e1.02q2 + 1.85e−3.43q2)q̇2 .

(16)

The multibody system parameters (mass, inertia w.r.t. point of rotation, center of mass, length) for the thigh and shankare

m1 = 8.692, I1 = 0.480, z1 = 0.189, l1 = 0.447, m2 = 15.492, I2 = 4.700, z2 = 0.501, l2 = 0.538. (17)

All other parameters may be found in Figure 5. The boundary conditions were set to

q1(t0) = 0.1, q2(t0) = 0.15, q̇1(t0) = q̇2(t0) = 0, γ1(t0) = ... = γt(t0) = 0 (18)

q1(tf ) = 0.8, q2(tf ) = −0.05, q̇2(tf ) = 0. (19)

Box constraints are imposed on the states and controls

0 ≤ q1 ≤ 1.5, −0.05 ≤ q2 ≤ 1.5, 0 ≤ ui, γi ≤ 1, i = 1, . . . , 5. (20)

An overview of the data flow in the kicking model may be found inFigure 4.
Compared to the measured movements (and the results of [55, 58], which match the measured data very well), our results

show a shorter time and higher maximum angles (cf. Figure 8).The reason for this is, that in [55] the maximum muscle
forces were modified to match the optimized time of the measurement. Obviously our optimal movement is another local
minimum. Nevertheless, the controls (Figure 9) show the same characteristics. Computing time and size of the resulting
NLP are shown in Figure 7. The direct shooting approach used in [55, 58] for 11 grid points required hours to compute the
solution [57]. Comparing the computing time with our approach (Figure 7) and considering how computational speed has
progressed since 1996, we still obtain a speed up of two orders of magnitude.
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Fig. 4 Schematic summary of the method.

parameter muscle 1 muscle 2 muscle 3 muscle 4 muscle 5
b1 7.23 7.23 7.23 7.23 7.23
b2 7.46 7.61 8.37 7.46 7.61
b3 1.0 1.0 1.0 1.0 1.0
k0[N ] 0.0 0.0 257.1 378.0 0.0
k1[N ] 0.0 0.0 5.393 64.7 0.0
k2[m

−1] 0.0 0.0 90.4 23.95 0.0
k3[m] 0.0 0.0 0.58 0.48 0.0
k4[N ] 0.0 0.0 0.0 0.0068 0.0
k5[m

−1] 0.0 0.0 0.0 239.8 0.0
k6[m] 0.0 0.0 0.0 0.53 0.0
c1 0.017 0.017 0.017 0.017 0.017
c2 0.015 0.015 0.015 0.015 0.015
lM
0

[m] 0.258 0.309 0.500 0.486 0.085
c3 0.50 0.33 0.33 0.50 0.50
c4 0.09 0.02 0.08 0.10 0.03
vM

max[m/s] -1.6 -0.5 -2.0 -1.8 -0.5
F iso

max
[N ] 4800.0 5300.0 1200.0 1500.0 700.0

Fig. 5 Parameters for Equations (4), (5), (6), (7), (10) of the kick-
ing model (taken from [55]).

1. Ilio Psoas group
2. Vastus group
3. Rectus Femoris
4. Hamstring group
5. Gastrocnemius group
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4

5
q2

q1

1

3

2

4

5
q2q2

q1q1

Fig. 6 Kinematic structure of the leg with 5 muscle groups.

grid points 10 60
nonlinear constraints 81 829
nonlinear variables 129 531
computing time 1.2 s 6.3 s

Fig. 7 Size of the resulting NLP and computation time on a 1700
MHZ+ Athlon XP for two different numbers of grid points in the
discretization.

Fig. 8 Measured (dashed line) and optimized (solid line) joint
angle trajectory of hip (left) and knee (right).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

ac
tiv

at
io

n;
 c

a 
io

n 
co

nc
en

tr
at

io
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

ac
tiv

at
io

n;
 c

a 
io

n 
co

nc
en

tr
at

io
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

ac
tiv

at
io

n;
 c

a 
io

n 
co

nc
en

tr
at

io
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

ac
tiv

at
io

n;
 c

a 
io

n 
co

nc
en

tr
at

io
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

ac
tiv

at
io

n;
 c

a 
io

n 
co

nc
en

tr
at

io
n

Fig. 9 Results from optimization: Controls (corresponding to EMG, solid line) and calcium ions concentrations (dashed line).

6 Conclusions and Outlook

First steps towards a new approach to solving forward dynamics simulation and optimization of human body dynamics very
efficiently have been presented. It is based on an efficient, recursive modeling of human motion dynamics and a tailored
numerical optimal control method. First numerical resultsshow an improvement in computational cost of two orders of
magnitude.

However, many issues are still open and need to be addressed:The problem of whole human body dynamics motions
with multiple contacts, like it occurs for javelin throw or gymnastics, needs further development: contact models mustbe
investigated and brought to a form applicable to the presented approach. Another important issue in human body dynamics
simulation is data collection. For the example kicking motion, the data has been taken from literature. One difficult issue
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is that not only motion data (joint angles and velocities andcontact forces) from one person’s motion are needed but also
the kinetic, anthropometric data (MBS data, muscle data) ofthe same person.

Ongoing research includes the investigation of several other examples of human motion, the incorporation of other
objective functions, wobbling masses, a refined foot model,investigations on the fatigue of muscles, the extension of the
human body dynamics modeling algorithms to the computationof Jacobians and a further improved adaption of the optimal
control method to utilize the special structure of first and second order differential equations of motion. In cooperation with
the Institute of Ergonomics of the Technische UniversitätDarmstadt, measurement data of human motion is being collected
for these investigations.

Acknowledgements The research presented in this paper was supported by the German Research Foundation DFG under grant STR
533/3-1. The authors thank Dr. Thomas Spägele for making many data available to them.
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[9] P. Eberhard, T. Spägele, and A. Gollhofer. Investigations for the dynamical analysis of human motions.Multibody System Dynamics,

3:1–20, 1999.
[10] R. Featherstone.Robot Dynamics Algorithms. Kluwer Academic Publishers, 1987.
[11] Y. C. Fung.Biomechanics. Springer-Verlag, New York, 1981.
[12] B. A. Garner and M. G. Pandy. A kinematic model of the uppelimb based on the visiblie human project (vhp) image dataset.

Computer Methods in Biomechnics and Biomedical Engineering, 2:107–124, 1999.
[13] B. A. Garner and M. G. Pandy. The obstacle-set method forrepresenting muscle paths in musculoskeletal models.Computer

Methods in Biomechanics and Biomedical Engineering, 3:1–30, 2000.
[14] B. A. Garner and M. G. Pandy. Musculoskeletal model of the upper limb based on the visible human male dataset.Computer

Methods in Biomechanics and Biomedical Engineering, 4:93–126, 2001.
[15] B. A. Garner and M. G. Pandy. Estimation of musculotendon properties in the human upper lim.Annals of Biomedical Engineering,

31:207–220, 2003.
[16] H. S. Gasser and A. V. Hill. The dynamics of muscular contraction. Proceedings of the Royal Society of London, 96 B:398–437,

1924.
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