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The modeling of the time dependent, dynamic behavior of th@dn musculoskeletal system results in a large scale
mechanical multibody system. This consists of submodelshfe skeleton, wobbling masses, muscles and tendons as
redundant actuators. Optimization models are requirethisimulation of the muscle groups involved in a motion. In
contrast to the inverse dynamics simulation the forwardadyies simulation enables to consider very general problem
statements in principle. The paper presents a new approatle forward dynamics simulation and optimization of hu-
man body dynamics which overcomes the enormous compughtimst of current approaches for solving the resulting
optimal control problems. The presented approach is basedsaitable modeling of the dynamics of the musculoskeletal
system in combination with a tailored direct collocationthwal for optimal control. First numerical results for a huma
kick demonstrate an improvement in computational time af onders of magnitude when compared to standard methods.

1 Introduction

The kinetic analysis of a measured human motion as well agéheration of an optimal goal oriented human motion
both lead to the problem of finding suitable activations @& thuscles involved. This paper presents first steps of the
integrated development of new methods for efficient modarar object oriented kinetic modeling and also for simutatio
and control of the human muscle-skeleton-apparatus witimap control methods. The overall aim is to solve forward
dynamics simulation for investigation of dynamic human ims involving many muscle groups, the treatment of general
muscle models and general objective functions for the obofrredundant muscle groups with a much higher efficiency
than currently possible. New methods with higher order @itiehcy can pave the way for completely new types of
investigations in ergonomics, medicine and biology.

The paper is structured as follows. Section 2 states thelgmrolnd gives a brief survey of current literature. In
Section 3 dynamics algorithms for the human body are desttriBection 4 introduces our new approach to solving the
forward dynamics simulation and optimization problemsHiumerical results are given in Section 5. The paper cdeslu
with Section 6.

2 Simulation and Optimization of Dynamic Biomechanic Motians - State of the Art

2.1 Problem Statement

In biomechanical systems, redundancies occur in two diffewvays: First, one overall motion of legs and/or arms from a
initial to a final position generally may be performed by afinite number of joint angle trajectories; second, as human
joints are actuated by redundant muscle groups a specifiaridtic joint angle trajectory may be realized by an infinite
number of different activations of the muscles involved.eTdentral problem statement addressed in this paper is as
follows: Find the activations(t) = (u1 (), ..., un,, (t))T of each of thes,,, muscles involved so that the resulting calcium
ion concentrationy; caused by the activation, of each musclé leads to forced’;, i = 1,...,n,,, which cause a motion

of all n, joints (i.e. joint angle trajectorieg(t) = (¢1(t), ..., qn, (t))", 0 < t < ty) which
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1. isequal or as "close” as possible to the kinematic andfmtic data of a human body motion measured in experiments
(inverse problem), or

2. best fulfills some motion goal like maximum jump height adth or fastest possible walking or running (forward
problem).

While in the first case only the redundancy of the musclesagicty one joint must be considered, the second case incorpo-
rates also the additional level of redundancy with respettie overall movement. "Close” in the first case may be mesksur
by an objective function, e.g. the integral over the differe of measured and calculated joint angle trajectories.gtal
achievement in the second case can be measured as well ligl@esobjective function as time or energy required.

Accurate and efficient numerical investigation of the fordvaroblem in case of the dynamic behavior of large parts of
or even the complete human body, consisting of coupled sdbtador skeleton, wobbling masses, muscles and tendons
and the control mechanisms of the redundant muscle grouplyéd in a movement, is yet not satisfyingly solved. Kineti
modeling of the muscle-skeleton-apparatus leads to vege laystems of differential equations. Usually a large netrmb
of controls results from the many redundant muscle growpsved. Moreover, several different hypotheses on sugtabl
objectives and constraints exist for determining the adswf each single muscle involved by simulation and optation.

Therefore forward dynamics simulatioof a human motion leads to high dimensional, nonlinear ogittontrol prob-
lems. Current approaches even for problems with reducecelmad the whole human body require computation times
of days or weeks on workstations, cf. [2]. Forward dynamigsigation based on a validated dynamics model and model
parameters has the important potentigbafdictingcertain motions. While forward dynamics simulation isstat the art
in vehicle and robot dynamics, e.g. [25, 28, 52, 53], it il atian early stage in the area of human motion.

On the other handnverse dynamics simulatioinvestigates given kinematic position and velocity trgjeies of a
human motion (e.g. by measurement). Together with appmtgpmodeling approaches it allows a comparatively fast
numerical calculation of the controls of each muscle grdugery restrictive assumptions on the underlying model like
special objective functions for control of the muscles imed are made. Inverse dynamics simulation for a measured
human motion gives aimterpretationof the acting forces and torques on the level of the singlecteasnvolved.

2.2 Dynamics Modeling

Modeling of the dynamics of human motion involves mainly thbowing three components of motion generation: (i)
skeleton and wobbling masses as a mechanical multibodgrmy§¥1BS), (ii) muscles and tendons as the (redundant)
actuators of the system with inherent dynamic behavia), ¢ontrol concepts for the activation of the muscle groups
involved in generating the motion.

2.2.1 Multibody Dynamics Modeling of Skeleton and WobblingMasses

Several methods and programs for modeling and simulaticthefdynamics of general multibody systems of various
structures exist which are in principle also applicablddynamic modeling of the human motion apparatus, for nioglel
walking or grasping motion of parts of or the whole human hedyg. ADAMS, DADS or SIMPACK [52, 53].

The assumptions underlying these general-purpose metloaggially not allow to exploit special structure in MBS. E.g
a standard formulation of MBS with constraints is the degxtoriform resulting in a possibly large system of differahti
algebraic equations (DAESs) of index 3 [52]. By exploitatioinspecial properties of the MBS, e.g. a smaller system of
ordinary differential equations (ODES) may be obtainedoliéan numerically be solved more robustly and efficiently.
Furthermore, only few general purpose tools for MBS modgdind simulation are prepared for the numerical solution of
an optimal control problem of the redundant muscle groupshited in a motion.

On the other hand, for four-legged and bipedal walking rekedficient methods for modeling of the robot dynamics have
been established in recent years. Dynamic motion behafiealking robots is characterized by a high number of degrees
of freedom and many actuated joints and a tree structured MBSswitching contact situations. Recursive methods
like [10, 33] are especially well suited for MBS with a largember of degrees of freedom. For tree structured MBS
with constraints and inverse kinematics models (like fiegged or bipedal walking robots) modeling of the constsalny
DAEs may be transformed using a reduced dynamics approachumerically more efficient and robust solvable system
of fewer ODEs [25]. It is therefore worth to investigate thxemsion from modeling the dynamics of humanoid robots [32]
to human body dynamics.

2.2.2 Dynamics Modeling of Muscles and Tendons

For modeling of the dynamic motion and force behavior of nesa@s contracting actuators with serial and parallel
elasticities and active contractile elements a number df weestigated models have been developed. They describe
the muscle forces in relation to muscle length, muscle ¥gl@nd muscle activation as the many models based on the
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fundamental approaches of Hill and Huxley, cf. [43, 45]. Ahall models from literature assume that the muscle forces
act at a point. For non-punctual areas of force applicatiemiuscles are divided into several muscles with singletpoin
of actuation. Several approaches exist for modeling thechaymaths as the straight line method (modeling the muscle pa
to connect the points of application in a straight line), ¢keatroid line method (modeling the muscle path to connext th
centers of mass of the muscle cross sectional areas) or it@ctdbset method (modeling the muscle path to move freely
sliding along the bones). A survey of these approaches méyumel for example in [14, 45].

2.2.3 Control of Redundant Muscle Groups

Investigation of the real control mechanisms of muscles, @ipply to reflexes or controlled motion by the central nasvo
system, is still a wide open subject of research in neuraplygy. Up to now, only few validated approaches for mathema
ical models exist. In biomechanics, however, it is a widelgepted hypothesis, that the control of the redundant resiscl
involved in a motion usually follows some optimality crii@r For different types of motion and different test persons
different optimality criteria7 have been suggested, e.g. uniform distribution of the wetjforcesF' = (F1, ..., F,, )7
needed for a certain joint motion to the muscles involvedbimsk-norm, wherek = 1,2, 3,4 or oo, see e.g. [43, 50]. The
weights are positive characteristids = (N1, ..., N, )7 of the muscle’s capability like cross sectional areas orimam
muscle strength. Fdr = oo minimization is performed with respect to the maximum lo&the muscles:

& F " k F;
7=3 (%) — 1PNl re 2 e g |8
=1

= m?x(F./N). 1)

oo

Here, F./N denotes the elementwise quotient like in MATLAB notationnother approach is to minimize the energy
consumed by all muscles, consisting of resting heat, axiivaeat, maintenance heat, shortening heat, and the mieaha
work performed [66].

2.3 Simulation of Dynamic Motion

Simulation of time-dependent behavior of a human motiohigenodeled according to the previously mentioned details
not only means the numerical integration of an ODE or DAEeysbf large size, but also the solution of a static or dynamic
optimization problem for the controls of the redundant neigcoups involved. If a sequence of static frames (snap¥hot
of a motion is considered, this results in a sequence otsiptimization problems. Their solution however is onlyvery
slow motions an acceptable approximation to the soluticth@idynamic optimization (i.e. optimal control) problemeov
the continuous time span of the whole motion, see, e.g. [, 23

2.3.1 Inverse Dynamics Approach

Inverse dynamics simulation for a given, usually measureation obtains the activations for the muscle groups inedlv
under the assumption of certain criteria for solving theurethncy problem. Thus, practically only given motions can b
analyzed; predictions of motions that are goal-orientedjdsnal reaching of a certain position, jumping as high oraa
possible, running as fast or energy-efficient as possibblecain not or can only very limitedly be obtained, e.g. [8].

Approaches to extend inverse dynamics simulation to thanigdtion of human motion are based on very special
assumptions (like min/max criteria) to the optimality eribn for solving the redundancy problems of the musclessed
low dimensional parameterization of the free parameteresfa being able to numerically solve the resulting optatian
problem efficiently, see. e.g. [49, 50]. For slow motions ayric properties of the wobbling masses do not effect the
quality of the solution, and only for slow motions speciahfmax criteria for solving the redundancy problems of the
human motion apparatus on the level of muscles and tenderjastified. Distribution of the total forces that act at one
joint and of the torques to the muscles then is done accotdidgferent parameters of the muscles. But if faster mation
shall be investigated, other optimality criteria must bedus

From a biomechanical point of view it is desired not only tedstigate fast motion but also to use and evaluate different
optimality criteria. Up to now there are no methods to sohese problems with inverse dynamics simulation satistying
First approaches to the efficient treatment of loops thatiodae to parallel muscles, may be found in [39]. Inverse
dynamics there also is not solved for general optimalittecia. In an approach of two stages first the joint torques and
then the muscle forces are calculated.

2.3.2 Forward Dynamics Approach

With forward dynamics simulation, on the other hand, botalygsis of given motion and calculation and optimization of
free motion are possible in principle. Starting from the olesctivations (which are to be determined) forward dyrami
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simulation calculates the resulting motion. Analysis oftimo of parts of or even the whole human body is possible with
it and leads to a high dimensional nonlinear optimal congroblem. Advantageous with the analysis of human motion
by forward dynamics simulation and optimization is the féleat differences of measured and calculated motion may be
included in the optimality criterion by an additional terransisting, e.g. of the integral of the square of the dewmatio
Thus, measurement errors may be compensated for, whildmwithse dynamics simulation small measurement errors in
the given kinematic trajectories may lead to large errothécalculated muscle forces.

Numerical optimization using forward dynamics simulatemrently most often is treated by application of methods of
transforming the optimal control problem by parametei@adf the controls (direct shooting) [64] to a finite-dimensl,
constrained, nonlinear optimization problem, which isvedl by methods of sequential quadratic programming (SQP)
type. These approaches are usually not tailored to thegmobtructure. For the numerical calculation of gradienthef
objective function and constraints with respect to theroation parameters of the control parameterization thsiteity
matrix of the solution of the (ODE or DAE) state differentguations with respect to the optimization parametersdias t
calculated [36]. For human motion dynamics this is oftenadioy external numerical differentiation (END) with differee
approximation [40, 46, 59]. END is not only computationalery expensive because the differential equations have to b
integrated at least as often as the number of grid points ir@pise polynomial discretization of the controls andisth
leads to extremely high computation times for motions witrge number of muscle groups. But also additional errors
caused by uncoordinated variable step size integrationo@agel many if not all valid digits of the gradient approxtiog.
Therefore, so-called internal numerical differentiat{tiD) methods are preferable [36] which efficiently and @zably
accurate compute the sensitivity matrix with an extendedenrical integration method and using the ODE Jacobian as
additional input.

For example the calculation times for vertical jumping roos of a planar leg model with 9 muscle groups [9, 58] on
a workstation have been reported to be within days [56]. Fspatial model of the whole human body with 54 muscle
groups even computation times on workstations in the regfanonths have been reported [2]. In [5] computation times
using a normal computer are compared with those using MIMRljg and vector parallel computers. The method from
[46] is applied to a 14 dof model with 46 muscle tendon grop@mputation times range from one to three months on a
normal computer (SGI Iris 4D25), 77 h on a vector parallel pater and 88 h on a MIMD parallel computer.

2.4 Application Scenarios Investigated

Due to the high computational effort for treating the wholertan body, currently only parts of the human body and its
interaction with the world are considered, e.g. [2, 18, 26,42, 68]. In [6, 17, 34, 40] cycling motion is investigatéd,
[17] to find an optimal cycling machine. In [34] to solve thetiopal control problem, the differential equations are not,
like commonly done, treated by direct shooting but with @dircollocation approach. A model of a single leg is used for
handling a vertical jumping motion in [58]. In [3] a walkingation is optimized. Here, a three dimensional model with 10
segments, 23 dof (including a 6 dof free floating base) and Ggcte-tendon-units is used. In [22] approaches for foot and
muscle modeling for generating stable walking motion hagerbinvestigated. Skeletal dynamics, muscle paths, muscle
tendon actuators and the relationship between muscleatiotivand muscle contraction have been examined in [45]. An
extended approach to muscle path modeling may be found Jnft8m data of the "Visible Human Male” project [1] and
in vivo measurements a dynamical model has been establishpadhose kinematic structure was published in [12]. The
necessity of taking into account the special propertiesaiiiing masses was stated in [21, 37]. Approaches to cayplin
of wobbling masses to the rigid body model of the skeleton bwfound in [20, 37, 54]. Properties of 26 muscle groups
of shoulder, elbow, and hand joint are presented in [15].4If] g three dimensional model of the knee may be found.
Geometric data was gained from dead bodies. The contact af¢high and tibia are modeled to be deformable, those
between thigh and patella to be rigid. 12 elastic elemerdgsridee ligaments and capsules; in total 13 muscle-tendhits-u
are modeled. An optimization is performed not for a comphetdion, but for single points of time. Investigation of canit
concepts, which are supposed to be applied in bipedal walkinature, have been made in [29].

3 Dynamics Algorithms for the Human Body
3.1 Recursive Multibody Systems Dynamics Algorithm ABA

General multibody system dynamics is modeled by the welhkndifferential equations

M(@)g=1-C(q,q)—G(q)+ Je(q)" fe, )

whereq are the joint anglesr are the total torques\ is the mass matrix; are the Coriolis and centrifugal forcas,
the gravitational forces, andf’ f. the contact forces. For solving these equations(&') Articulated Body Algorithm
(ABA) [10, 51] has been shown to be an accurate and numeris@ble algorithm superior to the Composite Rigid Body
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Algorithm (CRBA) [28, 38] as it introduces less cancellatoof terms [44]. It exploits the linear relationship betwee
accelerations in a rigid-body system and the applied foriteparticular, the definition of the articulated body inest
the inertia of the ‘floppy’ outboard chain of rigid bodies rsotbject to applied forces, has permitted the constructi@n o
recursive algorithm for the forward dynamics [10]. The damities to the Kalman filtering and smoothing algorithmd le
to an alternative decomposition of the mass-inertia matvhich in turn led to arO(N) closed-form expression for the
inverse mass matrix [51] (see also [25] for details):

M = HT¢"MoH (Newton-Euler Factorization)
M = [I+K¢H)T'D[I + K¢H] (Innovations Factorization) 3)
M=t = [I—-KyH|D I - KyH|T .

From the above operator formulation, new operator idestithay be established which result in the alternative iniimvs
factorization [24, 51]. An object-oriented C++ toolbox@lsased on these algorithms is described in [31, 32], where al
first extensions to sensitivity calculations are described

3.2 Muscle Modeling

Each muscle exhibits some characteristic behavior dues totérnal structure. We state the resulting relations aief b
explanations of them. The models are widely used and basétedtill type phenomenological model [43]. A survey of
all relations may be found in [55]; the structure itself $imait be discussed here. The following relations hold forheac
musclei, i = 1,...,n,,. The index; is omitted for the sake of brevity in the formulae of the fallng subsections. The
values of all parameters and details on the right hand sitith& dormulae are given in Section 5.

3.2.1 Force-Velocity Relation

The active force a muscle may exert depends on its veledity[62, 65, 11, 35]. It is equal to the muscle maximum
isometric force at zero velocity and equal to zero at the marn contraction velocity. The active force is higher than
the maximum isometric force if the muscle has excentriceiglo The overall relation not only depends on the maximum
velocityv  but also on parameters, c, that indicate how fast the force converges to zero with emtitre velocity resp.

how fast the force converges to the maximum force with exaewntlocity. For fast muscles; € [0.25, 1], while for slow
muscleses € [0.1,0.25]. ¢4 is given byc, = =%32 % The overall force-velocity relation is given by:

2 1+c3
1- 47 u
ﬁ ,t <0
M oMo pes
fpv(v'): =1, nm. (4)

M
1-1.33 o —
Ymacct Mo,
1- M

Umaz 4

Figure 1 shows two examples of the force-velocity relatiomd fast and a slow muscle.

3.2.2 Tension-Length Relation

Muscle forces result from biochemical structures that gnip each other and thereby cause the movementrespeatiee fo
The more overlapping structures exist, the higher are theefothat may be established. If the muscle is expanded, less
overlapping area and thus less force exists. If the muscte@nther hand is shortened, the structures obstruct eheh ot
and also less force may be exerted. This property is modsledebfollowing equations, wher” is the length of the
muscle /) its rest length¢; andc, are parameters for the effect of decrease of forces whemeiparesp. shortening

the muscle [16, 48]. Figure 2 gives an example of the relation

— 1o M y3
e °! .t

AM <1
fro (M) = (5)

M 71)3
M > 1M

,L(
c M
e 2 113

3.2.3 Activation Dynamics

Muscles may not exert force instantaneously [27]. Muscldtation« leads to an increased calcium ion concentration
in the muscle which finally results in force exertion. Thigjperty is modeled with suitable parametgrsbs, bs by:

¥ = ba(bsu — ) (6)
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Fig. 1 Force-velocity relation for a slow muscles( = Fig. 2 Tension-length relation Fig. 3 Muscle activation dy-
Q.I,C4 = 0.02; left) and for a fast muscle:{ = 1.0, c4 = 0.1; for example parameter values namics (solid line isu, dotted
right). (c1 = 0.017, c2 = 0.015) line is+, dashed line igap)

How the calcium ion concentration relates to the force exkig given by the following equation:

b1y (u 3
fap (v(u)) = %

The overall muscle activation dynamias {/, f4p) is shown in Figure 3.

()

3.2.4 Muscle Path
The muscle lengths and velocities needed for the relatibogeamay be expressed by joint angles and angular velocities
lM:l(Qlana“')a UM:U(Q17Q2a---a417(?2a---)- (8)

To calculate the torques that result from the linear musmleefs, the muscle paths, i.e. the points and directionspif-ap

cation (or the resulting lever directly), have to be model€de resulting lever depends on the joint angles only (tfs¢ fir
indexi indicates the number of the muscle or muscle group, the seicaiex j the number of the joint, the muscle has
effects on; not all combinations ¢f; are needed):

di,j = di,j(q17q27 )7 Z: 17 ce ey Ny, _] = 17 . .,’qu. (9)

3.2.5 Elastic and Damping Elements
Serial elastic and parallel damping elements are deschped

FPEE(M) _ kl(ek2(z“hk3) —1)+ k4(ek5*(lzw,ke) — 1) andFPE (M) = kgo™M. (10)

3.2.6 Total Muscle Force

With the factors given in the previous section and forcesgated by parallel elastic elements and damping elemémts, t
total muscle force may be stated as:

F(y, 1" 0M) = B2 fap () fro () fev (0™) + FPEEIM) 4+ FPE (u™). (11)

3.2.7 Resulting Active Torques

The torque in jointj that results from the applied muscle forces is (with appederindex setd; that indicate which
muscles have effect on joirj:

Tja = Z di,jFi(%vlg{’vy)a J=1...,nq. (12)
iEI]‘

3.2.8 Passive Torques

In addition to the active torques, passive torques thatrgpal™ , v ~ (bold letters indicate the vector of all occurring
lengths, velocities, calcium ion concentrations), andjdire angles have to be considered [30, 67]. These modelyeass
effects of tendons, ligament and the connective tissue(@aly at the boundaries of the feasible joint angle irdés)y

Tip = Tjap(le,UMa’Yaq)' (13)

The total torque applied to jointis 7; = 7, . + 7;,5. It should be noted that for robotic systemsisually describes the
torques in the actuated joints which are equal to the comtrtiie optimal control problem if no detailed motor model is
used. For biomechanic systemslenotes the controls (i.e. the muscle activations)=and (11, 7, ...) are the torques for
the dynamics calculations.
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4 A New Approach to Efficient Forward Dynamics Simulation and Optimization

To improve the computational cost of forward dynamics satiah by two orders of magnitude we suggest a new approach
based on a combination of tailored MBS dynamics modelingramderical optimal control methods.

4.1 Formulation of the Forward Dynamics Optimization Problem

In the biomechanics forward dynamics optimization prohléme muscle activations = (uy, ...,u,,,)? are to be deter-
mined so that for goal oriented motion the objective funeibis minimized (e.gJ = t; for minimum time), whereas for
analysis of measured motiagg, (¢), 0 < t < ¢, the objective function usually is chosen toffe= f(ff (q(t) — qm(t))%dt.
One summand for distributing load to the muscles involvédsabsection 2.2.3, may be introduced as well.

The biomechanical multibody system is constrained to bebacording to the MBS differential equation (2). The total
torquer consists of passive and active torques, cf. Subection8 @ritl 3.2.7. In addition to the MBS ODEs which are
computed using a recursive ABA method (cf. Section 3.1)differential equations for activation dynamics (cf. Sutizmn
3.2.3) must be included in the problem formulation. Bougdamstraints, e.g. for initial or final position, and noar
state and control constraints, e.g. for geometric comgsailepend on the motion to be computed.

4.2 General Optimal Control Problem

The differential equations of motion of second order aradfarmed into a set of double size of differential equatiohs
first order. The vectar of state variables thenis = (q1, ..., Gn,» 41, s Gnys V15 oo Y, )T, Whereg;, ¢; are the joint angles
and velocities of joint, ; are the c&" ion concentration in musclg n, is the number of joints and,, is the number of
muscles or muscle groups. The vectoof controls isu = (us, ..., un,, )’ , Wherew; is the activation of muscle (group)

Thus, the biomechanics optimal control problem may be dtat¢he following form of a general constrained optimal
control problem for state differential equations of firstderr:

ming J = miny(e(z(tf), x,tf) + f(ff L(z(t),u(t),p,t)dt) Minimize the objective functio/ consisting
of Mayer (scalar) and Lagrange (integral) term

subject to

z(t) = f(x(t),u(t),p,t) system of ordinary differential equations
r(x(0),z(ty),p,ty) =0 boundary constraints

gi(x(t),u(t),p,t) > 0,i=1,..,n4,0 <t <ty nonlinear state and control constraints

wherex = (z1,...,z,,)7 are the statesy = (u1,...,u,)? are the controls ang are constant (but to be optimized)
parameters.

4.3 Direct Collocation Method

There are many different approaches for solving optimatrobproblems. Here, we consider the computation of optimal
trajectoriesc™®, u* subject to a large and highly nonlinear dynamical systenn.tlie class of problems, so-called direct
(transcription) methods have been developed in recensghamwing remarkable performance [7, 64]. Instead of usimegy o
of the direct shooting approaches mentioned in Sectior2 2Bich require feasibility with respect to the ODE consitai
in each iteration of the optimization method a simultanespsroach for solving the ODE integration and optimization
problems inherent in the optimal control problem is selgécta direct collocation the implicit integration for a sesnce
of steps from initial to final time is included as a set of egiplhonlinear equality constraints in the optimization lpleam.
Without the restriction to feasibility to the ODE constrigiin each iteration as in direct shooting only the final solubf
direct collocation iteration must satisfy them. Without testriction of feasible iterates and with much easier adaige
gradients the solution may be obtained much faster.

The direct collocation method DIRCOL [63] is based on theiszation of both the states and the controls,a:.@)
andu(t) are approximated by (¢) anda(t) onagridd =t < t1 < ... < t,, = ty:

Z(t) =Y aud(t), & € SA (cubic) a(t) =Y Byu;(t), we S3 (lnear)
1 J
wherez;, 4; are basis functions (e.g. monomials or Hermite basis fansji «;, 3; are the coefficients of the piecewise

polynomial approximation of the states resp. controls aecbline the variables in the resulting nonlinear constrained
optimization problem (NLP). Thus, the resulting largetsddLP becomes:

Yy = (al7a2a "'aﬁl7ﬁ2a "'atnt)Ta H%}n¢(y) Sta(y) = 0, b(’y) 2 O7

where the equality and inequality constraiatandb are the following:
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5:(150) — f(@(ts), u(ts), o) = 0,t6 = tr, tyy1/2,tkr1  collocation constraints at the grid points
and the midpoints of all intervals;, ¢;1]

r(&(t1), (tn,, P, tn,)) = 0 boundary values

gi(@(ty), a(ty),p,tr) > 0,0 =1,...,n4,k =1,...,n, inequality constraints.

By solving the NLP, the differential equations of motion amdved simultaneously with the optimization problem. This
leads to a considerable improvement of efficiency comparesiandard methods if all structure and sparsity in the NLP
is utilized using a sparse sequential quadratic programmiethod of [19]. The time grid is refined based on local error
estimates resulting in a sequence of NLPs with increasimgdsions which are solved successively.

5 Numerical Results: Kicking Motion

A time optimal kicking movement has been investigated [A(, Kinematic and kinetic data of the musculoskeletal syste
as well as muscle model parameters and measured refereladeada been taken from Spagele [55, 58]. The model (cf.
Figure 6) consists of two joints, two rigid links and five migsgroups. The problem is formulated as an optimal control
problem with 9 states (hip angle, knee angles, the corresponding joint velocities and 5 calcium ion caridions) and

5 controls (activations of the muscles). The kicking movethweas optimized to be time optimal, i.e. the objective fimmtt

is J = ty. The muscle lengths (cf. Equation 8, subscript here denbéesumber of the muscle) are calculated according
to [55]

M = 0.287 —0.0497q,
13 = 0.300 + 0.0330q>
M = 0517+ 0.045 cos(1.128¢q; + 0.748) + 0.033¢2 (14)
I = 0.483 —0.062 cos(1.047¢; + 0.838) + 0.07 cos(1.076g2 + 0.28)
M = 0.088+0.019 cos(1.16g2 + 0.464) .
The velocities are the time derivatives of the length¥, = l'lM,z' =1,...,5. The resulting lever arms (Equation 9) are
also taken from [55]:
dig, = 0.024+0.0188¢;
dyg = 0.0364 0.03¢+33(0-17-42)"
d3q = 0.052cos(q; —0.63) —0.002 (15)
dig = 0.037cos(1.309¢; — 0.916) + 0.026
dig, = 0.058(g2 + 0.685)2¢ 118742
ds g, = 0.055.
The passive moments (Equation 13) are stated in [55] to be:
T, = 0.8e 340 1 0.084e 155 —0.753¢2550 — (7.9~ 27201 4 (.09¢891)g, (16)
Top = 1.25-1077e35% — 6.3¢729% — 20.1e716:12 + 2.1 — (0.3e!:0292 4 1.85e 34342 ) g, .

The multibody system parameters (mass, inertia w.r.t.tmdirotation, center of mass, length) for the thigh and shemek
my1 = 8.692, I = 0.480, z; = 0.189, I; = 0.447, my = 15.492, I = 4.700, 2o = 0.501, Io = 0.538. (17)
All other parameters may be found in Figure 5. The boundangitmns were set to

q1(to) = 0.1, g2(to) = 0.15, ¢i(to) = ¢2(to) = 0, 11 (to) = ... = 1(to) =0 (18)
qi(ty) = 0.8, g2(ty) = —0.05, g2(ty) = 0. (19)
Box constraints are imposed on the states and controls

0<q <15 —005<q <15 0<u,v<li=1,....5. (20)

An overview of the data flow in the kicking model may be foundrigure 4.

Compared to the measured movements (and the results offpSytaich match the measured data very well), our results
show a shorter time and higher maximum angles (cf. FigurdBg reason for this is, that in [55] the maximum muscle
forces were modified to match the optimized time of the measent. Obviously our optimal movement is another local
minimum. Nevertheless, the controls (Figure 9) show theesaharacteristics. Computing time and size of the resulting
NLP are shown in Figure 7. The direct shooting approach usgshi, 58] for 11 grid points required hours to compute the
solution [57]. Comparing the computing time with our appoéFigure 7) and considering how computational speed has
progressed since 1996, we still obtain a speed up of two safanagnitude.
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—— - parameter muscle 1 | muscle2 | muscle 3| muscle4 | muscle5
@ @ b 723 723 723 723 723
ODEs (eq. 8) involving joint torques 1 - - - - -
X\ / compiled using ba 7.46 7.61 8.37 7.46 7.61
bs 1.0 1.0 1.0 1.0 1.0
ABA (eq. (3), sect. 3.1) %o[N] 0.0 0.0 257.1 378.0 0.0
oundary conditions . k1[N] 0.0 0.0 5.393 64.7 0.0
{egs. 18, 18) = OCP <= (box constraints (eg. 20) P m—l] 0.0 0.0 90.4 23.95 0.0
k3[m] 0.0 0.0 0.58 0.48 0.0
ﬂ discretization by DIRCOL [63] k4[N] 0.0 0.0 0.0 0.0068 0.0
ks[m 1] 0.0 0.0 0.0 239.8 0.0
ke [m] 0.0 0.0 0.0 0.53 0.0
NLP c1 0.017 0.017 0.017 0.017 0.017
ca 0.015 0.015 0.015 0.015 0.015
o 137 [m] 0.258 0.309 0.500 0.486 0.085
ﬂ optimization by SNOPT [19] o el 523 523 50 550
ca 0.09 0.02 0.08 0.10 0.03
: M Im/s] -1.6 -0.5 2.0 -1.8 -0.5
Solution e
Fl>° [N] 4800.0 5300.0 1200.0 1500.0 700.0

Fig. 5 Parameters for Equations (4), (5), (6), (7), (10) of the kick

Fig. 4 Schematic summary of the method. ing model (taken from [55]).

grid points 10 60
nonlinear constraints 81 829
nonlinear variables | 129 | 531
computing time 12s| 6.3s

Fig. 7 Size of the resulting NLP and computation time on a 1700
MHZ+ Athlon XP for two different numbers of grid points in the
discretization.

1. llio Psoas group

2. Vastus group

3. Rectus Femoris

4. Hamstring group

5. Gastrocnemius group

knee angle

02
0 005 01 015 02 025 03 035 04 045 05 0 005 01 01 02 025 03 035 04 045 05

time time

] ) ) ] Fig. 8 Measured (dashed line) and optimized (solid line) joint
Fig. 6 Kinematic structure of the leg with 5 muscle groups. gngle trajectory of hip (left) and knee (right).
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i
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L

Fig. 9 Results from optimization: Controls (corresponding to EM@Iid line) and calcium ions concentrations (dashed line)

6 Conclusions and Outlook

First steps towards a new approach to solving forward dyessiimulation and optimization of human body dynamics very
efficiently have been presented. It is based on an efficientirsive modeling of human motion dynamics and a tailored
numerical optimal control method. First numerical resslisw an improvement in computational cost of two orders of
magnitude.

However, many issues are still open and need to be addreEkedroblem of whole human body dynamics motions
with multiple contacts, like it occurs for javelin throw oymnastics, needs further development: contact models beust
investigated and brought to a form applicable to the preskapproach. Another important issue in human body dynamics
simulation is data collection. For the example kicking rantithe data has been taken from literature. One difficulieiss
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is that not only motion data (joint angles and velocities eodtact forces) from one person’s motion are needed but also
the kinetic, anthropometric data (MBS data, muscle datf)@tame person.

Ongoing research includes the investigation of severarotxamples of human motion, the incorporation of other
objective functions, wobbling masses, a refined foot madegstigations on the fatigue of muscles, the extensiohef t
human body dynamics modeling algorithms to the computatidacobians and a further improved adaption of the optimal
control method to utilize the special structure of first aadond order differential equations of motion. In cooperatith
the Institute of Ergonomics of the Technische Univerditatmstadt, measurement data of human motion is being tedlec
for these investigations.

Acknowledgements The research presented in this paper was supported by tmeaBGdResearch Foundation DFG under grant STR
533/3-1. The authors thank Dr. Thomas Spagele for makinmyrdata available to them.
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