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Abstract: Based on a nonlinear hybrid dynamical systemsetredew planning method
for optimal coordination and control of multiple unmanneghicles is investigated. The
time dependent hybrid state of the overall system consigisorete (roles, actions) and
continuous (e.g. position, orientation, velocity) stasgiables of the vehicles involved.
The evolution in time of the system’s hybrid state is desmtiby a hybrid state automaton.
The presented approach enables a tight and formal couplidgarete and continuous
state dynamics, i.e. of dynamic role and action assignmedtsequencing as well as
of the physical motion dynamics of a single vehicle modelgdbnlinear differential
equations. The planning problem of determining optimalrit/istate trajectories that
minimize a cost function as time or energy for optimal mukthicle cooperation subject
to constraints including the vehicle’s motion dynamicg#@sformed to a mixed-binary
dynamic optimization problem being solved numericallye Tlumerical method consists
of an inner iteration where multiphase optimal control peofs are solved using a direct
collocation method and an outer iteration based on a brandhbound search of the
discrete solution space. The approach presented in ther gg@ppplied to the scenarios
of optimal simultaneous waypoint or target sequencing amaudhic trajectory planning
for a team of unmanned aerial vehicles in a plane and to optioha assignment and
physics-based trajectories in robot soccer.

Keywords: multi-vehicle task allocation and trajectorghing, nonlinear hybrid
dynamical systems, mixed-integer optimal control, midtimotorized salesmen problem

1. INTRODUCTION icz et al. (2004). For describing role behavior as well
as role and action changes during cooperative task
) _ ~ performance a hybrid state automaton is suggested,
The many different approaches to dynamic coordina- which consists of a discrete state (role or action) and

tion of and role assignment for multiple mobile robots g continuous state, which is characterized by differ-
range from completely behavior based methods 10 ential equations of motions and algebraic constraints.
multi layer architectures. The role assignment or task The method is investigated for cooperative transport

allocation problem has been addressed, e.g., by theynd search tasks. The question of cost functions for
behavior-based architectubdliance Parker (1998) or  gptimal role assignment on basis of the hybrid state
the publish/subscribe architectuMurdoch Gerkey automaton has not yet been addressed.

and Mataric¢ (2002) to name only a few. A hybrid S )
systems framework of role assignment in cooperative FOr application in the RoboCup Small Size League
multi-robot systems has been presented by Chaimow-and in an adversial game called RoboFlag, a method
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to model complex multi-robot problems has been de- 2. HYBRID AUTOMATA AND DYNAMICS
veloped Earl and D’Andrea (2005). Hereby the robots

are assumed to have an omnidirectional drive and theA hybrid automaton Henzinger (2000)

behavior of the opponent team is assumed to be known o .

and is describedptr))y a discrete state machine. Using aH = (V. B, X, U, init, inv, flow, jump, event) (1)
simplified linear dynamics model, the dynamic multi consists of a finite directed multigragf, E) with
robot planning problems are formulated as mixed knots in V' (called states) and edges i (so-called
logic (linear) dynamic systems Bemporad and Morari switches), a set of continuous state variabies=
(1999). Using a special discretization the problem is {z1,...,x,,}, @ set of continuous control variables
approximated by a mixed logic linear time discrete U = {uy, ..., un, }, @ mapinit which assigns an initial
dynamic system and solved using mixed integer linear condition to each edge, the invariants provided by
programming methods. the mapinv which assigns each knot with a feasible

A standard task for a team of unmanned aerial vehicles.reglon for the continuous states using equality and

- o ! ) . inequality constraints, a ma which assigns a
(UAVs) in fire monitoring or traffic surveillance is to q Y ﬁ_low 9
L . ) flow equation or state dynamics to each state, a map
distribute a certain number of waypoints or targets

. L ) . T which assigns jump conditions to edges and a
optimally, so that the individual vehicles’ actions opti- Jump 1SSIgns Jump 9!
: S . . mapevent which assigns events to edges which occur
mize an overall objective function. Depending on the

scenario, optimality could be measured by the time atswitches. ,
needed to accomplish a task like in search and rescuel®, ¢, q) € £ (x.0.¢) € E
applications and/or the energy required for this pur-

pose aiming at reducing the weight of battery packs or C

at extending a vehicle’s operation time. Allocation of x,q¢,q) €

targets to UAVs and computing corresponding trajec-
tories are closely connected. Several approaches havE&ig. 1. Basic structure of a hybrid automaton.

been introduced to decompose both into subproblems. ) ) ]

For example, estimations of the performance of cor- A discrete statg combined with the continuous dy-
responding trajectories are used to allocate the way-"@micsf, = f,(z,u,t) (or f,(z,u) w.l.g.) con-
points Richards et al. (2002) or the tasks are sequen€cted to that state will be referred to as a node of
tially assigned to the UAVs Furukawa et al. (2004). the gutomaton_. The general idea behind is |IIus_trated
The combinatorial task assignment problem has beerPY Fig- 1. Hybrid automata are well established in the
solved using a genetic algorithm Shima et al. (2005) or context of robot control (cf. references in Sect. 1).
using conventional multi-TSP problem formulations
as studied in the European COMETS project as part of
a multi layer decision architecture for a heterogeneous &
group of UAVs Gancet et al. (2005).

Based on nonlinear hybrid dynamic systems a mod-
eling formalism is developed in this paper which en- — o fo1
ables a tight and formal coupling of discrete and con-
tinuous system state dynamics, i.e. of dynamic role
and action assignment and sequencing and the phys-
ical locomotion behavior of a cooperating team of

mobile robots, and their goal-oriented optimization. starting with some initial condition the system en-
Previous approaches for computation of optimal role ters the first node of the hybrid automaton and
assignment and robot trajectories in cooperative multi- gyitches at (usually unknown) times; (events) be-
robot systems need to rely on linear motion dynamic tyween the nodes. The sequence of nodes and the
models (e.g. Earl and D’Andrea (2005)) whereas the number of switchings:, may be given or not. In
approach presented in this paper enables to considegach node the (piecewise) continuous differentiable
nonlinear, physics-based motion dynamics. Comparedstate 1 - [toistsiz1] — R™ (cf. Fig. 2) evolves

to previously used models of multi-robot coopera- gue to a (piecewise continuous) control variable

tion with general, hybrid dynamic state automata (e.g. [ts.ists.i41) — R™ as given by nonlinear flow condi-

Chaimowicz et al. (2004)) we consider the not yet tions resulting from the (usually nonlinear) differential
discussed problem of optimization for these general gquations of motion

models. A combination of a B&B algorithm and a di- )

rect collocation method for numerical optimal control w(t) = fo(2(t), u(t),1). )

is used to solve the resulting mixed-binary optimal The discrete state is constant between two switches

control problem (MBOCP). Applications to two dif- and can be represented by an integer valued variable

ferent multi-vehicle example scenarios are given. or, equivalently, by a vector of binary variables. As-
suming a fixed maximum number of switches for the
purpose of optimal planning (Sect. 4), the values of the

tep toic1  lei ten, = s
Fig. 2. lllustration of a continuous state trajectory with
nonlinear state dynamics definedsn phases.
Phase transitions occur at switching tinigs.
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binary variables over all possible phases can be put™i9: 4- Two possible round-trips te. = 4 waypoints.

together into a binary vectay, € {0,1}"%, which For the purpose of demonstration we concentrate on
represents a sequence of nodes or phases of the hybrithe model of a mass point moving in a plane, starting
automaton and can also be used to control switchesat the origin at initial timet, = 0 and ending at the

between nodes. origin at the final time ;. Thus the model reads
The underlying graph of the hybrid automaton can be () = vp(t), x(0) =0 = z(ty),
expressed by a set of linear constraints, e.g. as g(t) = vy(t), y(0)= 0 =y(ty),
nLXxn 0 (t) = az(t), v2(0) = 0 = vy (ty), (4)
0>Lg, Le&R"*". A3) Oa
. ’ . . Uy(t) = ay(t), UU(O) = 0 =wvy(ty),
A solution to these constraints represents a feasible a2 + ai <7.

sequence of nodes of the hybrid automaton. It should N
be noted that during optimization (Sect. 4) the linear Herebyzr = (z,y,v.,v,)" wherez, y denote the
inequalities can often be solved independently as aPosition,v., v, the corresponding velocities amd—

T . .
feasibility test for the binary control vectag,. (az,ay) the acceleration or braking forces of the
vehicle which are constrained. Connecting the possi-

ble phases at switching times the boundary condition

3. EXAMPLE APPLICATIONS reads as .

. . . . t;)—c; =0]. 5
3.1 Application 1: Waypoint sequencing and vehicle 7\:/1 [zr(ti) — ¢ ] ()
rajectories in surveillance Using the binary variableg,,, i = 1,...,n,, it can

The problem of distributing the selection and sequenceIoe expressed by

of n. waypoints in a plane (Fig. 6(a)) to be visited by x(t;)
each of the cooperating individual vehicles together y(t:)
with determining optimal vehicle flight trajectories ith the matrixC = (e; cn.) € R2Xme con-
asina surve_ﬂlapce_task.represents the more gerjeragsting of the waypoint locationsy,”q,. = 0 for
problem of distributing discrete roles to cooperating . , T J oo

i # j andg,; q,; = 1. The system dynamics is not

vehicles for achieving a common goal. The problem switched in this example but in the followin
falls in the new class of multiple motorized traveling Wi N this example but! wing.

salesmen problems (TSPs) von Stryk and Glocker
(2001). For this considered round-trip problem the
automata for one agent looks simple (Fig. 3). After
passing the first waypoint (or city) located at the
state switches back to the traveling stgteto-; until

the final destinatiory is reached. Then the system
switches into the final state.

)—C’qbi:O, i=1,....,n. (6)

3.2 Application 2: Role assignment and physics-based
trajectories in robot soccer

The basic actions (i.e. basic behaviors) of an individ-
ual soccer playing robot are distinguished, e5g., €

Qr = {goto ball, dribble ball, kick ball to po}. and a role
For the purpose of demonstration we consider the can be composed of several actions. Also for the ball
problem in a horizontal plane as it is usually done in discrete states with different types of motion must be
cooperative surveillance planning for multiple UAVs distinguished, e.ggz € Q5 = {free, contact, rebourjd

or in air traffic management. The approach presented
in this paper also allows a spatial setting. In this case
a smooth trajectory must be taken into account and
therefore the interconnection between two waypoints
is not independent of the rest of the journey as in clas-
sical TSPs. In Fig. 4 two different, possible round-trips
through four waypoints by one vehicle are depicted.

The vehicle dynamics can be stated as a system ofF_ 5 E le of a hvbrid stat ‘ ‘ del
nonlinear differential equations whenez describes 9. ©. Exampie of a hybrid state automaton model-

(at least) position, velocity and orientation of the mov- Ing smgle T°b°t behavior as a sequence Of. ac-
ing vehicle andu  its control vector. In case of UAVS tions with t|me dependent discrete and continu-
Eq. (2) may represent as well flight motion in 3-D ous state variables.

including aerodynamic effects or, more simplified, 2- The physical motion capabilities of individual mobile,
D point mass motions in a plane at a certain altitude. wheeled or legged robots differ significantly. Optimal



tactical moves (Fig. 5) can only be achieved if indi- the ball under control, which may not be possible if
vidual locomotion dynamics is considered. This may the ball reaches the robot in its back.

in general be described in form of Eq. (2) for kine-

matic vehicle models or kinetic models including the

dynamics of the drive train or other desired levels of 4. NONLINEAR HYBRID OPTIMAL CONTROL
detail. The control variable r represents the control

of the kinematic or kinetic robot model used. 4.1 Hybrid optimal control problem statement

For the purpose of demonstration, point mass models
of the dynamics of the free moving robot, of the robot For a feasible sequenceof discrete system states
dribbling the ball and of the rolling ball are used w.l.g. 4= qt), tosr <t <tesi=1,....,n, (10)

Node 1 Node 2 L

goto ball dribble ball wheret; o :=0 andts,ns_ = ty, the initial stater(0)

. e R v p a_nd also the control h|st0ry(t), 0 <t <ty are

TR = Uu:R \ U%'R @ given, th_e system trajectoray(t), 0<t< ty, can
T aptsr — For under mild assumptions uniquely be determined from

uy,r — Fy r apuy,r — Fy r i(t) = fq (), u(t),t), tsi1 <t <ts; (11)

;.BB = (UI,Ba vy.,Ba _Fz,Bv _Fy,B)T . ’ . . . . .

i=1,...,ns, considering also the jump or switching

wherezy = (20,90, v2,0,vy,0), O = R,B,and  conditions (e.g. when a waypoint is reached in the first
Fir = 2u.p, Fsp = 02v,p, x = z,y, for example or when a robot is close enough to the ball to

modeling the force resulting from friction. The control  start dribbling in the second example)
u. g represents the force to accelerate or decelerate

the robot. The coefficient is used as a simple model = Teaq,_,.q, (®(tsi = 0),2(tsi +0))
of the reduced mobility of a player while dribbling 0 < riqg, ,.q, (@(ts; —0),2(ts; +0))
the ball. The maximum possible speed of a robot is ; _ 1,.
considered as an inequality constraint

0< 020y — 02(1) — 2(0) (®)

max

(12)

..,ns —1,wheret £ 0 :=lim,_ ¢ >0t £ €.

Now we consider théybrid optimal control problem
where we wish to determine the optimal sequence of
with maximum speed,,.x = 0.32 cms™! used in actions of the cooperating robots, i.e. the discrete state
the computations of Sect. 5.2. This can be consid-valuesg;, i = 1,...,n;, ns < ns max, as well as the
ered as a general state constraint of type (15). Alsocontinuous control history(¢), 0 < ¢ < ¢, and the
several models of the motion behavior of opponents switching times; 1, ..., t; », = ty in a way that the
can be incorporated in such a formulation. A con- cost function
tinuous staters is definedTanangoust_ FmR, e.g., min J. (13)
re¢ = (z¢,yc,vG,0c) . If the position of an UG, .G, o
opponent(z¢a, yi) is known and constant or if its
motion is known astg = x¢(t) or xg(xr, T p,t),
0 <t < ty, itcan be considered as a (reactive) moving J = pn (2(ty), 1) + Z pi ((ts,i = 0), 2(tsi +0))
obstacle in the formulation of the constraints (15) as ns ot =t
IR.qn., (TR(t), 2c(1),t) > 0 (e.g. Sect. 5.2, Fig. 8). + Z/ L; (z(t),u(t),t)dt

=1

ts,i—1

ns—1

The hybrid state of the system consisting of one
robot and one ball is described log, ) whereq =
(qr.qB)" andx = (zg,xp) . Inthe same mannerthe
hybrid state of a system withr cooperating robots
and one ball can be described as

with real-valued functiong;, L; is minimized subject
to the equations of motion (11), the initial condition
x(0) = xo and the switching conditions (12), con-
straints on the final state

q = (qr,, - -,anR,QB)TT ©) 0=reqq, (x(ty)),0<7iqq, (x(tf)), (14)

T = (TR, TR, TD) constraints on the (continuous) state and control vari-
and continuous state dynamics as in Eq. (2) vfite: ablesin(ts;1,ts:),i=1,...,ng,

T T

(le...,fRnR,fB) ,controlu:(uRl...,uRnR) . 0< gg (x(t),t) (15)
In addition, the right hand sid¢ usually depends on -4 e
the discrete state, i.e. f = fq(m, u,t) asin Eq. (7). UG min < U(t) < UG, max, (16)
Furthermore, the transition from one node (phase) to Tq, min < x(t) < Zq,; max;

another requires that jump or switching conditions with constant lower and upper bounds. In general not
must be satisfied. For example, the transition from the all actionsg, € @, where@ only consists of feasi-
discrete stater = goto ballto gz = dribble ball requires, ble combinations of the discrete states of considered
that the(x, y)-coordinates of the robot and the ball vehicles or robots, can follow or proceed each other.
must be equal or within a certain distance. Also the Thus, additional constraints must be considered, e.g.
orientation of the robot must allow the robot to bring inaform asin Eq. (3).



4.2 Numerical solution

If a maximum number of switching times (i.e. dis-

crete state transitions) is assumed, then an unknown

sequence of discrete state variabdes= g(t) € Q,
tsi—1 < t < ts;-1, (EQ. (10)) can be transformed
to an integer variablé, € I, C Z" which can
be represented by a vector of binary variabjgse
{0, 1}". The feasibility of succeeding or preceeding

as in Eq. (3). Thus, the previously introduced hybrid
optimal control problem is transformed into a mixed-
integer, namely mixed-binary, dynamic optimization
problems and numerical methods for this class of
problems can be applied.

The numerical solution approach consists of a decom-
position of MBOCP in coupled discrete and dynamic
optimization problems at outer and inner levels (see
Buss et al. (2002); von Stryk and Glocker (2001)
for details). At the inner optimization level dynamic
optimization problems are considered of which the
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nonlinear state dynamics is defined on multiple phases (g w3, +vl, overtime () a3, + a2,  overtime

(Fig. 2). For each phade, ;_1,t; ;] a time discretiza-
tion grid is introduced. Along this time grid the contin-
uous state variables(t) and the control variablas(t)

solved numerically by a sparse sequential quadratic
programming method Gill et al. (2002). At the outer
iteration level an investigation of the discrete solution
space is performed. For this purpose, B&B methods
are applied. Their performance depends on maintain-
ing good lower and upper bounds on the cost func-
tion (13) (cf. von Stryk and Glocker (2001)).

clocked hybrid piecewise affine systems Bemporad
and Morari (1999), the optimal control problem can be

can be solved more easily by efficient methods from
discrete optimization.

5. RESULTS

5.1 Optimal vehicle trajectories and sequencing

trajectories for the round-trip of a vehicle starting in
the origin as described in Sect. 3.1. As cost function
(13) for the multiphase MBOCP

u,

t
min J{u, gp] =1t + 0.002/ (a2 + ai) dt (17)
b 0

Fig. 6. Solution for two cooperating vehicles

_ : . . . conditions and constraints as well as the switching
are approximated by piecewise polynomial functions conditions (6). A computed solution of this problem
von Stryk and Glocker (2001). Thus, the dynamic op- for an optimal round-trip of one vehicle from the

timization problem is transformed into a large, sparse origin to four waypoints including optimal switching,
nonlinear constrained optimization problem which is j.e. visiting, times is depicted in Fig. 4 right.

Next, we consider the problem of five waypoints
which must be visited by exactly one of two cooperat-

ing vehicles | and Il starting in the origin (Fig. 6(a)).

As cost function the overall time needed to visit the
cities and to complete the round-trip may be used.
But the solution may not be unique, because it is not
defined, what the faster vehicle does, while the slower
It should be noted that the briefly outlined numerical one is still on its way. Uniqueness of the solution can
solution approach aims at the general case of nonlineabe achieved, if a sum of time and energy consumption
hybrid dynamical systems. In special cases, e.g. forof the vehicles is minimized as in Eq. (17).

For the problem formulation each of the waypoints is

transformed to a mixed-integer linear program which &ssociated with a further binary variaglg indicating
which of the two vehicles will visit it

- ((xi(t) ) . (Ill(ti) )
7 + 1 - i - C i = 0,
v (yl (t:) ( dv;) yri(t) U
fori = 1,...,n.. As six waypoints are assumed,

the problem consists (ﬁZ‘ZZl k! = 306 possible
discrete solutions including those where one of the
vehicles visits all waypoints. In Fig. 6(b) a computed
First we consider the problem of determining the Solution of the optimal vehicle trajectories and way-
optimal sequence of four waypoints and physics-basedPoint assignment and sequencing problem is depicted.

5.2 Optimal role assignment and robot trajectories

As an example of the application given in Sect. 3.2 we
consider the task-oriented dynamic role assignment
has been chosen which must be minimized subjectand trajectory optimization of two strikers. Three dif-

to the vehicle dynamics model (4), initial and final ferent discrete states are considered



6. DISCUSSION AND OUTLOOK

The computational time for solving the scenarios on
a recent PC ranges from a few minutes for scenario
5.2 to about half an hour for scenario 5.1. The compu-
52 a4 0 12 s a2 a0 12 o tational time easily scales up enormously by increas-

Fig. 7. Optimal trajectories for two strikers with fast ing the number of robots or vehicles involved, the
(left) and slow (right) dribbling capabilities. number of discrete states (waypoints or basic behav-

. iors) or the dimension and nonlinearity of the vehicle

dynamics. But improvements in hybrid optimal con-
trol methods can be expected in the next years. The
L5 - D\% " velocity of striker presented approach is especially suited as an offline

[N

ve
1 - . | planning or design method for multi-vehicle problems

05 2 %«7 y where utilizing the locomotion dynamics is essential

og B t‘> T for successful task achievement and where reasonably
: ’ accurate simulation models are available. The hybrid
optimal control solution also allows to evaluate the
performance of real-time capable, but heuristic and
approximative multi-vehicle control methods. General
models of vehicle dynamics can be included in (2)
as well as different sensor models of the vehicles as
constraints in (15).

—= <
(<) —_ ot
i
- <
@D
o
8-
=
O «
S,
o -
24
=
x
3-
@
N

3 2 1 0 1 . TP A

Fig. 8. Solution of the two strikers versus one defender
example in state spage, y).

Node 1 Node 2 As a consequence of the principle of optimality in

“Player one dribbles ball” “Player two dribbles ball” optimal control all vehicles having exactly the same

f:l = fl,B(ml_,a':l,ul) V| = fl(mlvd’lzul) world model information and solving the optimal con-

o if(w27m2’u2) ;; - ijvﬂw%w%uz) trol problem individually will obtain the same solu-

Node 3 tion. However, noise and data inconsistencies must

“Ball free” be considered for real robots. Synchronization will be

V[ & = fi(z, @, w) |- required during execution of plans. Communication

&2 = Fo(@, @2, u2) between vehicles can be included in the formulation

&p = fp(®p,&B) with hybrid automata as an additional state. Stability
For the purpose of demonstration, the state-ball- of the trajectories against disturbances can be included

to-pos. is assumed to take place instantaneously at af® some.extent in the hybrid optimal control problem
switching time. The task of the two strikers depicted formulation.

by white triangles in Figs. 7 and 8 is to play the ball, ongoing work considers a systematic modeling of
whose initial position is in rest in the upper half of nonjinear and linear, e.g. piecewise affine, hybrid op-
the middle line, into the goal and to minimize a cost timal control problems and aims at the development
function (13) where of online planning methods based on mixed-integer
linear programming and their combination with hier-

archical state machines for behavior programming for
individual robots and teams Loetzsch et al. (2006).

@nszpt'tfa Spizoai:la"wns_la 18
Li=pe- a2 i=1,...ns (18)
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