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Abstract: Based on a nonlinear hybrid dynamical systems model a new planning method
for optimal coordination and control of multiple unmanned vehicles is investigated. The
time dependent hybrid state of the overall system consists of discrete (roles, actions) and
continuous (e.g. position, orientation, velocity) state variables of the vehicles involved.
The evolution in time of the system’s hybrid state is described by a hybrid state automaton.
The presented approach enables a tight and formal coupling of discrete and continuous
state dynamics, i.e. of dynamic role and action assignment and sequencing as well as
of the physical motion dynamics of a single vehicle modeled by nonlinear differential
equations. The planning problem of determining optimal hybrid state trajectories that
minimize a cost function as time or energy for optimal multi-vehicle cooperation subject
to constraints including the vehicle’s motion dynamics is transformed to a mixed-binary
dynamic optimization problem being solved numerically. The numerical method consists
of an inner iteration where multiphase optimal control problems are solved using a direct
collocation method and an outer iteration based on a branch-and-bound search of the
discrete solution space. The approach presented in this paper is applied to the scenarios
of optimal simultaneous waypoint or target sequencing and dynamic trajectory planning
for a team of unmanned aerial vehicles in a plane and to optimal role assignment and
physics-based trajectories in robot soccer.

Keywords: multi-vehicle task allocation and trajectory planning, nonlinear hybrid
dynamical systems, mixed-integer optimal control, multiple motorized salesmen problem

1. INTRODUCTION

The many different approaches to dynamic coordina-
tion of and role assignment for multiple mobile robots
range from completely behavior based methods to
multi layer architectures. The role assignment or task
allocation problem has been addressed, e.g., by the
behavior-based architectureAllianceParker (1998) or
the publish/subscribe architectureMurdoch Gerkey
and Matarić (2002) to name only a few. A hybrid
systems framework of role assignment in cooperative
multi-robot systems has been presented by Chaimow-

icz et al. (2004). For describing role behavior as well
as role and action changes during cooperative task
performance a hybrid state automaton is suggested,
which consists of a discrete state (role or action) and
a continuous state, which is characterized by differ-
ential equations of motions and algebraic constraints.
The method is investigated for cooperative transport
and search tasks. The question of cost functions for
optimal role assignment on basis of the hybrid state
automaton has not yet been addressed.

For application in the RoboCup Small Size League
and in an adversial game called RoboFlag, a method
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to model complex multi-robot problems has been de-
veloped Earl and D’Andrea (2005). Hereby the robots
are assumed to have an omnidirectional drive and the
behavior of the opponent team is assumed to be known
and is described by a discrete state machine. Using a
simplified linear dynamics model, the dynamic multi
robot planning problems are formulated as mixed
logic (linear) dynamic systems Bemporad and Morari
(1999). Using a special discretization the problem is
approximated by a mixed logic linear time discrete
dynamic system and solved using mixed integer linear
programming methods.

A standard task for a team of unmanned aerial vehicles
(UAVs) in fire monitoring or traffic surveillance is to
distribute a certain number of waypoints or targets
optimally, so that the individual vehicles’ actions opti-
mize an overall objective function. Depending on the
scenario, optimality could be measured by the time
needed to accomplish a task like in search and rescue
applications and/or the energy required for this pur-
pose aiming at reducing the weight of battery packs or
at extending a vehicle’s operation time. Allocation of
targets to UAVs and computing corresponding trajec-
tories are closely connected. Several approaches have
been introduced to decompose both into subproblems.
For example, estimations of the performance of cor-
responding trajectories are used to allocate the way-
points Richards et al. (2002) or the tasks are sequen-
tially assigned to the UAVs Furukawa et al. (2004).
The combinatorial task assignment problem has been
solved using a genetic algorithm Shima et al. (2005) or
using conventional multi-TSP problem formulations
as studied in the European COMETS project as part of
a multi layer decision architecture for a heterogeneous
group of UAVs Gancet et al. (2005).

Based on nonlinear hybrid dynamic systems a mod-
eling formalism is developed in this paper which en-
ables a tight and formal coupling of discrete and con-
tinuous system state dynamics, i.e. of dynamic role
and action assignment and sequencing and the phys-
ical locomotion behavior of a cooperating team of
mobile robots, and their goal-oriented optimization.
Previous approaches for computation of optimal role
assignment and robot trajectories in cooperative multi-
robot systems need to rely on linear motion dynamic
models (e.g. Earl and D’Andrea (2005)) whereas the
approach presented in this paper enables to consider
nonlinear, physics-based motion dynamics. Compared
to previously used models of multi-robot coopera-
tion with general, hybrid dynamic state automata (e.g.
Chaimowicz et al. (2004)) we consider the not yet
discussed problem of optimization for these general
models. A combination of a B&B algorithm and a di-
rect collocation method for numerical optimal control
is used to solve the resulting mixed-binary optimal
control problem (MBOCP). Applications to two dif-
ferent multi-vehicle example scenarios are given.

2. HYBRID AUTOMATA AND DYNAMICS

A hybrid automaton Henzinger (2000)

H = (V, E, X, U, init, inv, f low, jump, event) (1)

consists of a finite directed multigraph(V, E) with
knots inV (called states) and edges inE (so-called
switches), a set of continuous state variablesX =
{x1, ..., xnx

}, a set of continuous control variables
U = {u1, ..., unu

}, a mapinit which assigns an initial
condition to each edge, the invariants provided by
the mapinv which assigns each knot with a feasible
region for the continuous states using equality and
inequality constraints, a mapflow which assigns a
flow equation or state dynamics to each state, a map
jump which assigns jump conditions to edges and a
mapevent which assigns events to edges which occur
at switches.

(x, q, q) ∈ E

q

ẋ = fq(x)
q′

ẋ = f q′(x)

(x, q, q′) ∈ E

(x, q′, q) ∈ E

Fig. 1. Basic structure of a hybrid automaton.

A discrete stateq combined with the continuous dy-
namicsfq = fq(x, u, t) (or fq(x, u) w.l.g.) con-
nected to that state will be referred to as a node of
the automaton. The general idea behind is illustrated
by Fig. 1. Hybrid automata are well established in the
context of robot control (cf. references in Sect. 1).
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q

q

x(t)
x(tf )

x(0)

t
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Fig. 2. Illustration of a continuous state trajectory with
nonlinear state dynamics defined inns phases.
Phase transitions occur at switching timests,i.

Starting with some initial condition the system en-
ters the first node of the hybrid automaton and
switches at (usually unknown) timests,i (events) be-
tween the nodes. The sequence of nodes and the
number of switchingsns may be given or not. In
each node the (piecewise) continuous differentiable
statex : [ts,i, ts,i+1] → R

nx (cf. Fig. 2) evolves
due to a (piecewise continuous) control variableu :
[ts,i, ts,i+1] → R

nu as given by nonlinear flow condi-
tions resulting from the (usually nonlinear) differential
equations of motion

ẋ(t) = fq(x(t), u(t), t) . (2)

The discrete stateq is constant between two switches
and can be represented by an integer valued variable
or, equivalently, by a vector of binary variables. As-
suming a fixed maximum number of switches for the
purpose of optimal planning (Sect. 4), the values of the



Fig. 3. Hybrid automaton of motorized TSP type.

binary variables over all possible phases can be put
together into a binary vectorqb ∈ {0, 1}nqb , which
represents a sequence of nodes or phases of the hybrid
automaton and can also be used to control switches
between nodes.

The underlying graph of the hybrid automaton can be
expressed by a set of linear constraints, e.g. as

0 ≥ Lqb, L ∈ R
nL×nqb . (3)

A solution to these constraints represents a feasible
sequence of nodes of the hybrid automaton. It should
be noted that during optimization (Sect. 4) the linear
inequalities can often be solved independently as a
feasibility test for the binary control vectorqb.

3. EXAMPLE APPLICATIONS

3.1 Application 1: Waypoint sequencing and vehicle
trajectories in surveillance

The problem of distributing the selection and sequence
of nc waypoints in a plane (Fig. 6(a)) to be visited by
each of the cooperating individual vehicles together
with determining optimal vehicle flight trajectories
as in a surveillance task represents the more general
problem of distributing discrete roles to cooperating
vehicles for achieving a common goal. The problem
falls in the new class of multiple motorized traveling
salesmen problems (TSPs) von Stryk and Glocker
(2001). For this considered round-trip problem the
automata for one agent looks simple (Fig. 3). After
passing the first waypoint (or city) located atci the
state switches back to the traveling statego-to-ci until
the final destinationc0 is reached. Then the system
switches into the final state.

For the purpose of demonstration we consider the
problem in a horizontal plane as it is usually done in
cooperative surveillance planning for multiple UAVs
or in air traffic management. The approach presented
in this paper also allows a spatial setting. In this case
a smooth trajectory must be taken into account and
therefore the interconnection between two waypoints
is not independent of the rest of the journey as in clas-
sical TSPs. In Fig. 4 two different, possible round-trips
through four waypoints by one vehicle are depicted.

The vehicle dynamics can be stated as a system of
nonlinear differential equations wherexR describes
(at least) position, velocity and orientation of the mov-
ing vehicle anduR its control vector. In case of UAVs
Eq. (2) may represent as well flight motion in 3-D
including aerodynamic effects or, more simplified, 2-
D point mass motions in a plane at a certain altitude.
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Fig. 4. Two possible round-trips tonc = 4 waypoints.

For the purpose of demonstration we concentrate on
the model of a mass point moving in a plane, starting
at the origin at initial timet0 = 0 and ending at the
origin at the final timetf . Thus the model reads

ẋ(t) = vx(t), x(0) = 0 = x(tf ),
ẏ(t) = vy(t), y(0) = 0 = y(tf ),

v̇x(t) = ax(t), vx(0) = 0 = vx(tf ),
v̇y(t) = ay(t), vy(0) = 0 = vy(tf ),
a2

x + a2
y ≤ 7 .

(4)

HerebyxR = (x, y, vx, vy)T wherex, y denote the
position,vx, vy the corresponding velocities andu =
(ax, ay)

T the acceleration or braking forces of the
vehicle which are constrained. Connecting the possi-
ble phases at switching times the boundary condition
reads as

nc
∨

j=1

[xR(ti) − cj = 0] . (5)

Using the binary variablesqbi, i = 1, . . . , nc, it can
be expressed by

(

x(ti)
y(ti)

)

− Cqbi = 0, i = 1, . . . , nc (6)

with the matrixC = (c1, . . . , cnc
) ∈ R

2×nc con-
sisting of the waypoint locations,qb

T
i qbj = 0 for

i 6= j andqb
T
i qbi = 1 . The system dynamics is not

switched in this example but in the following.

3.2 Application 2: Role assignment and physics-based
trajectories in robot soccer

The basic actions (i.e. basic behaviors) of an individ-
ual soccer playing robot are distinguished, e.g.,qR ∈
QR = {goto ball, dribble ball, kick ball to pos.} and a role
can be composed of several actions. Also for the ball
discrete states with different types of motion must be
distinguished, e. g.,qB ∈ QB = {free, contact, rebound}.

qB

qR =
free

goto ball

R,qRR R
x   = f     (x   , u  )

R
.

R,qRR R
x   = f     (x   , u  )

R
.

R,qRR R
x   = f     (x   , u  )

R
.

r
eq/iq

r
eq/iq

r
eq/iq

r
eq/iq

qB

qR =
contact
dribble

qB

qR =
contact

kick ball

Fig. 5. Example of a hybrid state automaton model-
ing single robot behavior as a sequence of ac-
tions with time dependent discrete and continu-
ous state variables.

The physical motion capabilities of individual mobile,
wheeled or legged robots differ significantly. Optimal



tactical moves (Fig. 5) can only be achieved if indi-
vidual locomotion dynamics is considered. This may
in general be described in form of Eq. (2) for kine-
matic vehicle models or kinetic models including the
dynamics of the drive train or other desired levels of
detail. The control variableuR represents the control
of the kinematic or kinetic robot model used.

For the purpose of demonstration, point mass models
of the dynamics of the free moving robot, of the robot
dribbling the ball and of the rolling ball are used w.l.g.

ẋR =

Node 1

goto ball








vx,R

vy,R

ux,R − Fx,R

uy,R − Fy,R









∨

Node 2

dribble ball








vx,R

vy,R

αBux,R − Fx,R

αBuy,R − Fy,R









ẋB = (vx,B, vy,B, −Fx,B, −Fy,B)
T

(7)

wherex♦ = (x♦, y♦, vx,♦, vy,♦)
T, ♦ = R, B, and

F∗,R = 2v∗,R, F∗,B = 0.2v∗,B, ∗ = x, y, for
modeling the force resulting from friction. The control
u∗,R represents the force to accelerate or decelerate
the robot. The coefficientαB is used as a simple model
of the reduced mobility of a player while dribbling
the ball. The maximum possible speed of a robot is
considered as an inequality constraint

0 ≤ v2
max − v2

x(t) − v2
y(t) (8)

with maximum speedvmax = 0.32 cm s−1 used in
the computations of Sect. 5.2. This can be consid-
ered as a general state constraint of type (15). Also
several models of the motion behavior of opponents
can be incorporated in such a formulation. A con-
tinuous statexG is defined analogously toxR, e.g.,
xG = (xG, yG, vG, θG)

T
. If the position of an

opponent(xG, yG) is known and constant or if its
motion is known asxG = xG(t) or xG(xR, xB, t),
0 ≤ t ≤ tf , it can be considered as a (reactive) moving
obstacle in the formulation of the constraints (15) as
gR,qR,i

(xR(t), xG(t), t) ≥ 0 (e.g. Sect. 5.2, Fig. 8).

The hybrid state of the system consisting of one
robot and one ball is described by(q, x) whereq =
(qR, qB)

T andx = (xR, xB)
T. In the same manner the

hybrid state of a system withnR cooperating robots
and one ball can be described as

q = (qR1
, . . . , qRnR

, qB)
T

x = (xR1
. . . , xRnR

, xB)
T (9)

and continuous state dynamics as in Eq. (2) withf =
(fR1

. . . , fRnR
, fB)

T, controlu = (uR1
. . . , uRnR

)
T.

In addition, the right hand sidef usually depends on
the discrete stateq, i.e.f = fq(x, u, t) as in Eq. (7).

Furthermore, the transition from one node (phase) to
another requires that jump or switching conditions
must be satisfied. For example, the transition from the
discrete stateqR = goto ball toqR = dribble ball requires,
that the(x, y)-coordinates of the robot and the ball
must be equal or within a certain distance. Also the
orientation of the robot must allow the robot to bring

the ball under control, which may not be possible if
the ball reaches the robot in its back.

4. NONLINEAR HYBRID OPTIMAL CONTROL

4.1 Hybrid optimal control problem statement

For a feasible sequence ofns discrete system states

qi := q(t), ts,i−1 ≤ t ≤ ts,i, i = 1, . . . , ns, (10)

wherets,0 := 0 andts,ns
:= tf , the initial statex(0)

and also the control historyu(t), 0 ≤ t ≤ tf , are
given, the system trajectoryx(t), 0 ≤ t ≤ tf , can
under mild assumptions uniquely be determined from

ẋ(t) = fq
i
(x(t), u(t), t), ts,i−1 < t < ts,i, (11)

i = 1, . . . , ns, considering also the jump or switching
conditions (e.g. when a waypoint is reached in the first
example or when a robot is close enough to the ball to
start dribbling in the second example)

0 = req,q
i−1

,q
i
(x(ts,i − 0), x(ts,i + 0))

0 ≤ riq,q
i−1

,q
i
(x(ts,i − 0), x(ts,i + 0))

(12)

i = 1, . . . , ns − 1, wheret ± 0 := limǫ→0,ǫ>0 t ± ǫ.

Now we consider thehybrid optimal control problem
where we wish to determine the optimal sequence of
actions of the cooperating robots, i.e. the discrete state
valuesqi, i = 1, . . . , ns, ns ≤ ns,max, as well as the
continuous control historyu(t), 0 ≤ t ≤ tf , and the
switching timests,1, . . . , ts,ns

= tf in a way that the
cost function

min
u,q

1
,...,q

ns,max

J, (13)

J = ϕns
(x(tf ), tf ) +

ns−1
∑

i=1

ϕi (x(ts,i − 0), x(ts,i + 0))

+

ns
∑

i=1

∫ ts,i

ts,i−1

Li (x(t), u(t), t) d t

with real-valued functionsϕi, Li is minimized subject
to the equations of motion (11), the initial condition
x(0) = x0 and the switching conditions (12), con-
straints on the final state

0 = req,q
ns

(x(tf )) , 0 ≤ riq,q
ns

(x(tf )) , (14)

constraints on the (continuous) state and control vari-
ables in(ts,i−1, ts,i), i = 1, . . . , ns,

0 ≤ gq
i
(x(t), t), (15)

uq
i
,min ≤ u(t) ≤ uq

i
,max ,

xq
i
,min ≤ x(t) ≤ xq

i
,max ,

(16)

with constant lower and upper bounds. In general not
all actionsqi ∈ Q, whereQ only consists of feasi-
ble combinations of the discrete states of considered
vehicles or robots, can follow or proceed each other.
Thus, additional constraints must be considered, e.g.
in a form as in Eq. (3).



4.2 Numerical solution

If a maximum number of switching times (i.e. dis-
crete state transitions) is assumed, then an unknown
sequence of discrete state variablesqi = q(t) ∈ Q,
ts,i−1 < t < ts,i−1, (Eq. (10)) can be transformed
to an integer variableiq ∈ Iq ⊂ Z

ni which can
be represented by a vector of binary variablesqb ∈
{0, 1}nqb . The feasibility of succeeding or preceeding
actions, phases or nodes is described by constraints
as in Eq. (3). Thus, the previously introduced hybrid
optimal control problem is transformed into a mixed-
integer, namely mixed-binary, dynamic optimization
problems and numerical methods for this class of
problems can be applied.

The numerical solution approach consists of a decom-
position of MBOCP in coupled discrete and dynamic
optimization problems at outer and inner levels (see
Buss et al. (2002); von Stryk and Glocker (2001)
for details). At the inner optimization level dynamic
optimization problems are considered of which the
nonlinear state dynamics is defined on multiple phases
(Fig. 2). For each phase[ts,i−1, ts,i] a time discretiza-
tion grid is introduced. Along this time grid the contin-
uous state variablesx(t) and the control variablesu(t)
are approximated by piecewise polynomial functions
von Stryk and Glocker (2001). Thus, the dynamic op-
timization problem is transformed into a large, sparse
nonlinear constrained optimization problem which is
solved numerically by a sparse sequential quadratic
programming method Gill et al. (2002). At the outer
iteration level an investigation of the discrete solution
space is performed. For this purpose, B&B methods
are applied. Their performance depends on maintain-
ing good lower and upper bounds on the cost func-
tion (13) (cf. von Stryk and Glocker (2001)).

It should be noted that the briefly outlined numerical
solution approach aims at the general case of nonlinear
hybrid dynamical systems. In special cases, e.g. for
clocked hybrid piecewise affine systems Bemporad
and Morari (1999), the optimal control problem can be
transformed to a mixed-integer linear program which
can be solved more easily by efficient methods from
discrete optimization.

5. RESULTS

5.1 Optimal vehicle trajectories and sequencing

First we consider the problem of determining the
optimal sequence of four waypoints and physics-based
trajectories for the round-trip of a vehicle starting in
the origin as described in Sect. 3.1. As cost function
(13) for the multiphase MBOCP

min
u, qb

J [u, qb] := tf + 0.002

∫ tf

0

(a2
x + a2

y) dt (17)

has been chosen which must be minimized subject
to the vehicle dynamics model (4), initial and final

0

100

200

300

400

0 200 400 600
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vehicles starting in the origin.

(b) Optimal trajectories of vehi-
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Fig. 6. Solution for two cooperating vehicles

conditions and constraints as well as the switching
conditions (6). A computed solution of this problem
for an optimal round-trip of one vehicle from the
origin to four waypoints including optimal switching,
i.e. visiting, times is depicted in Fig. 4 right.

Next, we consider the problem of five waypoints
which must be visited by exactly one of two cooperat-
ing vehicles I and II starting in the origin (Fig. 6(a)).
As cost function the overall time needed to visit the
cities and to complete the round-trip may be used.
But the solution may not be unique, because it is not
defined, what the faster vehicle does, while the slower
one is still on its way. Uniqueness of the solution can
be achieved, if a sum of time and energy consumption
of the vehicles is minimized as in Eq. (17).

For the problem formulation each of the waypoints is
associated with a further binary variableq̂bi indicating
which of the two vehicles will visit it

q̂bi

(

xI(ti)
yI(ti)

)

+ (1 − q̂bi)

(

xII(ti)
yII(ti)

)

− Cqbi = 0,

for i = 1, . . . , nc. As six waypoints are assumed,
the problem consists of2

∑5

k=1 k! = 306 possible
discrete solutions including those where one of the
vehicles visits all waypoints. In Fig. 6(b) a computed
solution of the optimal vehicle trajectories and way-
point assignment and sequencing problem is depicted.

5.2 Optimal role assignment and robot trajectories

As an example of the application given in Sect. 3.2 we
consider the task-oriented dynamic role assignment
and trajectory optimization of two strikers. Three dif-
ferent discrete states are considered



Fig. 7. Optimal trajectories for two strikers with fast
(left) and slow (right) dribbling capabilities.

velocity of striker 1

velocity of striker 2

velocity of the ball

Fig. 8. Solution of the two strikers versus one defender
example in state space(x, y).
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For the purpose of demonstration, the statekick-ball-

to-pos. is assumed to take place instantaneously at a
switching time. The task of the two strikers depicted
by white triangles in Figs. 7 and 8 is to play the ball,
whose initial position is in rest in the upper half of
the middle line, into the goal and to minimize a cost
function (13) where

ϕns
= ρt · tf , ϕi = 0, i = 1, . . . , ns − 1,

Li = ρe · ‖u(t)‖2
2, i = 1, . . . , ns,

(18)

with constant weightsρe, ρt.

First, the effect of different locomotion properties is
studied (Fig. 7). A faster dribbling capability of a
robot (αB = 0.9) leads to dribbling and direct kick
to the goal by the robot close to the ball. For a slower
dribbling capability (αB = 0.1) it is faster to kick the
ball into the goal if a double pass is applied.

Next, it is assumed that the there is one defending
robot which has a known reactive behavior and moves
with its maximum speed from its initial position to-
wards the current position of the ball. The two attack-
ing players must ensure that the ball comes not closer
to the defender than a certain distance. Sequence of
actions of both strikers, switching times of the phase
transitions and robot trajectories are obtained as the
numerical solution of a nonlinear hybrid optimal con-
trol problem with five phases (Fig. 8).

6. DISCUSSION AND OUTLOOK

The computational time for solving the scenarios on
a recent PC ranges from a few minutes for scenario
5.2 to about half an hour for scenario 5.1. The compu-
tational time easily scales up enormously by increas-
ing the number of robots or vehicles involved, the
number of discrete states (waypoints or basic behav-
iors) or the dimension and nonlinearity of the vehicle
dynamics. But improvements in hybrid optimal con-
trol methods can be expected in the next years. The
presented approach is especially suited as an offline
planning or design method for multi-vehicle problems
where utilizing the locomotion dynamics is essential
for successful task achievement and where reasonably
accurate simulation models are available. The hybrid
optimal control solution also allows to evaluate the
performance of real-time capable, but heuristic and
approximative multi-vehicle control methods. General
models of vehicle dynamics can be included in (2)
as well as different sensor models of the vehicles as
constraints in (15).

As a consequence of the principle of optimality in
optimal control all vehicles having exactly the same
world model information and solving the optimal con-
trol problem individually will obtain the same solu-
tion. However, noise and data inconsistencies must
be considered for real robots. Synchronization will be
required during execution of plans. Communication
between vehicles can be included in the formulation
with hybrid automata as an additional state. Stability
of the trajectories against disturbances can be included
to some extent in the hybrid optimal control problem
formulation.

Ongoing work considers a systematic modeling of
nonlinear and linear, e.g. piecewise affine, hybrid op-
timal control problems and aims at the development
of online planning methods based on mixed-integer
linear programming and their combination with hier-
archical state machines for behavior programming for
individual robots and teams Loetzsch et al. (2006).

Acknowledgment.This research was supported in part
by the German Research Foundation (DFG) under
grant no. STR 533/4-1.

REFERENCES

A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints.Auto-
matica, 35(3):407–427, 1999.

M. Buss, M. Glocker, M. Hardt, O. von Stryk, R. Bu-
lirsch, and G. Schmidt. Nonlinear hybrid dynam-
ical systems: modeling, optimal control, and ap-
plications. In E. Schnieder S. Engell, G. Frehse,
editor, Modelling, Analysis and Design of Hybrid
Systems, volume 279 ofLecture Notes in Control
and Information Sciences, pages 311–335, Berlin,
Heidelberg, 2002. Springer-Verlag.



L. Chaimowicz, V. Kumar, and M.F.M. Campos. A
paradigm for dynamic coordination of multiple
robots.Autonomous Robots, 17(1):7–21, 2004.

M. G. Earl and R. D’Andrea. A decomposition ap-
proach to multi-vehicle cooperative control.sub-
mitted to IEEE Trans. on Robotics, 2005.

T. Furukawa, F. Bourgault, H. F. Durrant-Whyte, and
G. Dissanayake. Dynamic allocation and control of
coordinated UAVs to engage multiple targets in a
time-optimal manner.IEEE Intl. Conf. on Robotics
& Automation, pages 2353–2358, 2004.

J. Gancet, G. Hattenberger, R. Alami, and S. Lacroix.
Task planning and control for a multi-UAV system:
architecture and algorithms. InIEEE Intl. Conf. on
Intelligent Robots and Systems (IROS), Edmonton,
CAN, 2005.

B. Gerkey and M. Matarić. Sold!: Auction meth-
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