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Abstract: The software framework RoboFrame has been designed to meet the
special requirements for teams of lightweight autonomous heterogeneous robot
systems. Due to platform abstraction and modern object oriented design, it allows
the reuse of components of common robot control software. It can also efficiently
be implemented on new platforms and enables different control architectures for
different tasks. For the exemplary application in autonomous robot soccer teams
configurable and portable algorithms for vision, world modeling, behavior and
motion control have been developed on top of the framework. For debugging,
controlling and monitoring, an extendable graphical user interface and a generic
simulator package have been implemented around the framework. Based on these
instruments, different applications for homogeneous and heterogeneous robot
teams can be realized in short time.

Keywords: Reusable robotic software, lightweight mobile autonomous robots,
cooperation of heterogeneous robots, tools for debugging and monitoring, robot
simulation.

1. INTRODUCTION

During the last decade there was an increased
interest in cooperative heterogeneous mobile robot
systems. Also driven by increasingly more ad-
vanced and powerful sensors and actuators more
sophisticated tasks like rescuing people in haz-
ardous area, observing a burning field (Ollero et
al., 2005) can be addressed including highly dy-
namic scenarios as the annual robot soccer com-
petition (RoboCup, n.d.). The underlying program
code to accomplish such difficult tasks is very
complex and efficient tools for designing and main-
taining control software for different applications
are needed.

In this paper we describe our approach to en-
counter the inherent complexity in developing
robot control software for teams of lightweight au-
tonomous robots. The approach is mainly targeted
to small robotic systems in the low and mid price
range which are characterized by only a small pay-

load and the requirement of stabilizing locomotion
dynamics using inertial sensors like gyroscopes
and accelerometers as it is the case for humanoid
robots and unmanned aerial vehicles and also for
small unmanned marine and offroad vehicles to
some extent. Small bipedal robots as well as un-
manned aerial vehicles may carry only an onboard
computer with relatively low computational power
and energy consumption but must maintain sta-
bility during locomotion. The lightweight aspect
also refers to software and components for sensory
perception, which can be executed with a good
performance on such a robot.

As basis for developing control software for differ-
ent applications the framework RoboFrame pro-
grammed in ANSI C++ has been designed. The
implementation makes use of modern object ori-
ented design techniques, like generic program-
ming, multiple inheritance and common design
patterns. From a software technology point of view
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this allows the implementation of very low cou-
pled algorithms for various subtasks like vision,
localization, behavior control and motion, which
enables fast adaption and recomposition for dif-
ferent kinds of robots.

RoboFrame also contains an extendable graphi-
cal user interface which supports development by
high-level visualization of all data. Also meta in-
formation such as process layout and execution
time can be visualized and edited during runtime.
For tests without the real hardware, a generic sim-
ulation package has been developed which allows
hard- and software tests in the loop.

The combination of a flexible software framework
in conjunction with tools for debugging and main-
tenance actively supports and accelerates develop-
ment of robot control software.

2. STATE OF RESEARCH

Currently used tools in software development for
mobile robots cover only partly the special require-
ments of heterogeneous lightweight autonomous
robots. E.g. the widely used mobile platform Pi-
oneer 2dx (ActivMedia, 2002) is equipped with
software and a GUI for vision, navigation, local-
ization, and mapping. However, the software is
only partly open source. Therefore, it cannot be
adapted to new sensor hardware, and only sup-
ports the specific wheeled mobile platform.

The multi robot middleware system MIRO (Utz
et al., 2004) is primary designed for robots with
multiple sensors with own processing units. It has
mechanisms for logging single and multiple chan-
nel information. Sequences of a robot soccer game
can be recorded and replayed for later analysis
with a log player. The base framework and the
applied tools are optimized for a CPU with a high
computational power, thus limiting their usability
on lightweight systems with limited payload.

For the four legged robots AIBO a robot control
tool box with many application has been devel-
oped by the GermanTeam (Röfer et al., 2005),
which is supported only for Windows. The added
dynamics simulator (Laue et al., 2005) can handle
not only the four legged robots, but also different
legged and wheeled robot types.

The advanced dynamics simulator tool for hu-
manoid robots (Kuffner et al., 2003) is not pre-
sented with a logging option for exchanged data
on the real robot system thus not supporting the
development process of robot control software for
new applications, nor information on the frame-
work is given.

The Coupled Layer Architecture for Robotic Au-
tonomy (CLARAty) represents a framework for
reusable robotic components (Nesnas et al., 2006).
It allows the simple integration of new technologies
to existing robots. CLARAty’s main focus are
wheeled robots, i.e. for exploration of unknown
territories.

The framework Alliance (Parker, 1998) is applied
mainly on wheeled robot systems. The software

Framework MIRO GT CLARAty Player/Stage
lightweight
platforms

– o – -

monitoring
capabilities

+ + + +

different OS + – + –
robot simu-
lator

– + + +

modularity,
reuseability

+ + + +

Table 1. Comparison of existing frame-
works with different features.

is fault-tolerant designed and is modular to sen-
sor extension. In the project Centibots (Konolige,
2002) the framework for a very large team of
robots is developed. The software is designed to
execute basic structured tasks on the robots as
exploration of an unknown environment. Adap-
tion to heterogenous lightweight robots is not
easily possible. The main focus in the architec-
ture for tightly coupled multi-robot cooperation
by (Chaimowicz et al., 2001) is on the role dis-
tribution for wheeled robots. The adaptability to
additional sensors or a different locomotion system
by legs or in the air is not described. For none
of these three projects supporting tools for the
software and control architecture are presented in
the literature.

The open source project Player/Stage consists of
two parts: a robot control interface running as
a server on a Linux or Unix based robot and
a simulation backend. Its main focus is the re-
search in robot and sensor systems. The separation
into two parts causes an additional computational
overhead, which is not adequate for lightweight
autonomous robots. These samples of frameworks
and tools for mobile robots all have special fea-
tures and advantages, however none of it comes
with features of controlling and monitoring a soft-
ware and control architecture with low compu-
tational power as found in lightweight systems,
running on different operating systems. Different
frameworks are compared in Tab. 1.

3. FRAMEWORK AND MODULES

To support and ease the development of robot con-
trol software among several different platforms the
object oriented framework RoboFrame has been
developed to be used on various lightweight plat-
forms and operating systems (OS). This has been
achieved by implementing a thin hardware and
OS abstraction layer providing an unified interface
for network and multithreading services below the
framework’s platform independent core. To meet
the special requirements of controlling potentially
instable walking or flying systems, execution under
realtime constraints is guaranteed if provided by
the underlying OS.

When porting the framework to a new platform,
only the abstraction layer has to be adapted.
Currently the framework has been ported to Linux
(x86, MIPS), BSD Unix, Windows 2000/XP and
the realtime OS Windows CE. It is used on three
different types of small humanoid robots (with



Fig. 1. Message flow within the framework.

Linux and Windows CE) and the wheeled robot
Pioneer 2dx (with Windows) (Fig. 5). For testing
with the robot simulator (cf. Sect. 4.2), it can be
compiled and executed on Windows XP.

3.1 Architecture of Applications

The framework does not impose any special con-
trol paradigm on the developer. The software mod-
ules can be arranged not only in a hierarchical
deliberative structure, but also in almost any other
behavior control architecture. Execution of the
modules and data exchange between them is con-
trolled by the framework.

An application may consist of one or more threads
of execution which may be distributed among
several CPUs if available. Any number of modules
may be executed sequentially within one thread.

Data exchange between the modules is provided
by a messaging system (see Fig. 1). Each module
declares which kind of messages it may receive and
send and is provided with a buffer for each kind of
messages. The framework transparently transfers
any message emitted by one module to all modules
receiving this kind of message. If the emitting and
receiving module reside within the same thread,
the messages need not be copied due to a special
buffer allocation scheme which merges outgoing
and ingoing buffers for the same kind of message
within one thread. Messages are only transferred
from one thread to another, if one of the modules
of the receiving thread has a suitable incoming
buffer.

Due to this flexible messaging system very low
coupling between the modules is achieved and a
robot control software can be extended easily by
adding further modules. As there are no predefined
communication paths, any newly added module
can receive any kind of message existing in the
application. Any module may be used in a new
context as long as the input messages needed by
this module are provided by some other module.
This enables an easy integration of other kinds of
software, e.g. graphical user interfaces (cf. Sect.
4.1) or simulations (cf. Sect. 4.2).

3.2 Modules

Using RoboFrame several platform independent
modules have been developed which can be in-
tegrated into various robot control applications.
Among others, there exist modules for the tasks of

Fig. 2. Architecture of the control software used
for the application robot soccer (rectangles
describe modules, ovals describe messages).

vision, world modeling, robot behavior and motion
control. Due to modern object oriented design,
they are easily adjustable to work in different
configurations and domains without the need to
modify the source code while on the other hand
allowing robust and fast execution. The modules
have been integrated into the humanoid robot con-
trol architecture used at RoboCup 2006 (Fig. 2).

3.2.1. Vision The vision system handles cam-
era data and provides the following modules with
information about objects detected and their rela-
tive position to the robot. It consists of three mod-
ules for image acquisition, color segmentation and
object recognition. Only image acquisition is hard-
ware dependent and requires knowledge about the
used camera and the image resolution. Currently,
three different camera types are supported, others
can be added easily without changing the higher
levels of vision. The use of abstraction layers allows
subsequent modules to be independent of these
configurations, but if required, it is still possible to
integrate domain specific knowledge to gain better
detection results. Adding or removing components
for the objects of interest allows a quick adaption
of object recognition to different tasks.

3.2.2. World modeling World modeling uses
data from image processing to calculate the pose
of the robot and the position of obstacles. In a
soccer scenario also position and speed of the ball
is modeled and predicted with a Kalman filtering
technique. For the task of self localization Markov
localization with particle filtering (Fox et al., 1999)
is used. Any information generated by the world
modeling module of one robot can be distributed
to all collaborating robots enabling improved team
cooperation.

3.2.3. Behavior Depending on the world model
data, the behavior module generates requests for
different actions of the robot. The robot’s behav-
ior is controlled by a hierarchy of state machines
which is described using the language XABSL
(Loetzsch et al., 2006). Figure 3 shows a visual-
ization of an option and the following actions.



Fig. 3. A XABSL state machine (gray) describing
the behavior for approaching the ball and po-
sitioning towards the opponent’s goal. When
needed, basic behaviors (oval) or other state
machines (rectangles) are activated.

3.2.4. Motion The motion module directly com-
municates with the hardware of the robot. It
receives motion requests from the behavior and
transforms them into control messages for the
robot. Further it reads the motor encoder and
inertial sensors and transfers their data to the
other modules. These tasks are highly dependent
on the robot in use and thus the module has to be
adapted for each new robot.

3.3 Communication

For communication between multiple robots, con-
nection oriented TCP or datagram based UDP
can be used. Depending on the requirements, the
communication can be established on different ab-
straction levels and with different types of trans-
parency. This way it is either possible to use data
from a remote system as if it came from the own
sensors or to differ explicitly between messages
from different robots.

4. DEVELOPMENT TOOLS

Beside the application running on the robot,
tools for monitoring the state of the robot, both
concerning hardware and software, are required.
These include tools for development, test and
validation of functions for coordination and co-
operation of autonomous robot teams as well as
functions of individual robots. Efficient tools en-
able the developers to gain a higher insight into
complex processes thus leading to better results
in shorter time.

4.1 Graphical user interface

The framework provides a graphical user interface
(GUI), which uses the same communication mech-
anisms as the framework described in the previous

section. The GUI can connect with multiple robots
simultaneously via TCP based data connections
and exchange bidirectionally any kind of data. To
ensure platform independency for the GUI, it is
based on the C++ GUI toolkit Qt from Trolltech,
which is available for various platforms.

The GUI is used for debugging, monitoring and
controlling and can be extended with dialogs for
any kind of visualization or interaction. Dialogs
share the same principle as modules to be able to
receive and send any kind of data. The API allows
extending the graphical user interface with own
dialogs. The framework includes some general-
purpose dialogs for frequent scenarios.

The message recording dialog can be used to
store any kind of data emitted by a running
application to a binary log file.These log files can
be investigated offline for debugging or be replayed
to an application. This feature allows an easy
comparison of different modules accomplishing the
same task by providing them with the same input
data and comparing their respective output data.

The chronometer dialog visualizes the runtime and
call frequency of processes and modules of an
attached application.Modules can even provide de-
tailed zoning of their execution time. This feature
allows detection of performance bottlenecks and
therefore performance optimizations in the specific
parts of the source code. Because of the amount of
data accruing during profiling, these information
are generated on demand only.

Another dialog is capable of visualizing the process
layout of an attached application in a tree-based
view. Furthermore the timings of the processes
can be adjusted and modules can be disabled
and re-enabled during runtime. This feature allows
for faster testing of different process layouts and
timings.

Outside the framework multiple dialogs have been
created to allow debugging and visualizing the
various algorithms used in the RoboCup specific
modules.

4.2 Robot simulation

It has already been shown that it is easy to
receive messages from and send messages to a
running robot control application for controlling
and debugging the application. The communica-
tion mechanism further on can be used to connect
the application to a simulation software replacing
some or all parts of the real robot hardware in
various configurations.

Currently the simulation’s main task is testing
of the robot’s behavior. In robotic soccer this
requires simulation of the robot’s cameras and
motions (see Fig. 4). Due to the camera’s motion,
a 2D simulation as in the Player/Stage project
(Gerkey et al., 2003) does not suffice to gen-
erate the needed input-data, thus a 3D simu-
lation has been developed. In contrast to other
3D simulation systems like Gazebo (Koenig and
Howard, 2004), SimRobot (Laue et al., 2005) or



Fig. 4. Top: Simulated striker robot approaching
the ball (left) and image of the simulated
head camera (right). Bottom: Simulation of
humanoid and a wheeled Pioneer 2dx with
gripper performing a cooperative task.

UCHILSIM (Zagal and Ruiz-del Solar, 2004) the
simulation is not based on the robot’s dynamic. In-
stead the motion simulation is based on the robot’s
kinematics with the additional constraint, that at
least one foot is touching the ground each moment.
This leads to a less accurate model of the motion,
but avoids the simulated robot from falling over,
thus enabling extended tests of the higher level
control software like behavior and vision.

On a system equipped with an Intel Centrino Duo
(1.666 GHz) and standard chipset graphics (Intel
945GM Express), it is possible to simulate two
teams of 4 humanoid robots with two cameras per
robot in realtime using only one of the cpu’s cores.
The rate of the motion-simulation is 100 steps
per second, each simulated camera generates 10
frames per second. The simulator is not limited
to humanoid robots and soccer application. Also
other applications and wheeled robots are possible
(see Fig. 4).

5. APPLICATIONS

In the authors’ group extensive use has been made
of the described framework and supporting tools.
Some applications are described in the following.

5.1 Benchmarking and parameter tuning of world
modeling

The world modeling module only depends on mo-
tion information of the hardware of the robot
and the output data of the vision module. This
information is merged in a statistical model of the
pose and environment of the robot.

To test various versions and parameter sets of the
self localization, all motion and camera data of
the physical robot are recorded while the robot
is performing several actions (walking straight
forward, turning in place, etc.). At the same time
the robot pose is measured. Later the generated

Fig. 5. Legged and wheeled robot systems, sup-
ported by the framework.

log files are replayed to the different version of
the module and the modules output is compared
to the real position of the robot measured during
recording.

A similar approach is taken to optimize the pa-
rameters of Kalman filter used for ball modeling.
Again all motions and camera images of the robot
are recorded, while the ball is moved along a pre-
defined trajectory on the playing field.

5.2 Developing robot and team behavior

The selection of robot motions is mainly deter-
mined by the behavior module. An extensive test-
ing of this module is crucial for robot performance
in solving a certain task.

Testing of behavior control in simulation. Due
to the limited availability of real robots and the
high strain on the robot hardware during exten-
sive tests, it is desirable to have other means
for testing the behavior control software. As the
behavior directly reacts to the changing situation
depending on the robot motion, approaches using
log files as described in Sect. 5.1 are not feasible.
This problem is overcome by the use of the robot
simulation described in Sect. 4.2 in combination
with the framework. Debugging the behavior on
a real robot is very difficult, as undesired actions
may be caused not only by undesired effects in
the behavior control software but also by distur-
bances as slipping of the robot or distorted camera
images. By using the simulation these additional
sources of error are eliminated and debugging of
the plain behavior control software is enabled.
This approach also enables multiple developers
simultaneously testing robot behavior regardless
of the availability of real robots. Also different
scenarios can be easily set up without the need
for real objects leading to reduced hardware and
material costs.

Soccer. Developing of a behavior for a team of het-
erogeneous robots requires knowledge of all robot
states. With the mechanisms of RoboFrame and
the graphical user interface, two dialogs have been
designed for controlling and monitoring, which
significantly support to developers. All data used
to find a decision in the XABSL behavior can be
visualized. It is also possible to modify the robot’s
decision tree to test specific situations.



Fig. 6. Two robots of the authors’ team (left and
right) during RoboCup Japan Open 2006 in
2-on-2 soccer game against Team Osaka.

Remote debugging and development. If several de-
velopers of robot control software and modules
for the same application are working together
spatially separated then communication between
them is very important. Using log files with
recorded data allows analysis of robot performance
on distant places to the real robot and environ-
ment. During RoboCup Japan Open 2006 it was
possible to optimize and adjust the robot control
software and modules remotely thus reducing the
number of developers needed on site.

Application to different robot types. The modular-
ity of the framework and easy exchange of the
robot platform could be demonstrated with dif-
ferent robots and operating systems: the wheeled
robot platform Pioneer 2dx and Windows 2000
(achieved within a few days only) and small hu-
manoid robots with Linux Mipsel or Windows CE
(Fig. 5).

6. CONCLUSIONS AND OUTLOOK

An approach to handle the difficulties in devel-
oping robot control software and modules for
teams of lightweight autonomous heterogeneous
robots has been presented based on the framework
RoboFrame. The reuse of algorithms for vision,
world modeling, behavior and motion control on
different platforms and the support of the de-
velopers in monitoring and debugging with the
herein designed graphical instruments has been
described. Several applications in robot soccer and
beyond demonstrate the practical usability of the
framework and the tools built on top of it.

During the RoboCup Japan Open 2006 the au-
thors’ team participated successfully in the 2-on-2
competitions (Fig. 6), during the RoboCup 2006
a 3-on-3 demonstration game was performed.

Midterm objectives are the extension and im-
plementation of the framework and tools on
lightweight outdoor robotic systems for the use
in autonomous search and rescue operations. For
this purpose, small unmanned marine and offroad
ground vehicles are currently investigated.
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