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Abstract

We consider a hydraulic capture application for water resources management that in-
cludes a fixed installation cost in addition to operating costs. The result is a simulation-
based, nonlinear, mixed-integer optimization problem. The motivation is that our prelim-
inary studies have shown that convergence to an unsatisfactory, local minimum with many
wells operating at low pumping rates is common when the fixed cost is ignored. Such opti-
mization tasks are not unique to subsurface management, rather efficient simulation-based
methods are needed in the whole field of computational engineering.

All the approaches used below do not need the gradient of the objective function, only
function values for minimization. In one approach, we bypass including the number of
wells as a decision variable by defining an inactive-well threshold. In another approach,
we use penalty coefficients proposed in the literature to transform the discontinuous prob-
lem into a continuous one. For the two above formulations, we use the implicit filtering
algorithm. In the third approach, we introduce a mixed-integer problem formulation and
use an iterative stochastic modeling technique to build surrogate functions that approx-
imate the objective function. With this new procedure the use of a branch-and-bound
technique becomes possible to solve the mixed-integer problem in contrast to methods
working directly on the simulation results, which impedes relaxation of integer variables.
We present promising numerical results on the benchmarking problem and point the way
towards improvement and future work.

1. INTRODUCTION AND MOTIVATION

A hydraulic capture (HC) problem involves the placement of wells to alter the direction
of groundwater flow and halt the migration of the contaminant plume [2]. Subsurface
simulation is needed to understand the response of the aquifer and predict the fate of the
plume. Optimization techniques work in conjunction with the simulators to determine the
optimal well-field that meets plume containment constraints at a minimal cost. Typically
these numerical simulation codes have been developed for many years and have usually
not been designed to meet the specific needs of optimization methods as, e.g., providing
gradient information. Decision variables can be real-valued, in the case of pumping rates
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and well locations, or integer-valued in the case of the number of wells in the system
design.

The starting point for such a problem is to develop an objective function that measures
the costs to design and operate the well-field. The formulation of the cost objective and
the constraints, which include the remediation design aspects, typically dictates which
optimization approach can be used. Unfortunately, formulation simplifications are often
made due to the availability or understanding of optimization software. It is becoming
more accepted that fixed installations costs included with operating costs are needed when
remediation time horizons are short, say five or ten years [18, 21]. Using the cost data in
[20], it costs roughly $20,000 to install an extraction well and $1,000 to operate the well
for a year. Ignoring installation costs, and starting with a large set of “candidate wells”,
can result in a suboptimal final system design, with many wells operating at low pumping
rates. Typically, low-pumping wells are then consolidated and optimization is re-run with
the smaller set of candidate wells [1]. An approach that selects the appropriate number
of wells in the course of the optimization is much more attractive.

In this work we focus on formulations that include fixed installation costs as well as oper-
ating costs, resulting in a simulation-based nonlinear mixed-integer optimization problem.
The challenge in this formulation is the integer variable for the number of wells in the
system design. Removing a well from the design leads to a large decrease in cost, meaning
optimizers must be equipped to either handle a mixed-integer, approximate mixed-integer,
or a black-box problem with discontinuities in the objective function. Moreover since eval-
uation of the objective function requires numerical results from a simulation which may
add noise, derivative information is unavailable. Gradient based optimization methods
are not appropriate for these applications, hence methods that rely only on function val-
ues are more appealing. We compare three derivative-free optimization approaches on
an HC application proposed in the literature specifically for benchmarking [20]. This
HC problem has been the focus of studies comparing constraint formulations, subsurface
simulators, and optimization approaches [16, 7].

In this study we compare three approaches to handle the installation cost. In the first,
the objective function remains discontinuous and we use an inactive-well threshold to
remove wells from a system design. In the second, we reformulate the problem to preserve
continuity by multiplying the installation component by a penalty term. For the above two
approaches, we use an implementation of the implicit filtering algorithm for minimization.
In the third, we use an iterative stochastic modeling technique to build surrogate functions
that approximate the original objective function. With this procedure a branch-and-
bound technique combined with sequential quadratic programming is applicable to solve
the mixed-integer problem in contrast to methods working directly on the simulation
results, which impedes relaxation of integer variables.

We proceed by describing the HC problem, the techniques for handling the installation
cost term, and the applied optimization algorithms. We present numerical results in
section 5 and conclude by pointing the way towards improvements and future work.
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2. HYDRAULIC CAPTURE BENCHMARKING PROBLEM

In [20], an HC problem is posed for the optimization and environmental engineering
communities to use for benchmarking purposes. We give a brief overview of the problem
here.

The decision variables are the number of wells, n ≤ N, the pumping rates {Qi}
n
i=1[m

3/s],
and the {(xi, yi)}

n
i=1 locations. The objective function is the sum of the installation

(capital) cost J c and the operational cost Jo given by [20, 19]:

J =
n∑

i=1

c0d
b0
i +

∑

Qi<0.0

c1|Q
m
i |

b1(zgs − hmin)b2

︸ ︷︷ ︸

Jc

+

∫ tf

0

(
∑

i,Qi<0.0

c2Qi(hi − zgs) +
∑

i,Qi>0.0

c3Qi

)

dt

︸ ︷︷ ︸

Jo

. (1)

In J c, the first term accounts for drilling and installing all the wells and the second
term represents the additional cost for pumps for extraction wells. Note that Qi < 0 for
extraction wells and Qi > 0 for injection well. In Jo, the term pertaining the extraction
wells includes the lift cost associated with raising the water to the surface. The cost
coefficients and exponents, cj and bj are specified in [20]. In (1), di = zgs is the depth
of well i, Qm

i is the design pumping rate, and hmin is the minimum allowable head. We
use the values hmin = 10[m], Qm

i = ±0.0064[m3/s], and di = 30[m] for each pump i. The
simulation time is tf = 5 years.

The hydraulic heads, hi[m] for well i, also vary with the decision variables and obtaining
their values at each iteration requires a solution to the partial differential equation that
models saturated flow. We use Modflow96 [17] for the saturated flow simulation.

We impose the following constraints;

−0.0064 ≤ Qi ≤ 0.0064[m3/s], i = 1, ..., n (2)

30 ≥ hi ≥ 10[m], i = 1, ..., n (3)

QT =
n∑

i=1

Qi ≥ −0.032[m3/s]. (4)

To contain the plume, we implement a head gradient constraint at specified locations
around the perimeter of the plume. Consider

h
(1)
k − h

(2)
k ≥ d[m], k = 1, ...,M, (5)

where M is the number of head gradient constraints imposed around the boundary,
h(1), h(2) are hydraulic head values at specified adjacent nodes for each constraint k, and
d is the bound on the difference. Calibration and postprocessing is needed to determine
the values of k and d that ensure the plume is captured [1]. For this work we use M = 5
and d = 10−4. Note that (3) and (5) require the output from a numerical flow simulation.
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3. HANDLING THE INSTALLATION COSTS

3.1. INACTIVE-WELL THRESHOLD. The reference approach from [7] to deter-
mine the number of wells in the design is to set an inactive-well threshold, so that if a
well rate becomes low enough, the well is removed from the design space. This eliminates
the integer decision variable entirely. For this work, if

|Qi| < 10−6[m3/s], (6)

then the well rate is set to zero and well i is not included in the installation cost. In-
corporating (6) leads to large discontinuities in the minimization landscape and a drastic
decrease in cost once the well rate falls into this region of the design space.

3.2. PENALTY COEFFICIENTS. To reformulate the problem as a continuous one,
the authors of [18] propose an approximate mixed-integer approach using a polynomial
penalty coefficient method. Here a penalty coefficient is given by

βi = Qi/(Qi + m), (7)

where 0 << m < 1 is a small number. This penalty term is then multiplied by the fixed
cost for each well in J c as part of (1). Note that in (7), if Qi = 0, then βi = 0 and the
fixed cost for well i does not contribute to the objective function. For this work we used
m = 10−6.

3.3. MIXED-INTEGER FORMULATION. If we take the system as it is given nat-
urally, the management decisions are to install or de-install wells, to move the wells to
better positions, and to set the pumping rates in order to minimize total costs subject to
constraints (2) through (5).

Motivated by this thought, we introduce a binary vector s ∈ {0, 1}n, with si as a switch
for installation or de-installation of the i-th well. This changes the original capital costs
term J c into

J̃ c =
n∑

i=1

sic0d
b0
i +

∑

Qi<0.0

sic1|Q
m
i |

b1(zgs − hmin)b2 , (8)

as well as the operating costs term Jo to

J̃o =

∫ tf

0

(
n∑

i,Qi≤0

sic2Qi(hi − zgs) +
n∑

i,Qi≥0

sic3Qi

)

dt. (9)

The installation costs J̃ c are not only simulation independent as in (1), continuous in
Qi for s ∈ {0, 1}n, but also continuous in s, if the integrality constraints are relaxed,
s ∈ [0, 1]n. This is elementary for the application of a branch-and-bound approach to find
a candidate (s∗, Q∗, x∗, y∗), that minimizes J̃ = J̃ c + J̃o.

4. OPTIMIZATION APPROACHES

4.1. IMPLICIT FILTERING. Implicit filtering (IF) is a projected quasi-Newton me-
thod that uses a sequence of finite difference gradients [11]. The difference increment is
reduced as the optimization progresses to take advantage of the fast convergence of quasi-
Newton methods near a local minimum. Because (IF) relies on finite difference gradients,
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only function values are needed to guide the minimization. For this work, we use a FOR-
TRAN implementation called IFFCO, with the symmetric rank one quasi-Newton update
[5]. We used the default optimization parameter settings. There are several convergence
theorems for implicit filtering, which was particularly designed for the optimization of
noisy functions, and indeed IFFCO has been successfully applied to other groundwater
management problems [7, 8, 3].

4.2. ITERATIVE UPDATED SURROGATE-FUNCTIONS. Solving mixed-inte-
ger nonlinear problems is a challenging task, even when the objective is described ana-
lytically, because the process combines difficulties from both continuous and discrete
optimization. An overview of optimization methods for these problems is given in [4].
In our approach we use a classical branch-and-bound (BB) method to guaranty the inte-
grality constraints on the switching vector s for new candidate system designs (s,Q, x, y).
The BB starts with relaxing the integrality constraints on s so only a standard nonlinear
program (NLP) has to be solved. However, this normally doesn’t carry out a feasible
minimizer of J̃ , with s ∈ {0, 1}n, so that the different si are set step by step to one
and to zero, to generate a BB-tree. The leaves of the tree represent all possible zero-one
combinations for s. All branches in the BB-tree with higher function values than prior
found feasible solutions are discarded from further evaluations. See also Grossmann [12]
who characterizes such techniques based on the decomposing the optimization problem,
or the textbook of Floudas [6] for a broader introduction on these methods.

The problem considered here is challenging in that the operating cost depends on the
results of the subsurface flow simulation, so that J̃ is not relaxable with respect to s and
as described above, and gradient information is not available. To avoid these problems, we
apply an extension of the classical design and analysis of computer experiments (DACE)
approach [22] described in [13]. Here, the underlying process with real-valued and integer-
valued variables is approximated to build an analytic surrogate function with real-valued
variables only. Under the assumption of a real-valued s ∈ [0, 1]n, a DACE-model Ĵo for
J̃o , which satisfies the interpolation constraints

Ĵo(s(j), Q(j), x(j), y(j)) = J̃o(s(j), Q(j), x(j), y(j)), for j = 1, ..., N,

for a set of system designs (s(j), Q(j), x(j), y(j)), j = 1, ..., N , is given by

Ĵo(s,Q, x, y) = vJ̃o(s,Q, x, y)βJ̃o + ZJ̃o(s,Q, x, y). (10)

The first component, consisting of vJ̃o as a vector of basis functions and βJ̃o as real-valued
vector, describes the global drift or trend. The second component ZJ̃o is a stationary
Gaussian random function with a mean of zero, a covariance controlled by a correlation
function R, and a variance σ2. Z models the lack-of-fit between the trend and the in-
terpolation points. For more details in theory of computer experiments, compare to [14].
The DACE-models here are evaluated by the Matlab Kriging Toolbox of Lophaven et.al.
[15].

This consideration yields a surrogate objective function Ĵ = J̃ c + Ĵo, which no longer
depends on simulation evaluations. Under the assumption, that Ĵ reflects the major
characteristics of J̃ , a minimum of Ĵ is a promising system design for the original problem.
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In contrast to other investigated approaches we include the constraints on the flow
direction (5) explicitly into the NLP-subproblems by generating DACE-models analog to
(10) by

d ≤ ĝ = vg(s,Q, x, y)βg + Zg(s,Q, x, y), (11)

with interpolation constraints for the set of N basis points

ĝk(s
(j), Q(j), x(j), y(j)) = h

(1)
k (s(j), Q(j), x(j), y(j)) − h

(2)
k (s(j), Q(j), x(j), y(j)),

for j = 1, ..., N , and k = 1, ..,M . These NLP-subproblems at the different knots and
leaves of the BB-tree are be solved via sequential-quadratic-programming (SQP) methods
[10], because numerical noise is avoided by working on the surrogate functions. In our
approach we use SNOPT for Matlab [9], which returns the best candidate found, and its
merit function value to the BB as the result in a knot. The basis points for the DACE-
model are not determined a priori by a space filling set of system designs [14]. We prefer
an update strategy where new points improve the approximation quality of the DACE-
model (10) iteratively. This way, all information obtained from earlier simulation runs is
included in the decision for the new basis points.

The minimizer of the surrogate function Ĵ is added to the set of basis points for the
DACE-model in the next iteration step. Such sequential procedures are discussed in
greater detail in [23]. However, in contrast to the update strategies discussed therein, we
use convergence to a previously determined system design as criteria to stop minimization
on Ĵ and to search for a new simulation candidate. If the actual found minimizer is
included in an ǫ-ball around a basis point (s(j), Q(j), x(j), y(j)), j = 1, ..., N , the global

approximation quality of Ĵo, hence also for ĝ, is improved in regions of the design space,
which are the “most unexplored”. This is measured by the expected mean square error
(MSE) of the DACE-model. The system design that is added to expand the set of basis

points maximizes the MSE of Ĵ . The initial basis points for the HC-problem are taken
from the first iterations of the reference solution in [7]. The main procedure is summarized
in a general setting in the following algorithm:

Algorithm 1 Surrogate function update for objective function f and variabel x:

1: Evaluate f(xi) for a set of basis points xi, with i = 1, ..., N .

2: Build surrogate function f̂ by running DACE with the set of basis points xi, for
i = 1, ..., N .

3: Search the minimizer x̂∗ of f̂ .
4: If x̂∗ is too close to a basis point, |x̂∗ − xi| ≤ ǫ, i = 1, ..., N , go to 5, else to go 6.

5: Search for the maximizer x̂MSE∗ of the MSE(f̂).
6: Add x̂∗ respectively x̂MSE∗ to the set of basis points, stop or go to step 1.

The key feature of such surrogate function approaches is that the optimization process
in each iteration forbears from running in a loop with the numerical simulation. The
emerging computational costs to determine new candidates to be simulated can be ne-
glected if the costs to run the simulation are taken into account.
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Method Function- xactive yactive Qactive Modflow Infeasible
value [$] [m] [m] [m3/s] runs Modflow runs

Inact.-well threshold 24,032 670 250 -0.00574999 363 118
Penalty coefficients 23,640 640 260 -0.00549999 574 186

Mixed-integer 23,908 620 260 -0.00568984 50 41

Table 1. Numerical results

5. NUMERICAL RESULTS AND DISCUSSION

We apply the three approaches above on the HC problem proposed in [20]. We point
to [20, 7] for specific details in the model and just provide a general description here. The
hydrologic setting is a 1000 × 1000 × 30[m] homogeneous, unconfined aquifer. Boundary
conditions include no flow on the bottom, south, and eastern edges of the physical domain
with prescribed head conditions in the north and west. A flux boundary condition on the
top of the aquifer incorporates recharge. As described in [20], the plume is generated from
a finite source for five years prior to the remediation period with a constant concentration
of 1kg/m3 located at [(200, 225), (475, 525), (h, h− 2)][m] in the physical domain. We use
MT3DMS, [24] to generate the plume and check for containment, and use the 5 × 10−5

contour line as the plume boundary.
All methods used an initial well design with two injection wells and two extraction wells

set the the maximum allowable pumping rates, which is proposed by [7] in the reference
solution. The cost of the initial design is $80,211. Table 1 shows the final cost, the final
well design (which included only one extraction well), the number of calls to the simulator,
and the number of infeasible trial designs for each optimization approach.

In Figure 1.(a) we show the total costs as a function of the number of simulation calls
as a means of observing the progress of each optimizer. An impression of the proposed
final system designs as well as the locations of the static installations on the domain is
given by Figure 1.(b).
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As a result we see that the reference method, the penalty coefficients method from
[18] extended to handle moving wells, and also the introduced mixed-integer formulation
combined with the proposed surrogate function approach are able to locate a system
design with only one well, ultimately minimizing the fixed installation portion of the cost.
Since the location and extraction rate from each optimizer is nearly the same, the final
costs barely differ.

The two implicit filtering results show similar convergence properties since both for-
mulations require a well rate to progress towards zero in the course of the optimization.
Implicit filtering is able to handle the discontinuous formulation via the inactive-well
threshold which offers a slight advantage in taking less function evaluations to reach a
similar design than the penalty coefficient method, but with the highest final objective
function value of all three approaches. The new mixed-integer formulation proves success-
ful at improving the computational efficiency while simultaneously finding a reasonable
solution of a quality between the results of the other tested approaches.

The feasibility aspect is an issue for this application, further adding to the complexity in
choosing an optimization algorithm. As Table 1 indicates, during all tested optimization
approaches a quota of infeasible system design are simulated. The explicit inclusion of
the constraints of the flow direction by surrogate functions could be a second point beside
of the direct handling of integer variables to explain the small number of simulation runs
the third approach requires. For this work, we only provide numerical results for one
initial system design, which was determined from an engineering perspective. However,
we should note that the results of each optimizer are sensitive to both the initial design
and the technique for handling infeasible points due to constraint violation.

The described observations lead to some aspects for future work in the area of simulation-
based optimization, which include the further study on constraint formulation, prediction
of feasibility for simulation-based constraints and the iterative improvement of them. An-
other point is the investigation of possible hybrid approaches to overcome the drawbacks of
a single optimizer, for example, to alleviate the dependence on good initial data or failure
due the vast regions of infeasibility. The continued study on benchmarking problems of
increasing complexity including more realistic physical domains, more sophisticated well
models and pumping strategies, and increasing problem dimensionality, could improve
the acceptance of practitioners for new optimization approaches in this field.

We hope to increase interest in the presented benchmark problem and point the reader
to the community problems webpage, http://www4.ncsu.edu/eos/users/c/ctkelley/
www/community.html. There, the HC application is entirely packaged with subroutines
for the objective function and constraints, all the corresponding Modflow96 data files for
the flow simulation, and directions to install the simulator. The hope is that interested
researchers can easily consider the HC application with new optimization approaches.
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