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Abstract. Nonlinear hybrid dynamical systems are the main focus of this paper. A
modeling framework is proposed, feedback control strategies and numerical solution
methods for optimal control problems in this setting are introduced, and their im-
plementation with various illustrative applications are presented. Hybrid dynamical
systems are characterized by discrete event and continuous dynamics which have
an interconnected structure and can thus represent an extremely wide range of sys-
tems of practical interest. Consequently, many modeling and control methods have
surfaced for these problems. This work is particularly focused on systems for which
the degree of discrete/continuous interconnection is comparatively strong and the
continuous portion of the dynamics may be highly nonlinear and of high dimen-
sion. The hybrid optimal control problem is defined and two solution techniques for
obtaining suboptimal solutions are presented (both based on numerical direct collo-
cation for continuous dynamic optimization): one fixes interior point constraints on
a grid, another uses branch-and-bound. These are applied to a robotic multi-arm
transport task, an underactuated robot arm, and a benchmark motorized traveling
salesman problem.

1 Introduction

The recent interest in nonlinear hybrid dynamical systems has forced the
merger of two very different modeling and control methodologies, namely
those for discrete and for continuous systems. The investigation of hybrid
systems attempts to effectively unite these two formalisms in order to model,
investigate, and design these systems with analytical and numerical tools.
The attempt to provide a unified hybrid modeling scheme well-suited to the
study of hybrid dynamical systems has inspired many researchers [4,14,16,23,
30, 35, 36, 40], including the hybrid modeling approach presented here which
is based on previous work in [18]. The characteristic behavior of hybrid sys-
tems is discussed and illustrated using this modeling scheme. In particular,
the multiple potential dynamical events that may occur due to the strong
interconnection of discrete and continuous elements are highlighted.
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Theoretical work on controllability properties of nonlinear hybrid dynam-
ical systems is still in its early stages and to date only several problems of low
state and control dimension can be thoroughly understood [43]. Nevertheless,
there has been a strong interest in numerical methods for determining con-
trollers for these systems, inspired from the success of such approaches in
conventional nonlinear optimal control problems. Nonlinear optimal control
plays a key role in modern mechatronics and robotics, in particular in the
area of path, trajectory, and action planning. To mention some of the many
applications: walking pattern and trajectory planning [26], mobile robot path
planning [29], optimal payload (weight) lifting, and acrobatics [2,34], etc. Nu-
merical algorithms designed for hybrid optimal control problems (HOCPs)
with variable structure, nonlinear differential equations have recently been
published [15,19,28,41]. These efforts were applied to low-dimensional illus-
trative problems, yet the results presented here demonstrate that numeri-
cal methods do exist which are promising for dealing with realistic, higher-
dimensional system models.

The key to numerically solving HOCPs seems to be the combination of
efficient numerical solvers – such as direct collocation – for optimal control
problems together with (heuristical) approaches to reduce the combinatorial
complexity of the discrete event aspect in HOCPs [19, 47, 48, 44]. This pa-
per presents numerical solution techniques for HOCPs with applications in
mechatronics and robotics. An example problem of three robotic arms coop-
eratively transporting an object from an initial to a goal position is solved
suboptimally by fixing interior point times and state constraints to fixed val-
ues on a grid. The trajectory planning problem of an underactuated robot
with an unactuated joint equipped with a holding brake in the passive joint is
solved by branch-and-bound to obtain optimal hybrid trajectories, in particu-
lar, the optimal number of switches for the holding brake. Finally the solution
for the benchmark motorized traveling salesman problem is presented which
is a problem that is easily scalable to higher dimensions.

The solution approaches presented here rely on the efficient numerical
tool Dircol, which implements a direct collocation method to approximately
solve nonlinear optimal control problems by advanced nonlinear programming
methods [45], see also [6, 26, 46]. The organization of the paper is as follows:
Sect. 2 proposes the Hybrid State Model HSM as a general hybrid modeling
framework. Hybrid feedback control architectures are introduced in Sect. 3.
In Sect. 4 a broad class of HOCPs is defined. In Sect. 4.2 numerical solution
strategies to obtain suboptimal solutions on interior point constraints on
grids and a branch-and-bound strategy are proposed. The solution of three
illustrative hybrid problems in robotics are presented in Sect. 5 followed by
a discussion of more realistic, higher dimensional problems currently being
investigated.
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2 Modeling of Hybrid Dynamical Systems
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Fig. 1. Hybrid dynamical system (HDS) with continuous variable (CVDS) and
discrete-event (DEDS) aspects composed of input, output, and state vectors, dis-
continuity surfaces and jump maps

A conventional continuous dynamical system is described by the velocity
vector field f(x,u, t), which depends on the continuous state x, the con-
tinuous control input u, and time t; the continuous output yx is generated
by the output function hx(x,u, t). The dynamics of a lumped parameter
continuous time systems are thus defined by a set of ordinary differential
(algebraic) equations. Systems with purely discrete state dynamics are often
modeled by a finite state automaton or a Petri-Net. Interconnections of these
very different system descriptions are denoted as hybrid dynamical systems
and a variety of modeling paradigms have been proposed for which we refer
to [14,23,30,35,39]. The hybrid modeling approach presented here is rooted
in the theory of continuous dynamical systems and includes discrete system
elements such as discontinuous nonlinearities and switching actions as exten-
sions to these systems. This leads to a general hybrid system model for the
class of systems denoted as hybrid dynamical systems (HDS).

A HDS consists of, in addition to continuous dynamical system aspects, a
discrete (symbolic) state q ∈ Nl, a discrete (symbolic) control input v ∈ Nk, a
discrete (symbolic) system output yq, discrete event generating functions sj ,
and discrete dynamics φj , see Fig. 1. The continuous dynamical behavior is
the result of the velocity vector field f(·). Discrete events are caused by the
discontinuity indicator functions sj and hybrid successor states are specified
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by transition (jump) maps φj , j = 1, . . . , ns. Hence, the hybrid dynamics are
specified by the three components f(·), sj(·), φj(·), see left part of Fig. 1.
Inputs to the hybrid dynamical system are the continuous control input u(t),
the discrete control input v(t), the continuous disturbance dx(t), and the
discrete disturbance signals dq(t). The hybrid output y(t) = [yx(t)T yq(t)T ]T

is produced by the output functions h(·) = (hx(·), hq(·)).

2.1 The Hybrid State Model

In this section the hybrid state model (HSM) is proposed for the modeling of
a fairly general class of nonlinear hybrid dynamical systems. The model is
related to the Branicky-Borkar-Mitter BBM model, see [7, 8, 9, 10, 11, 12, 13,
14]. The main difference lies in the use of discontinuity surfaces defined by
switching functions instead of jump sets used in the BBM model. A benefit
of the HSM model is that switching functions have close ties to variable
structure control; another advantage is that simulation and implementation
of the HSM is straightforward.

Definition 1 (HSM). A hybrid dynamical system (HDS) is defined by its
hybrid state model (HSM) as follows:

ẋ = f(x,u, q, t) if sj(x,u, q,v, t) 6= 0, j = 1, . . . , ns (1)[
x(t+)
q(t+)

]
= φj(x,u, q,v, t

−) if sj(x,u, q,v, t) = 0, j ∈ {1, . . . , ns} (2)

y = h(x,u, q,v, t) , (3)

where (1), (2) describe the continuous and discrete dynamic behavior, respec-
tively; the notation x(t+) denotes the successor state (limit from the right)
of x at time t. The hybrid output y is generated by (3). The continuous state
vector x(t) ∈ X ⊆ Rn and the discrete state vector q(t) ∈ Q ⊆ Nl together
form the hybrid state vector

ζ(t) =
[

x(t)
q(t)

]
∈ X ×Q ⊆ Rn × Nl .

The continuous control input u(t) ∈ U ⊆ Rm belongs to the set U of permis-
sible controls. The discrete (symbolic) control input vector is v(t) ∈ V ⊆ Nk.
The hybrid output vector

y(t) =
[

yx

yq

]
∈ Y ⊆ Rp × Nr

combines a p-dimensional continuous output yx and a r-dimensional discrete
(symbolic) output yq; y is generated by the hybrid output function

h : X × U ×Q× V × R → Rp × Nr . (4)

The continuous behavior of the HDS is given by the vector field

f : X × U ×Q× R → Rn (5)
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Discontinuous behavior of the HDS is caused by events occurring when the
hybrid state intersects discontinuity surfaces

sj : X × U ×Q× V × R → R , (6)

for j = 1, . . . , ns. Note, that the discontinuity surfaces may depend on the
continuous and/or the discrete control input u(t), v(t). The hybrid successor
state

ζ(t+1 ) =
[

x(t+1 )
q(t+1 )

]
, (7)

after discrete events is given by the transition (jump) maps

φj : X × U ×Q× V × R → X ×Q , (8)

see also (2). As long as all discontinuity surface functions sj(x,u, q,v, t) 6= 0,
for j = 1, . . . , ns, the system trajectory evolves continuously according to (1).

Remark 1. A sliding-mode condition [37] also fits into the model from Defini-
tion 1 when it is permitted that infinitely many discrete transitions occur in
a finite time period. Results describing such cases may be found in [37,21,22].

Remark 2. It has been shown that the BBM model incorporates alterna-
tive modeling formalisms such as the Tavernini Tav model [40], the Back-
Guckenheimer-Myers BGM model [4], the Nerode-Kohn NK model [36] and
the Brockett Bro model [16]. This applies here as well to the proposed HSM
defined in Definition 1, which also includes further modeling paradigms such
as [35], see [18] for a detailed discussion.

2.2 Characterization of Hybrid Dynamic Behavior

The dynamic behavior of a HDS is strongly influenced by discontinuities in its
system trajectories. Discontinuities include state resets (SR) resulting in state
jumps, vector field switches (VFS) resulting in a switch of the velocity vector
field, and their combination (SRVFS). These may be triggered by a time event
(TE) occurring at a certain time or by a state event (SE) if the system state
reaches a certain value. Further events include control events (CE) caused by
the introduction of a hybrid control action into the discrete control input or
disturbance events (DE) caused by discrete disturbance inputs. These events
may be interdependent as, for example, a SE may either be induced externally
(controlled) as a result of a CE or DE or induced internally (autonomous)
[43]. Other dynamic effects of HDS include chaotic behavior, see e.g. [17,
24], or sliding mode, see e.g. [37, 42]. Further discussion of hybrid dynamic
characteristics may be found in [18].

In Fig. 2 an example of a typical path for a hybrid trajectory is plotted.
The HDS starts with the discrete state q = q1 and continuous state x(0) ∈
X 1 ⊆ Rn and evolves within the portion of state space open from the left
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on the left-hand side of Fig. 2. As soon as the discontinuity surface s1 = 0 is
reached, the hybrid state is reinitialized with a state reset (SR) after which
the system trajectory continues in the discrete state q = q2 corresponding to
the continuous portion of state space X 2 ⊆ Rn. The trajectory then enters
into a CE region when the discontinuity surface s2 is crossed. The CE in this
case must first be triggered by a discrete control input v = v2 which occurs
upon reaching approximately the center of the CE region. The resulting SR
causes the system to make the transition into the discrete state q = q3

and its respective portion of state space X 3 ⊆ Rn. There a TE occurs in
combination with a SR whereby the discrete state does not change after the
TE. The portions of state space X 3, X 4 ⊆ Rn corresponding to the discrete
states q3, q4 are separated by a discontinuity surface s3 from one another.
The system trajectory reaches this discontinuity surface and enters with its
fulfillment of the necessary sliding-mode conditions into a sliding state along
the discontinuity surface s3 = 0. Finally the existence conditions for the
sliding-mode are no longer fulfilled resulting in the system evolution in the
discrete state q = q4 in the state space region X 4 until the SE s4 = 0.

Fig. 2. An example of the evolution of a typical hybrid system trajectory in a
hybrid state space

In Fig. 2 further examples are displayed of discontinuity surfaces s5, s6,
s7 that are irrelevant for the example trajectory. Furthermore it is shown how
state space regions corresponding to certain discrete states, e.g. X 3 and X 4,
can overlap. The allowable region X 1 corresponding to the discrete state q1

continues unbounded into infinity in Fig. 2. The portrayal of the hybrid state
space in Fig. 2 is planar, usually it will be of much higher dimension.
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3 Hybrid Feedback Control

Fig. 3. General hybrid control architecture

In this investigation of hybrid dynamical systems, a general hybrid con-
trol architecture is proposed consisting of three main parts, see Fig. 3: (i) the
hybrid process model, cf. Sect. 2; (ii) the hybrid controller (HC) controlling
this process to be discussed in this section; and (iii) the hybrid reference tra-
jectory generator (HRG). The synthesis of reference trajectories implemented
in the HRG as solutions to hybrid optimal control problems will be discussed
in Sect. 4.

Hybrid Control and Error Compensation Taking the HSM of Definition 1 as
the basis for modeling a HDS and keeping in mind the control architecture
described above, it is possible to generalize classical control concepts such as
output-following control to the hybrid case. The resulting hybrid output con-
trol (HOC) block diagram with hybrid control signals is depicted in Fig. 4.
The hybrid output controller compares in Fig. 4 hybrid reference values with
actual output values and produces hybrid control signals such that the out-
put tracks the reference value with small error. Calculating the error between
discrete reference value and the actual discrete output is an important ques-
tion which has received little attention. A discussion can be found in [18].
An obvious way, for example, to define the discrete comparison operator

⊎
would be to perform the arithmetic difference of two discrete values resulting
in an integer-valued discrete error.

In principle, the goal of a hybrid controller is to eventually make the
hybrid control error small. In case of a discrete error, this may not be easy as
the hybrid process may be in contact with a moving system other than that
assumed by the hybrid controller. One solution to hybrid error compensation
is shown in Fig. 4, where a discrete error activates a continuous prefilter to
modify the continuous reference ys

x → yf
x in such a way that both the discrete
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Fig. 4. Hybrid output control (top) and hybrid error compensation by means of a
continuous prefilter (bottom)

as well as the continuous control error eventually vanish. Similar concepts are
a discrete prefilter, more complicated discrete dynamics in the compensation
controller, or a combined reference generator adaptation scheme, see [18] for
details.

4 Hybrid Optimal Control

The discrete-continuous process model of a hybrid optimal control problem
(HOCP) consists of a set of ordinary differential or differential-algebraic equa-
tions of variable structure and variable constraint equations. The system
structure varies among a (finite) discrete set of system descriptions each of
which is associated with a specific discrete state of the considered hybrid
system. The challenging aspect of this model is that the value of the dis-
crete variable can determine the sequence, type and number of phase dy-
namics. Thus, the dynamics in a phase and even the dimension or number
of constraints may be completely different for different values of the discrete
variable.

4.1 Hybrid Optimal Control Problem

The HOCP is to find optimal hybrid (i.e., continuous u and discrete v)
control trajectories such that an integral cost index, typically an integral of
a function of the hybrid system state and control input, is minimized subject
to the system dynamics, initial, terminal, and further equality or inequality
constraints.
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Definition 2. The HOCP is defined as the minimization of the real valued,
hybrid cost index J

min
u, v

J(u,v) = Θ +
∫ tf

t0

ψ(x,u, q,v, t) dt , (9)

subject to

ẋ = f(x,u, q,v, t) if sj(x,u, q,v, t) 6= 0 (10)
j = 1, . . . , ns[

x(t+i )
q(t+i )

]
= φj(x,u, q,v, t

−
i ) if sj(x,u, q,v, t−i ) = 0 (11)

j ∈ {1, . . . , ns}
u(t) ∈ U ⊂ Rnu , v(t) ∈ V ⊂ Znv ,

x(t) ∈ X ⊂ Rnx , q(t) ∈ Q ⊂ Znq , ∀t ∈ [t0, tf ] (12)
0 ≤ g(x,u, q,v, t), t ∈ [t0, tf ] inequality constraints, (13)
x(t0) = x0, q(t0) = q0 initial conditions, (14)
x(tf ) = xf , q(tf ) = qf terminal conditions, (15)

where the initial and final times, written as t0, tf , are free or fixed, sj are the
ns switching functions and φj denotes the explicit phase transition conditions
(jump maps) occurring at the zeros of one of the switching functions. The
Mayer type part Θ of the performance index is a general function of the phase
transition times (events) ti, i = 0, . . . , N and of the continuous x(t−i ), x(t+i )
and discrete states q(t−i ), q(t+i ) just before and just after the N − 1 interior
transition events and at the beginning and final times respectively written as

Θ := Θ[ x(t+0 ), . . . ,x(t−N );
q(t+0 ), . . . , q(t−N ); t0, . . . , tN ] ∈ R .

Here, tf = tN is assumed while the number of phases N may be given or free.
The integrand ψ is a real-valued function of the continuous/discrete state and
control variables and of time.

The minimization of (9) is subject to the initial and terminal conditions
(14), (15), admissible values for the continuous/discrete control variables (12),
and inequality constraints (13). Obviously, valid hybrid optimal trajectories
must obey the differential equations (10) and the discrete-based phase tran-
sition equations (11). The optimization parameters to be determined are the
continuous u(t) and discrete control input trajectories v(t) and all, some, or
none of the phase transition times.

The solutions to the HOCPs described in Definition 2 are deterministic
open-loop trajectories. Like in conventional optimal control this problem class
can be generalized to a stochastic setting or to treat issues like optimal closed-
loop feedback control. The numerical solution of closed-loop hybrid feedback
control problems, however, is at even a much earlier stage and the primarily
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finite-element based solution strategies that have been presented for their
solution [15, 28, 41] cannot readily handle nonlinear systems of more than
three dimensions due to the well-known curse of dimensionality [26].

A framework for modeling and (optimally) controlling mixed logical dy-
namical systems described by linear dynamic equations subject to linear in-
equalities involving real and integer variables has been proposed by [5]. The
on-line optimization problems resulting from a predictive control scheme are
solved numerically by application of a mixed-integer quadratic programming
branch-and-bound method. However, the approach is not applicable to our
class of HOCPs with nonlinear dynamics equations subject to nonlinear con-
straints.

4.2 Numerical Solution Strategies

A set of several different numerical strategies is presented here for the ap-
proximation of the solution to the HOCP. The basis for the suboptimal solu-
tion strategies is the highly efficient direct collocation method implemented
in the software package Dircol [45] to approximately solve optimal con-
trol problems using solutions to (sparse) nonlinear programs. Dircol was
primarily designed for the solution of optimal control problems related to
piecewise continuous, nonlinear dynamical systems though it handles well
important discrete system components such as unknown interior time events
(TE) when state resets (SR) or vector field switches (VFS) may occur. Other
discrete state aspects it cannot handle directly such as the number of inte-
rior SR or VFS events. These aspects must be specified in advance. For this
reason, the proposed solution strategy is to use Dircol in the inner opti-
mization iteration and other strategies to solve for the combinatorial aspect
of the discrete-event in an outer level optimization. The key to cope with the
possibly overwhelming combinatorial complexity of HOCPs is to reduce the
number of candidates to be evaluated in the outer iteration.

After providing some insights into the method Dircol, two alternatives
HOCP solution strategies will be shown: (i) suboptimal solution with interior
event time and state constraints fixed on a grid combined with graph search,
and (ii) transformation to a mixed-binary-optimal control problem and its
subsequent solution using a branch-and-bound algorithm.

Sparse Direct Collocation

The numerical method of sparse direct collocation implemented in Dircol
can efficiently solve multi-phase optimal control problems with a fixed discrete
state trajectory. The state x is approximated by cubic Hermite polynomials
x̃(t) =

∑
j αjx̂j(t) and the control vector u by piecewise linear functions

ũ(t) =
∑

k αkx̂k(t) on a discretization grid tci = t
(i)
1 < t

(i)
2 < . . . < t

(i)

n
(i)
t

= tci+1

in each phase. The state differential equations (10) are pointwise fulfilled
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at the grid points and grid midpoints, resulting in a set of nonlinear NLP
equality constraints a(y) = 0. The control or state inequality constraints
are to be satisfied at the grid points resulting in a set of nonlinear NLP
inequality constraints b(y) ≥ 0. The vector y contains the ny parameters y =
(α1, α2, . . . , β1, β2, . . . , p, t1, . . . , tN−1, tf )T where pi ∈ [0, 1], i = 1, . . . , np

denotes the set of relaxed binary variables. With φ as the parameterized cost
index (18), the nonlinearly constrained optimization problem may be written
as the nonlinear program (NLP)

min
y

φ(y) subject to a(y) = 0, b(y) ≥ 0 . (16)

The transcription of the optimal control problem to an NLP is made by
Dircol [45], the NLP is solved efficiently with the advanced SQP-based
sparse nonlinear program solver SNOPT [25], and subsequently Dircol pro-
cesses the solution to provide state and control trajectories, error estimates
and output that may be used to verify the optimality of the solution.

Important features of the method are:

• As the grid becomes finer, the discretized solution converges to a solution
of the Euler-Lagrange differential equations (EL-DEQs) according to the
Maximum Principle.

• Reliable estimates of the adjoint variable trajectories λ̃ along the dis-
cretization grid may be derived from the Lagrange multipliers of the NLP.
They enable a verification of the optimality conditions of the discretized
solution without solving explicitly the EL-DEQs.

• Local optimality error estimates can be derived which enable efficient
strategies for successively refining a first solution on a coarse grid.

• The NLP Jacobians (∇a(y), ∇b(y)) are sparse and structured, permit-
ting the use of sparse solvers.

• Computation is fast because ODE simulation and control optimization
are performed simultaneously (unlike shooting methods).

• In extension of (10), the method is also applicable to systems described
by differential-algebraic equations of differential index 1. In this case,
the algebraic state variables are discretized analogously to the control
variables by piecewise linear functions.

Suboptimal Solution Technique

Suboptimal solutions may be obtained by fixing interior point times and
states to fixed values on a (fine) grid. Between all these grid points standard
optimal control problems with fixed boundary conditions are solved. Finally,
the suboptimal solution to the HOCP is obtained by a graph search with each
grid point forming nodes and the optimal cost weighing the vertices of this
graph. This solution strategy is applied to solve the cooperative multi-arm
transport problem in Sect. 5.1, see also [19,18,20]. Disadvantages of this ap-
proach are the possibly high number of multi-point boundary value problems



12 Buss, Glocker, Hardt, von Stryk, Bulirsch, Schmidt

to be solved and the inherent suboptimality of the obtained solution. On the
other hand, an appealing advantage is that by problem understanding one
often has good insight as to how the grids need to be specified, and that
useful solutions usually can be obtained easily.

Branch-and-Bound

The solution method for mixed-binary optimal control problems (MBOCP)
using a combination of sparse direct collocation and branch-and-bound was
first presented in [44] and further investigated in [19, 47, 48]. Given certain
assumptions, the HOCP may be transformed into a MBOCP with a simple
transformation of its discrete variables. For this we assume:
(A1) The number N − 1 ≥ 0 of event times ti and, thus, the number N

of phases are finite and known (this assumption may be circumvented
with yet another “outer” iteration to vary N).

(A2) The discrete state variable q and the discrete control variable v are
constant in each phase and may only change at an event ti.

Each discrete variable qk(t) (or vl(t)), 0 ≤ t ≤ tf , is described by an integer
variable zk ∈ Znc+1 with qk(t) = zk,i in the i-th phase. A scalar, integer
variable z1 with given lower and upper bounds z1 ∈ [z1,min, z1,max] ⊂ Z can
be transformed into a binary variable ω ∈ {0, 1}nω of dimension nz1 by

z1 = z1,min + ω1 + 21ω2 + . . .+ 2nω−1ωnω , (17)

with nω = 1 + INT {log (z1,max − z1,min)/log 2}. In this manner, a binary
control vector ω may be used to represent both the unknown discrete state
q in each phase and the discrete control variable v which controls the order
and types of phase transitions.

The MBOCP is to minimize the real-valued, hybrid performance index

J [u,ω] = Θ +
N∑

i=1

∫ ti

ti−1

ψ(x(t),u(t),ω, t) d t (18)

subject to (10)-(15) with the discrete variables q and v substituted by the
binary control vector ω ∈ {0, 1}nω in both Θ and ψ. The solutions of the
MBOCP are the optimal (open loop) trajectories of x∗(t), u∗(t), 0 ≤ t ≤ tf ,
the optimal phase transition times tc ∗i , the possibly free final time t∗f , and
the optimal binary control vector ω∗.

Remark 3. The nature of the binary control vector ω appearing in the
MBOCP is twofold. On the one hand it represents the discrete control vari-
able v that controls the order and types of phase transitions, on the other
hand it also represents the discrete state q in each phase.

To avoid solving all {0, 1}nw MBOCPs, a branch-and-bound strategy in
combination with a binary search tree is employed: The subproblems solved
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by Dircol provide approximate upper and lower bounds to the MBOCP per-
formance index. If the lower bound at a node is greater than the global upper
bound, that branch is discarded. The comparison of subproblem solutions is
additionally aided by the use of the optimality error estimate (confidence
interval) computed by Dircol [45]. A subproblem is constructed by either
fixing a component of the binary control vector ωi to 0 or 1 or relaxing it
0 ≤ ωi ≤ 1, i ∈ {1, 2, . . . , nω}. The MBOCP is thus reduced to a “continu-
ous” multi-phase optimal control problem.

Remark 4. The B&B procedure on the binary control vector requires exis-
tence of solutions to relaxed MBOCPs, or more precisely, the existence of
continuous relaxations to the MBOCP. For some MBOCPs, numerical solu-
tions may not exist for their relaxations. When they exist, the relaxed binary
variables may not necessarily have any physical meaning with respect to the
underlying application. This however does not present any numerical difficul-
ties. The solution of subproblems in the B&B is analagous to the application
of the interior-point solution method to linear programming problems. The
iterative procedure normally first delivers a well-defined solution at termi-
nation of the algorithm. Usually additional modeling effort will be required
in defining suitable “meta”-MBOCPs allowing useful relaxations analogously
to the definition of superstructures for mixed-integer nonlinear programming
problems [1].

Remark 5. As it must be expected that some modeling effort for the MBOCP
is required before applying numerical methods, it has been suggested to derive
suitably simplified and problem specific “screening models” [3]. A screening
model can be solved to simultaneously guarantee global optimality and to
yield a rigorous lower bound on the solution of the MBOCP, thus avoiding
the need for dealing with relaxed MBOCPs. An application for a simple batch
process development has successfully been investigated in [3]. Although in
principle the idea seems to be applicable to a wide class of problems, there
is no constructive way to obtain a screening model for a concrete MBOCP.

Remark 6. The challenge in solving relaxed MBOCPs during the binary tree
search cannot be underestimated. There is no numerical method available
that solves optimal control problems with nonlinear dynamics defined in mul-
tiple phases and subject to nonlinear constraints and with phase transitions
at unknown times guaranteeing the global optimum or that even guarantees
a locally optimal solution in general at all. However, not only the global op-
timum is of interest. For many types of MBOCPs, even a “good” solution
obtained by the proposed approach that significantly improves the initial
guess will be highly appreciated.

The branch-and-bound procedure is outlined as follows:

1. Find a global upper bound. Make an initial guess for ω and solve the
resulting control problem with ω fixed;
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2. At the root node, relax all binary variables (0 ≤ ωi ≤ 1, i ∈ {1, 2, . . . , nω})
and solve to obtain a lower bound to the solution;

3. Select the branching variable ωi and solve both subproblems with that
component set to 0 and 1 thereby creating two offspring to the current
node;

4. Select the next node where to continue the branching process by ei-
ther: Breadth First Search (node with minimal performance out of those
with the least amount of fixed components), Depth First Search (node
with minimal performance out of those with the maximum amount of
fixed components), Minimum Bound Strategy (node with minimal per-
formance);

5. If the lower bound in a node is greater than the current best upper bound
of the whole search tree, then all subsequent branches from this node are
trimmed.

Depending on the problem, this approach may get caught in local minima
which can be avoided by perturbations for the relaxed problems. It is also
hard to guarantee that trimmed branches do not contain the true global
minimum. A positive note is that useful suboptimal solutions are readily
computable.

5 Applications

5.1 Multi-Arm Transportation Task

Fig. 5 shows a cooperative multi-arm transport task. The square object is
initially on the right and is to be transported to the elevated goal position on
the left. This is to be accomplished by picking up the object with transport
arm 1, handing it over to arm 2, then to arm 3, and finally placing it in the
goal position. Each transport arm j has two rotational joints θj,i driven by
control input torques uj,i, j = 1, 2, 3, i = 1, 2. The effector of each transport
arm can be opened/closed to grasp/release the object by a discrete control
input vj . The transportation task should be performed such that the cost
index of quadratic power consumption is minimized

min
uj,i(t),vj(t)

J =
∫ tf

0

3∑
j=1

2∑
i=1

(uj,i θ̇j,i)2 dt .

To solve this HOCP we need to determine the optimal hybrid control trajec-
tories u∗j,i(t), v

∗
j (t), the positions, velocities and times of object handover.

The physical parameters of the multi-arm system are assumed as: mass
m1 = m2 = 5, length l1 = l2 = 1 of link 1, 2, respectively, object mass
mo = 10, ground distance from arm mount point xg = 1.5. The distance
between two arms is d = 1.5, the grid points for possible handovers of arm 1
are at y1,ho = −0.75, x1,ho = 1.5/x1,ho = 1 (ground/air), and likewise for the
other arms.
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For each arm i = 1, 2, 3 the hybrid model has 4 discrete states qi =
1, 2, 3, 4 as follows: qi = 1: arm has no contact with environment, effector
open; qi = 2: arm holds object in configuration 1 (elbow right) object has
contact to ground; qi = 3: arm holds object in configuration 2 (elbow left)
object has contact to ground; qi = 4: arm holds object in the air, no contact
with environment. The variable structure qi dependent motion differential
equation for arm i then are:

ẋi = f(xi,ui, qi) =


f1(xi,ui) if qi = 1
f21(xi,ui) if qi = 2
f22(xi,ui) if qi = 3
f3(xi,ui) if qi = 4

(19)

Note that if qi = 2, 3 the arm is also subject to a kinematic equality constraint
as ground contact needs to be maintained. Environment forces must also be
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Fig. 7. Feasible handover TPBVPs for each arm

taken into account during such phases. The complete hybrid model of a single
arm is shown in Fig. 6.

Applying the suboptimal solution strategy outlined in Sect. 4.2, the cou-
pling of the optimal control problems is first eliminated for each of the trans-
port arms by fixing the possible times and states of handover to constant
values on a grid, see Fig. 5. The object handover time from arm 1 to 2 is
fixed to t1 = 2 and only two possible handover positions (on the ground
and in the air and at zero velocity) are considered. Some of the handover
possibilities can be excluded because of internal arm collision problems, e.g.
handover in the air between arms 1, 2 with configuration 2, 1, respectively.

All remaining feasible handover TPBVPs (Two Point Boundary Value
Problems) and the cost of the optimal solutions obtained by Dircol are
shown in Fig. 7. The three subgraphs are then combined into the complete
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Fig. 8. Graph connecting all feasible discrete sequence
candidates

graph in Fig. 8, in which the best suboptimal solution is obtained by minimum
path search; also marked in Fig. 8.

The best suboptimal solution to the transport task is to pick up the object
by arm 1 and hand it over to arms 2/3 in the air at the fixed positions and
times as shown in Fig. 5. Fig. 9 shows some snapshots of the suboptimal
coordinated transportation task. 1.

5.2 Underactuated Two Degree-of-Freedom Robot Arm

The trajectory planning example application is considered for a 2-link SCARA
robotic arm with two rotational degrees-of-freedom, yet only one actuated
(R2D1). In the first joint a torque u1 may be applied while the second joint
may be influenced only by a holding brake controlled by v1(t) ∈ {0, 1}, see
Fig. 10 and [33, 32]. The brake can only be set when the second joint has
reached a zero relative velocity. A discrete control action can switch back

1 An animated movie of the suboptimal solution to the multi-arm transportation
task is available at http://www.rs.tu-berlin.de/videos
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time t=0s

time t=0.95s

time t=2s

time t=3s

time t=4s

Fig. 9. Snapshot sequence of suboptimal transport solution

and forth between the passive and locked modes for the second joint while a
continuous control force is applied to the first joint actuator. We are inter-
ested in finding not only the optimal continuous state and control trajectories,
but also the optimal discrete strategy composed of the optimal number and
times of the switches necessary to move the R2D1 from a given initial state
to a goal state.

The following H2 performance index is considered

J [u1, v1] =
∫ tf

0

(x(t)− xf )T W (x(t)− xf ) + α(u1(t)− u1,f )2 dt (20)

where W ∈ R4×4, W ≥ 0, and α > 0. Here, we use W = I and α = 1. Fur-
thermore, xf ∈ R4 denotes a desired final state, and u1,f is the control value
for which the system is at equilibrium at xf . The final time is constrained,
e. g., by tf ≤ 10 s. The HOCP is to minimize J subject to the robot dynamics

θ̈ =
(
u1

0

)
− v1(t) F 1(θ(t), θ̇(t))− (1− v1(t))F 2(θ(t), θ̇(t))

F i(θ, θ̇) = M−1
i (θ)

(
Ci(θ, θ̇) + gi(θ) + ri(θ̇)

)
, i = 1, 2

(21)
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Fig. 11. Branch-and-bound search using
minimum bound strategy. Nr – node number
from search order, BV – branching variable,
UB – global upper bound, LB – lower bound
for branch

x(t) = (θ1(t), θ̇1(t), θ2(t), θ̇2(t))
x(0) = x0 = (1.2, 0, 0.8, 0)T

x(tf ) = xf = (π/2, 0, −π/2, 0)T

v1(tf ) = 1 (brake on)

u(t) ∈ U = R
x(t) ∈ X = SO(1)× SO(1)× R2

v(t) ∈ V = {0, 1}
q(t) ∈ Q = ∅

(22)

where M i are the mass-inertia matrices for each dynamical configuration,
Ci are the vectors of Coriolis and centrifugal forces, gi are the vectors of
gravitational forces, and ri are the friction forces. The physical parameters
in standard units are: l1 = 0.300, lc1 = 0.206, lc2 = 0.092, I1 = 0.430,
I2 = 0.127, m1 = 10.2, m2 = 5.75.

The optimal control problem for R2D1 is formulated as a MBOCP, and
the numerical approach discussed in Sect. 4.2 is applied. The time tf ≤ 10 is
initially divided into a fixed numberm = 8 of phases, though the intermediate
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times corresponding to the phase transitions may vary freely. Included in the
problem formulation are a set of constant, unknown binary parameters pi ∈
{0, 1}, i = {1, . . . , np} which are related to the unknown binary variables ωi.
They determine the total number of switches and indicate at which of the pre-
defined phase transitions a switch occurs. The first component p1 indicates
in which discrete state the system starts, {p1 = 0, brake off; p1 = 1, brake
on}. The remaining components of p are a binary representation of the total
number of switches taking place during the time interval. For example, if five
switches occur beginning with the brake off, then p = [p1 p2 p3 p4] = [0 1 0 1]
and the switches are assigned to the predefined phase transitions using the
scheme: pk = 1 ⇒ 2(np−k) switches with one every 2k−1 phase transitions
beginning with number 2(k−2)th + 1.

Fig. 12 depicts the phase transitions over which the binary parameter pk

exerts an influence.

t
0

t
f

p
1

t t t t t t t
1 2 3 4 5 6 7

t
8=

p p p p p p p
2 3 2 4 2 3 2

Phase Transitions

Fig. 12. Phase transitions influenced by binary parameters pk

The branch-and-bound search strategy was used together with a minimum-
bound node selection strategy. Fig. 11 displays the complete binary search
path for the problem. An initial solution with p fixed at [0 1 0 0] (4 switches)
is first calculated to obtain an upper bound of J∗ = 41.157. Lower bounds
were first calculated for the children of the root node, and the second binary
variable is arbitrarily first selected as the branching variable. The final op-
timal solution has a discrete solution of p∗ = [0 1 1 1] corresponding to 7
switches starting with the brake off and an objective value of J∗ = 38.824.
As is normally the case in a branch-and-bound search, the search procedure
ends if an integer solution obtained from a relaxed problem is the new best
lower bound. In this case, our optimal solution was obtained already at node
2, after the third optimization run. The search though was continued here to
verify the solution and ensure that it did not correspond to a local minimum.

In order to avoid convergence to a local minimum, at intermediate steps all
relaxed binary parameters in the optimization are initialized to 0.5 to perturb
the system away from its starting values and therewith avoid local minima.
The final solution2 as displayed in Fig. 13 has an optimality error of w̃ = 0.567
[45]. The incremental difference in the objective decreases rapidly with an
increasing number of switches such that the solution with 5 or 6 switches
lie within the error margin for the optimal solution with 7 switches. The

2 An animated movie of the final solution for the R2D1 robot control is available
at http://www.sim.informatik.tu-darmstadt.de/videos
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Fig. 13. Final optimal hybrid switching solution with 7 switches

optimality tolerance [25,45] set at 10−4 may then be reduced to obtain more
accurate solutions in order to correctly distinguish between them. It is also
possible at this point to lengthen the search by reinitializing the binary search
with more predefined phase transitions thereby allowing for more switches
to take place. The average computational time by Dircol for each optimal
control problem (the solution at a given node) was 19.6 seconds on a Pentium
III 500 MHz computer, the average grid size

∑N
i=1 n

(i)
t was 56.3, and the

average NLP dimension was ny = 278, na = 230.

5.3 The Motorized Traveling Salesman

C3

C C21

α

y

x

v

Fig. 14. Motorized traveling salesman problem (MTSP)
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We consider the hybrid dynamical extension of one of the most popular
combinatorial optimization problems: A motorized salesman is on his way
to visit nc cities at most one time. He is not allowed to stop in the cities,
instead he should drive through them on a smooth curve. He starts at the
origin and returns there after his journey. How should he steer and accelerate
and in which order should he pass through the cities to minimize the overall
traveling time?

In the standard setting as a combinatorial optimization problem, the inter-
connections between two cities are independent of each other. In the problem
setting here, the salesman has to travel on a smooth curve and the perfor-
mance in between two cities depends on the overall selection of the continuous
(steering wheel, gas and brake pedal) and discrete (order of cities) controls.
This benchmark hybrid optimal control problem serves to demonstrate the
strong interaction of continuous and discrete dynamics that may occur for
even low dimensional systems.

The motorized traveling salesman (MTSP) can be described by a simpli-
fied kinematical model describing a point mass moving in a (x, y)-plane

ẋ(t) = vx(t), x(0) = 0 = x(tf ),
ẏ(t) = vy(t), y(0) = 0 = y(tf ),
v̇x(t) = ax(t), vx(0) = 0 = vx(tf ),
v̇y(t) = ay(t), vy(0) = 0 = vy(tf ),
a2

x + a2
y ≤ 7 .

(23)

Hereby vx and vy denote the velocity and ax, ay the acceleration or braking of
the car in x respectively in y direction, i.e., the continuous state and control
variables. The MTSP is formulated as an MBOCP according to Section 4.2
by u = (ax, ay), x = (x, y, vx, vy) and

min
u, ω

J [u,ω] := tf + 0.002
∫ tf

0

(u2
1 + u2

2) dt (24)

r(i)(x(t−i ),x(t+i ),ω, ti) :=
(
x(t−i )
y(t−i )

)
−

N−1∑
k=1

ωi,k

(
xk

yk

)
(25)

x(t+i ) = x(t−i ) (26)
N−1∑
i=1

ωi,k = 1,
N−1∑
k=1

ωi,k = 1, 0 ≤ ωi,k ≤ 1 (27)

At the end of each phase the salesman must visit one of the (N − 1) cities
(xk, yk)T . This is ensured by (25). The linear constraints make sure, that each
city is visited exactly once. Thus the final matrix Ω = (ωi,k)i,k∈{1,...,N−1} ∈
IR(N−1)×(N−1) has in each column and each row exactly one entry equal to
1. The other values are equal to 0. If ωi,k = 1, the k-th city is visited at the
end of the i-th phase. Each tour is a permutation of the (N − 1) cities. Thus
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Fig. 15. Solutions for the MTSP for 3, 5, 6, and 7 cities

each feasible matrix Ω can be obtained by a permutation of the columns of
the identity matrix.

If the salesman has to visit (N −1) cities, then there are (N −1)! possible
tours, including the symmetric ones. Figure 15 shows solutions to three pos-
sible scenarios. In the present formulation (N − 1)2 binary values are used
resulting in a branch & bound tree with a depth of (N −1)2 and a breadth of
2(N−1)2 nodes. The tree has (2(N−1)2+1−1) nodes; most of them are infeasible
though with respect to the linear constraints (27).

If a tree search is performed beginning at the root of the tree without the
knowledge of an upper bound for the problem, at least (N−1)2 nodes have to
be analyzed to obtain an initial upper bound. In our numerical experiments,
however, even more steps are usually needed to reach the leaves. Thus, the
search for a optimum should begin at the leaves of the search tree until
an initial upper bound is provided. The branch & bound algorithm starts
afterwards to prove whether this bound is optimal (in convex cases) or to
find a better one.

For each of the tours the continuous controls and switching times were
optimized using the direct collocation method of Sect. 4.2 with respect to
the terminal time tf for a given discrete variable, i. e., order of cities, i. e.,
sequence of phases. To start the iterative direct collocation method, initial
guesses for the switching points consisting of ti,estimate = i, i = 1, . . . , N ,
are used. A linear interpolation of the coordinates of the cities is applied
as an initial guess for x and y, whereas v and a were initially set to zero.
Computational times for obtaining a final solution can vary between a few
minutes (for 5 cities) and several hours (for 7 cities) on a Pent. III, 900
MHz PC.
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Fig. 16. Hybrid automaton for the quadruped. The nodes represent the different
discrete states; the numbers in parentheses refer to the numbers of the support legs.
Edges indicate discrete transitions (a leg has either broken ground contact or just
entered a contact condition)

6 Other Problems

The robotic applications presented in this work serve primarily as illustra-
tive examples to demonstrate the complexity existing in the optimal control
of strongly interconnected discrete–continuous systems. A more realistic and
challenging problem however that is currently being investigated using these
approaches is the gait generation problem for four-legged robots. Quadrupeds
are ideal for many applications due to their increased dexterity in compari-
son to legged robots with more legs and its increased stability compared to
a biped. An unsolved problem, however, remains the determination of the
optimal gait for moving at a given velocity where the order of leg movement
and ground contact conditions at each moment in time are discrete character-
istics of the problem. Preliminary work on this problem may be found in [27].
Fig. 16 displays the hybrid automaton for quadruped legged locomotion. Each
node represents a different discrete state, where a different combination of
legs are supporting the quadruped. A periodic gait is characterized, apart
from the periodicity of its continuous states, by the discrete condition that
each leg has exactly one period of ground contact and another period without
contact during the gait. As a result, periodic gaits are represented by periodic
paths which must visit all four quadrants in the hybrid automaton (Fig. 16)
and then return to its starting point; thus, this problem is closely related to
the MTSP.

The underlying HOCP for step sequence planning in humanoid walking
is also an open challenge; see [31] for preliminary results combining step se-
quences from pre-calculated suboptimal step primitives. Another important
robotic problem within this context is manipulation using multi-fingered dex-
trous robotic hands [38].
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7 Conclusions

A methodology for the modeling and control of hybrid nonlinear dynami-
cal systems is presented. The dynamical model, feedback solutions, and the
numerical methods presented for the solution of hybrid optimal control prob-
lems are all geared towards the analysis of hybrid problems where the degree
of discrete–continuous interconnection is strong, and the continuous dynam-
ics may be highly nonlinear and of high dimension. In particular, the hybrid
optimal control problem (HOCP) is defined and two approaches are described
for its solution. The first approach decouples HOCPs by fixing interior point
time and state constraints to a grid of possible values. Then, solutions to
the decoupled TPBVPs are obtained, their optimal cost assigned to a graph
with nodes representing the grid points and vertices the optimal cost. In
this graph the best suboptimal solution is found by minimum path search.
Alternatively, a branch-and-bound strategy is proposed based on the decom-
position of HOCPs into MBOCPs. Binary variables are successively relaxed
to obtain upper and lower bounds on the solutions. The search in the result-
ing solution tree is performed by branch-and-bound. The solutions to three
hybrid control problems in robotics illustrate the effectiveness and scalability
of the numerical methods presented here.

8 Acronyms

B&B Branch and Bound
CE Control Event
DE Disturbance Event
EL-DEQ Euler-Lagrange Differential Equation
HDS Hybrid Dynamical System
HOCP Hybrid Optimal Control Problem
HSM Hybrid State Model
MBOCP Mixed-Binary Optimal Control Problem
MTSP Motorized Traveling Salesman Problem
NLP Nonlinear Program
SQP Sequential Quadratic Programming
SR State Reset
SRVFS State Reset and Vector Field Switch
TPBVP Two Point Boundary Value Problem
TE Time Event
VFS Vector Field Switch
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