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Abstract: Numerical methods for optimal control of hybrid dynamical systems are considered
where the discrete dynamics and the nonlinear continuous dynamics are tightly coupled. A
decomposition approach for numerically solving general mixed-integer continuous optimal
control problems (MIOCPs) is discussed. In the outer optimization loop a branch-and-bound
binary tree search is used for the discrete variables. The multiple-phase optimal control
problems for the continuous state and control variables in the inner optimization loop are
solved by a sparse direct collocation transcription method. A genetic algorithm is applied
to improve the performance of the branch-and-bound approach by providing a good initial
upper bound on the MIOCP performance index. Results are presented for motorized traveling
salesmen problems, new benchmark problems in hybrid optimal control.
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1. MIXED-INTEGER OPTIMAL CONTROL
PROBLEM

Optimization problems for many technical or chemical
processes with hybrid dynamics can be formulated as
mixed-integer optimal control problems (MIOCPs).�������	��
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Fig. 1. State dynamics defined in multiple phases,

phase transitions through switchings at ;$<= .
A nonlinear dynamical system>?A@ ;CB+DFE1G =�H @I?+@ ;CB�J1K @ ;CB�JMLNJ1;CB�J; <=PO ; O ; <=�Q�R JTSUDFVWJ�X#X�X�J1Y < (1)

is considered whith the dynamics defined in Y <NZ\[
phases (Figure 1). Here, ?^]�_ VWJ1;1`ba�c IR dfe denotes the
(piecewise) continuously differentiable state variable,K ]�_ VWJ1;C`ba2c IR dhg denotes the (piecewise) continuous
control variable, and Lji � VWJ [ � dhk is a binary control
vector. The time ;1<= , S DFV�J�X#X�X�J1Y < , where the transition
from phase S to phase S Zl[ takes place, is usually
unknown and must be determined. The transition be-
tween two phases (event) is described by switching
conditions. The mixed-integer optimal control prob-
lem is defined as minimizing the real-valued, hybrid
performance index

m _ KnJML aoD d . Q�Rp =�qrR�s G =�H @�?+@ ; <=nt VuB�J ?+@ ; <= Z VuB�JMLNJ1; <= B
Z d . Q�Rp =�qrR v .wxv .wIyuz|{ G =�H @I?+@ ;CB�J1K @ ;CB�JMLNJ1;CB d ; (2)
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with respect to the continuous control variable K and
the discrete control vector L . The solution is subject to
further equality and inequality constraintsV O~} G =�H�� � @�?+@ ;CB�J$K @ ;CB�JCLNJC;CB�J��%D [ J�X#X�X�J1Y��/G =�H J (3)V�D���G =�H�� � @I?+@ ;CB�J1K @ ;CB�JMLNJ1;CB�J���D [ J�X�X#X�JCY2�fG =�H X (4)

Numbers Y��#G =�H J1Y2�fG =�H and types of constraints in a
phase may be different from another phase depending
on the actual value of L . Additionally implicit switch-
ing conditionsV�D��hG�� H�� � @�?+@ V�B�J ?+@ ; ` B�JMLNJ1; ` B�J (5)�%D [ J#X�X�X�JCY��1������JV�D��hG =�H�� � @�?+@ ; <= t VuB�J ?+@ ; <= Z VuB�JMLNJ1; <= B�J (6)�%D [ J#X�X�X�JCY�� � w � JrSrD [ J�X#X�X�J1Y <
may hold at initial, switching and final times. Further-
more, explicit phase transition conditions (jump maps)� � @ VuB D � � � � J ����@ ; ` B�D � ` � � J���C@ ; <= Z V�B�D���G =�H�� � @�?+@ ; <=nt VuB�JMLNJ1; <= B�X (7)

may hold. Hereby ��J$��J$  are elements from subsets of� [ J$¡WJ�X#X�X�JCY�¢�� and � � � � J � ` � � are given real constants.

Finally, linear constraints may be imposed on the bi-
nary control vector£�¤ ¥ ¦ O¨§ L O £�¤ ©Cª J§ i IR d�«�¬�dhk�J £I¤ ¥ ¦ J £I¤ ©1ª i IR df« (8)

For example, if the binary control vector L steems
from a transformation of the discrete states and con-
trols of a general hybrid dynamical system (Buss et
al., 2000) the linear constraints describe the feasible
transitions of a discrete state or control variable at
a switching point. It should be noted that the linear
inequalities can be solved independently as a feasibil-
ity test for the binary control vector during the outer
optimization loop.

2. DECOMPOSITION USING BRANCH AND
BOUND

An “continuous” optimal control problem defined in
multiple phases remains for each fixed, feasible bi-
nary control vector. A naive solution approach to the
MIOCP is to enumerate the whole feasible discrete
control space and to solve all of the related optimal
control problems. However, even for small dimensions
this approach is not very efficient and intractable of
large dimensions, because MIOCPs may often be NP-
complete, as it is the case for the motorized traveling
salesman problem (von Stryk and Glocker, 2001).

To potentially avoid the explicit enumeration of the
entire discrete control space

� VWJ [ � dk a branch-and-
bound (B&B) method is used. The idea is to decom-
pose the discrete control space into appropriate sub-
sets. By maintaining lower and upper bounds on the

MIOCP performance index, decisions are made wether
one of the subsets contains the solution of the MIOCP
or not. A subset must not be examined any more, if the
solution is not part of it. Otherwise a further subdivi-
sion is done and branching is performed in the subset
resulting in a binary tree search.L =®+¯ �/�M°&±

0 1

Fig. 2. Branching at an inner node of the binary search
tree.

Each node of the binary search tree represents a
multiple-phase optimal control problem (OCP). At an
inner node of the tree some of the components of L
are fixed to V or [ , the other components are free and
correspond to a subset of

� VWJ [ � dhk . A lower bound
on the performance index of all OCPs corresonding
to this subset (and corresponding to all nodes of the
subtree having this node as root) can be determined
by (globally) solving an OCP corresponding to the
node where the free components S of L are relaxed:V O L = O [ JCL = i IR. If the lower bound of an inner
node, i.e., the global solution of the corresponding
multiple-phase OCP, is larger than the current upper
bound of the MIOCP, the solution can not be in this
subset. An upper bound of the MIOCP is provided
by the performance index of any feasible point at any
feasible leaf of the tree. At the leafs all components ofL are set to [ or V .
To branch the tree at an inner node, a free variable of
the binary control vector L is chosen and fixed to V (or[ , resp.). Various general strategies exist for selecting
a branch variable, e.g., first free variable or maximum
fractional part. It is not clear which one may lead to
highest efficiency of the algorithm for which class of
MIOCPs.

Currently, no numerical method exists that solves
OCPs of medium-scale dimensions subject to nonlin-
ear dynamics and state constraints guaranteed to the
global optimum. Usually, only a local minimum can
be found. Thus, the computed performance index of
the relaxed MIOCP at an inner node does not neces-
sarily provide a true lower bound. In such a case, a
wrong decision is made and the subtree including the
solution of the MIOCP may be cut off. As a remedy
further relaxations of the continuous problem may be
done in principle to achieve convex underestimating
optimization problems.

Whenever a node is fathomed it must be decided where
to proceed the tree search. Various different strategies
exist, e.g., depth first or breadth first search. It is not
known a priori which strategy will perform best for
which type of MIOCPs. However, for combinatorial
optimizers this will not be surprising, e.g. (Cook et
al., 1998; Lawler et al., 1985). There are no meth-



ods or heuristics that can efficiently applied to most
combinatorial optimization problems, as, e.g., (Quasi-
) Newton-Methods for continuously differentiable op-
timization problems. Instead there are almost as many
methods and heuristics as problem classes.

However, the overall efficiency of the B&B algorithm
strongly depends on good lower and upper bounds. A
good initial upper bound is especially crucial for the
performance of a B&B algorithm. If the tree search
is started at the root without an upper bound, it takes
at least Y�² steps to reach a leaf of the tree and get an
upper bound. Thus, a search among the leafs should be
done first to obtain a good upper bound before starting
the branching procedure.

3. UPPER BOUND BY GENETIC ALGORITHM

Evolutionary algorithms try to simulate the principles
of evolution. The search for an optimum is hereby
steered by various heuristics. There exist different
kinds of evolutionary approaches to solve problems.
One of them are genetic algorithms (GA). A general
description of genetic algorithm can be found, e.g., in
(Goldberg, 1989; Michalewicz, 1992)

The aim here is to find a feasible binary control vector,
which provides a good (i.e., low) upper bound. Out
of a feasible subset of

� VWJ [ � dhk , a selection of some
elements, called parents, is performed. New elements
can be achieved by a recombination of the parents.
Due to a mutation of these new elements, the children
are generated. The mutation shall bring new material
into the population and beware of stagnation. If this is
done by proper methods, the children are convenient
candidates for a good bound. As an evaluation of
the children, the optimal index of the related OCP is
computed. If one of the children provides a solution
that serves as an upper bound which is lower than the
current best upper bound, this value is updated. This
procedure is repeated until some termination criterium
is fulfilled.

It is usually not clear how good an actual solution is
and how long it takes to get a better one. A lot of
possibilities exist to select (e.g. fitness proportional,
tournament), to recombine (e.g. one point crossover,
order crossover) and to mutate (e.g. inversion, dis-
placement)(see also section 5). If the strategies are
chosen properly, the GA supplies quite good results in
a short time.

4. SPARSE DIRECT COLLOCATION FOR
MULTIPLE-PHASE OPTIMAL CONTROL

PROBLEMS

Each subproblem, where all components of L are fixed
to V or [ , is a “continuous” multiple-phase optimal
control problem obtained from equations (1) - (8). Us-
ing the B&B approach sequences of these continuous
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Fig. 3. Direct collocation parameterization of continu-
ous state and control variables.

problems have to be solved. Hence a method is needed
that solves these problems as fast, as robust and as
globally as possible.

There are numerical methods based on the Euler-
Lagrange differential equations (EL-DEQs) and the
Maximum Principle (MP) to solve optimal control
problems (Betts, 1998; Buss et al., 2000). These can
mainly be divided into two classes: direct and indirect
transcription methods (von Stryk and Bulirsch, 1992).
The indirect methods approximate a solution by ex-
plicitly solving first and second order optimality con-
ditions resulting from the EL-DEQs and the MP. This
approach is not flexible enough for the purpose needed
here (Buss et al., 2000; von Stryk and Glocker, 2001).

Direct methods are based on a transcription of optimal
control problems into (finite dimensional) nonlinearly
constrained optimization problems (NLPs). This can
be done either by direct shooting or by direct collo-
cation (Betts, 1998; von Stryk and Bulirsch, 1992).
Direct methods promise high flexibility and robustness
when solving optimal control problems numerically to
low or moderate accuracies. Here, the direct colloca-
tion approach is potentially faster than direct shooting.
This is due to the simultaneous simulation and opti-
mization approach and is only effective if the NLP
sparsity is fully utilized. Otherwise the NLP size will
severely limit the efficiency.

The transcription of the problem is done by a dis-
cretization of the phases of the time interval _ V�JC; ` a in;C<= D³; G =�HRµ´ ; G =�H¶ ´ X#X�X ´ ; G =�Hd � w �· Dj;C<=�Q�R (Figure 3) (von

Stryk, 1995). On this grid the state variables ? are ap-
proximated by piecewise cubic Hermite polynomials¸?A@ ;CB^D�¹ �2º ��»? � @ ;CB and the control variables K by
piecewise linear functions

¸K @ ;CB�D ¹ ��¼ � »K � @ ;CB . Here,
the equations of motion (1) are pointwise fulfilled at
the grid points and at their respective midpoints re-
sulting in a set of nonlinear equality constraints (i.e.,
forming a major part of ½ @I¾ B¿D�V ). All inequality
constraints of the optimal control problem are to be
satisfied at the grid points. All in all a nonlinear, usu-
ally non convex, optimization problemÀ�Á�ÂÃÅÄ @I¾ B

s.t. ½ @I¾ BnDÆVWJ!Ç @�¾ BoÈ¨V (NLP)

is obtained. Here, ¾ denotes the Y2É parameters of the
parameterization



¾ D @ º R J º ¶ J�X�X�X�J ¼ R J ¼ ¶ J#X�X�X�J1; < R J#X�X�X#JC; <d . J1;C`�BCÊ
and Ä the parameterized cost index.

A carefully selected discretization
¸K ,
¸? must satisfy

certain convergence properties. One requirement is
that the discretized solution must approximate a solu-
tion of the EL-DEQs and the Maximum Principle if the
grid becomes fine enough, i.e.,
for Y G =�Hv cÌË and À'ÍÎ � ; G =�H� Q�R t ; G =�H� ] ��D [ J#X�X�X�JCY G =�Hv t[ �PcÏV , cf. (von Stryk, 1995).

A great advantage of the direct collocation approach
is that it provides reliable estimates

¸Ð
of the adjoint

variable trajectory along the discretization grid. These
estimates are derived from the Lagrange multipliers of
the NLP (von Stryk, 1995). They enable a verification
of optimality conditions of the discretized solution
although the EL-DEQs have not been solved explicitly,
e.g., (von Stryk and Glocker, 2001).

Also, local optimality error estimates can be derived
that enable efficient strategies for successively refining
a first solution on a coarse grid (von Stryk, 1995).
Thus, a sequence of related NLPs must be solved
whose dimensions increase with the number of grid
points.

NLPs can be solved most efficiently numerically by
SQP methods. In each SQP iteration a current guess
of the solution ¾rÑ is improved by the solution of a
quadratic subproblem derived from a quadratic ap-
proximation of the Lagrangian of the NLP subject to
the linearized constraints (Barclay et al., 1998; Gill et
al., 1997). The NLPs resulting from a direct colloca-
tion discretization have several special properties:Ò The NLPs are of large-scale with very many

variables and very many constraints.Ò Most of the NLP constraints are active at the
solution, e.g., the equality constraints from collo-
cation. Thus, the number of free NLP variables is
much smaller than the total number of variablesY�É .Ò The NLP Jacobians @�Ó ½ @I¾ B�J Ó Ç @I¾ B1B are sparse
and structured. Only a few percent of the ele-
ments will be nonzero, and the percentage de-
creases as the number of grid points increases.

These features can fully be utilized by the recently
developed large-scale SQP method SNOPT (Gill et
al., 1997). The computational speedup achievable by
utilizing the NLP structure is more than a factor of
one hundred for typical discretized optimal control
problems when compared to standard “dense” SQP
methods.

Sparse direct collocation methods as for example
DIRCOL (von Stryk, 1995; von Stryk and Glocker,
2001) are especially suited for solving the relaxed
MIOCPs because of their exceptional robustness and
efficiency. Typically only a crude initial guess of parts
or all of the solution trajectories of a relaxed MIOCP

need to be provided. This robustness is especially use-
ful for the phase transition times which may have quite
different positions at the computed solution than as
they can be provided initially. The large movements of
events from their initial to their final position during
the course of the optimization method usually pose
high difficulties for other methods. On the other hand,
an initially crude solution estimate on a rather coarse
discretization grid Y G =�Hv is not a handicap to such meth-
ods but the usual way how the solution procedure be-
gins (von Stryk and Glocker, 2001).

5. THE MOTORIZED TRAVELING SALESMAN

We consider the hybrid dynamical extension of one
of the most popular combinatorial optimizations prob-
lems: A motorized salesman is on his way to visit Y <
cities exactly once. He does not have to stop in the
cities, he just has to drive through them through his
journey. He starts at the origin and returns there after
his journey. How should he steer and accelerate and in
which order should he work off the cities to minimize
the overall traveling time?

In the standard setting as a combinatorial optimization
problem, the interconnections between two cities are
independent of each other. In the problem setting here,
the salesman has to travel on a smooth curve and the
performance in between two cities depends on the
overall selection of the continuous (steering wheel, gas
and brake pedal) and discrete (order of cities) controls.

The motorized traveling salesman (MTSP) can be de-
scribed by a simplified kinematical model describing a
point mass moving in a @I� JCÔWB -plane>�U@ ;CB�D\Õ ¢ @ ;CB�J ��@ V�BADÖV×D �r@ ; ` B�J>Ô @ ;CB�D\Õ É @ ;CB�JÖÔ @ V�B+DÖV×D¨Ô @ ; ` B�J>Õh¢ @ ;CB�DlØu¢ @ ;CB�J2Õh¢ @ V�B+DÖV×D¨Õh¢ @ ;C`ÙB�J>ÕhÉ @ ;CB�DlØuÉ @ ;CB�J+ÕhÉ @ V�B+DÖV×D¨ÕhÉ @ ;C`uB�JØ ¶¢ Z Ø ¶É OÛÚ .

(9)

Hereby Õ ¢ and Õ É denote the velocity and Ø ¢ , Ø É the
acceleration or braking of the car in � respectively inÔ direction, i.e., the continuous state and control vari-
ables. The MTSP is formulated as a MIOCP according
to Section 1 by K�D @ ØÙ¢�J1ØÙÉhB , ? D @I� JCÔ�JCÕh¢�JCÕhÉhB and

À�Á�ÂÜ � ² m _ KnJML a ] DF;C` Z VWX VfV�¡ v(Ýx � @IÞ ¶ R Z Þ ¶¶ BWßÙà (10)á G =�H @�?+@ ; <=nt VuB�J ?+@ ; <= Z V�B�JMLNJ1; <= B ] Dâ ��@ ; <= t V�BÔ @ ; <=At VuB�ã t d .p� q�R L =�� � â � <�Ô <� ã (11)?+@ ; <= Z V�B+D ?+@ ; <= t V�B (12)d .p� q�R L =I� � D [ Jä�'D [ J�X�X#X�JCY < J (13)



d .p� q�R L =I� � D [ JåSUD [ J#X�X�X�JCY < J (14)V O L =�� � O [ X
At the end of each phase the salesman must visit one
of the Y < cities @�� <� JCÔW<� B Ê . This is ensured by equation
(11). The linear constraints make sure, that each city
is visited exactly once. Thus the final matrix æTD@ L =�� � B =�� �/çuè R��êéêéêé � d .1ë i IR d . ¬�d . has in each column and
each row exactly one entry equal to [ . The other values
are equal to V . If L =�� � D [ , the � -th city is visited at the
end of the S -th phase. Each tour is a permutation of the
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Fig. 4. Solutions of the MTSPs for 5 and 6 cities.

��� cities. Thus each feasible matrix
�

can be obtained
by a permutation of the columns of the identity matrix.

If the salesman has to visit ��� cities, then there are ���	�
possible tours, inclusive the symmetric ones. Figure 4
shows two possible tours. In the present formulation��
� binary values are used resulting in a B&B tree with
a depth of ��
� and a breadth of �� � � nodes. All in all the
tree has ���  � �����������

nodes, but most of them being
infeasible with respect to the linear constraints (13),
(14).

If a tree search is performed beginning at the root of
the tree without the knowledge of an upper bound for
the problem, at least ��
� nodes have to be analyzed
to obtain an initial upper bound. In our numerical
experiments, however, even more steps are usually
needed to reach the leafs. Thus, the search for an
optimum should rather begin at the leafs of the tree
until a good feasible solution is provided. The B&B
algorithm starts afterwards to proof wether this bound
is optimal (in convex cases) or to find a better one.

To find an initial upper bound a GA is used. Hereby a
starting population is created. Two tours (parents) out
of this population are selected, each by a tournament.
At a tournament � individuals of the population are
selected at random and the one with the best perfor-

mance is picked. If � is a small value, individuals with
bad performance have a better chance to be elected.

The recombination should take care about generating
feasible tours for the TSP. The only thing that should
be done is a permutation of the rows (or columns) of�

. At the moment an order crossover (OX) is used.
To demonstrate the procedure, the order crossover is
performed for two tours to 10 cities:

Parent � 2 6 10 3 8 5 1 7 4 9
Parent � 7 3 6 9 1 8 10 5 2 4

Parent � represents a circular tour from the origin
visiting first city 2, then city 6, then city 10 and
so on. Randomly a crossover section (e.g., the part
of parent � with entries 10 3 8) is taken. The first
child �� recieves the values of the crossover section of
parent � .

Child �� x x 10 3 8 x x x x x

The free places x are filled with the values of parent� . These values are taken in the order as they are, but
without the values alredy contained in �� .

Child �� 7 6 10 3 8 9 1 5 2 4

�� contains part (10 3 8) of tour � and parts (9 1) and
(5 2 4) of tour � as they have been. Thus, the subtours
are not mixed too much and hopefully the good parts
will be bequeathed.

In the last step the two children are permutated. This
is done by a simple inversion. Hereby some sequenced
rows of the matrix

�
are chosen and replaced in reverse

order. So new circular tours are achieved and added to
the population.

Table 1 shows some numerical results. The upper
half shows the parameters of the GA. If the GA has
reached the ”maximum population”, it stops and the
B&B starts. In the last row there is only the entry of
one number at ”best upper bound”. In this case, the
upper bound was given by the user for test purposes.
The lower half of Table 1 is about the B&B. It shows
the next bound, which was found by the algorithm
and the number of the node, where the bound was
found. The nodes are numberd in the order as they are
tested. Finally the total amount of tested nodes by the
algorithm to find the solution is given.

Obviously, the number of nodes can be reduced sig-
nificantly, if a good initial upper bound is given. The
results of Table 1 show that a genetic algorithm is a
valid approach to obtain such an initial upper bound.

It depends on the location of the cities, how much the
performance indeces corresonding to different tours
differ. An interesting result can be seen in the last
column of Table 1. The bound provided by the user
is almost equal to the expected solution, but the B&B
search still tests 1058 nodes to find the solution. Thus,
tighter lower bounds may be needed to achieve better
performance.



Table 1. Numerical results.

number of cities 5 5 6 6 6 7 7 7
GA
initial population - 10 - 20 20 30 50 -
max. population - 20 - 40 60 100 200 -
selection range - 8 - 15 15 25 40 -
best upper bound none 109.05 none 116.57 112.88 127.96 117.92 112.86
B&B
next upper bound 109.05 97.92 140.65 113.79 111.07 124.15 115.0 112.85
computed at node 59 101 85 223 279 213 949 725
overall tested nodes 195 129 11331 825 647 1931 1397 1058
solution 97.92 97.92 111.07 111.07 111.07 112.85 112.85 112.85

The computed solutions of the motorized traveling
salesman problems for 5, 6 (the 5 cities plus a new one)
and 7 cities (the 6 plus a new one) are displayed in Fig-
ures 4 and 5. The population of all actual investigated
tours may obtain one tour several times. By varying
the starting point for the evaluation of the tours, we
observed that a better local solution could be found.
The computational times for a single column in Table 1
varies between a few minutes (for 5 cities) and several
hours (for 7 cities) on a Pent. III, 900 MHz PC.
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Fig. 5. Solution trajectories for 7 cities.

6. CONCLUSION

A decomposition approach for solving fairly general
hybrid optimal control problems (MIOCPs) based on
B&B and sparse direct collocation has been developed.
It has been successfully applied to several benchmark
problems in hybrid optimal control for motorized trav-
eling salesmen. A genetic algorithm has been inves-
tigated to obtain a good initial upper bound on the
performance index for a more efficient, subsequent
B&B tree search leading to a significant reduction in
the number of investigated nodes. Ongoing work in-
vestigates algorithmic improvements through different
strategies for the GA and the B&B method as well
as the application of the decomposition approach to
further problems such as cooperative teams of mobile
robots in robot soccer.
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