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Electro- and magnetorheological fluids are smart, synthetic fluids changing their viscosity from liquid to semi-
solid state within milliseconds if a sufficiently strong electric or magnetic field is applied. When used in suitable
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1 Introduction

Electro- (ER) and magnetorheological (MR) fluids are colloidal suspensions which exhibit large reversible changes
in flow properties such as the apparent viscosity when subjected to sufficiently strong electric and magnetic fields
respectively (Winslow [51]). They usually consist of micron-sized polarisable or magnetisable solid particles
dissolved in a non-conducting liquid like mineral or silicone oil. In general, the composition of ER and MR fluids
exhibits a broad diversity concerning solvent, solute and additives (see for example Block and Kelly [5], Carlson

and Spencer [12]).

In recent years, ER and MR fluids have attracted considerable interest due to their wide range of use in
vibration dampers for vehicle suspension systems, machinery mounts or even seismic protection of structures; their
stiffness and damping capabilities can be adjusted very quickly by applying a suitable electric or magnetic field
(Stanway et al. [46]).

ER and MR fluid dampers enable active and semi-active vibration control systems with reaction times in the
range of milliseconds and, additionally, low power requirements when using MR fluids. Due to their rather simple
mechanical design which involves only few moving parts they ensure high technical reliability and exhibit almost
no wear. Thus, continuously adjustable ER and MR fluid devices offer the innovative potential of robust and
fast controllable interfaces between mechanical components and electronic control units.

Scientific challenges in the field of electro- and magnetorheological fluids and devices consist in:

1. The development of (optimal) control strategies for ER and MR fluid devices: Because of the intrinsi-
cally nonlinear nature of semi-active control devices, development of output feedback control strategies that are
practically implementable and can fully utilize the capabilities of these unique devices is another important,
yet challenging, task (Spencer [43]).

Though, to develop suitable control algorithms for electro- and magnetorheological fluid devices mathematical
and physical models are needed that can accurately reproduce their nonlinear behaviour.

2. The mathematical modelling and numerical simulation of ER and MR fluids and devices: Note:
The mechanism of ER fluids is not well understood and hence what is theoretically possible is not known
(Hartsock et al. [22], p. 1310).

The outline of this paper is as follows: After a description of ER and MR mechanisms and fluid properties
several phenomenological models for ER and MR fluid devices are presented according to results of the current
research. Their validity is discussed as far as comparisons with experimental data have been reported within the
literature. Finally, different discrete element models are applied to a MR fluid vibration damper, and its operation
is simulated numerically.
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2 Electro- and magnetorheological mechanisms and fluid properties

It is commonly agreed that the main mechanism of the ER response is based on some form of polarisation due to
the dielectric mismatch between the suspended particles and the solvent (Powell [42], Bonnecaze and Brady

[6]). A qualitative explanation accounts for the particles as dipoles. Accordingly, the electrostatic forces cause the
formation of particle chains in the direction of the electric field. The tendency of columnar formation has been
observed experimentally as well as the development of larger particle clusters with increasing particle concentration
(Gast and Zukoski [18], Klingenberg et al. [31]). However, Powell [42] mentions another proposed mechanism
of the induced polarisation of an ionic double layer.

Electrorheological fluids exhibit a yield phenomenon when subjected to a sufficiently large electric field. A
yield stress increasing with the field strength must be overcome to start fluid flow (between stationary electrodes)
or shearing of the fluid (between moving electrodes) perpendicular to the applied field (Figure 1). The exponents
of the power law τy = En relating the field strength E to the yield stress τy are reported to range from 1.2 to 2.5
depending on the consistency of the suspension (Gavin et al. [19]). In terms of the above described mechanisms the
yield point may be related to the breakage of particle chains. In the pre-yield region ER fluids behave like elastic
solids, resulting from chain stretching with some occasional rupture; the post-yield region reflects an equilibrium
between chain rupture and reformation, the fluid exhibits viscous properties (Choi et al. [13], Gamota and
Filisko [17]). The structural processes, more precisely described by Powell [42] and Kamath et al. [26], differ
according to the respective operating modes (cf. Section 3, Figure 1), but obviously they are of minor significance
for modelling ER and MR fluid devices in general.

Bonnecaze and Brady [6] proposed a molecular-dynamics-like simulation of an ER suspension subjected
to both shear flow and an orthogonal electric field. The method allows for hydrodynamic, e. g., viscous, inter-
particle interactions determined by Stokesian dynamics as well as for electrostatic forces that are derived from
the system’s electrostatic energy. The simulation is able to predict the apparent viscosity in accordance with the
experimental data. Combined with an idealised chain model for the microstructure of the activated fluid it can
further approximate the experimentally observed values for the yield stress (Bonnecaze and Brady [7]). Except
for small shear rates (expressed in terms of the so-called Mason number) the results of the simulation match with
the Bingham plastic model described in the next section (Bonnecaze and Brady [6]). Recently, Engelmann et
al. [16] proposed an extension of the classical Bingham model which goes beyond pure shear flows and enables the
simulation of electrorheological fluids in complex geometries [23].

In the case of magnetorheological fluids a magnetic field causes the chain-like arrangement of the suspended
particles by inducing a magnetic moment. In addition, MR fluids exhibit a yield stress increasing with the applied
field, and both a pre-yield region, characterised by elastic properties, and a post-yield region, characterised by
viscous properties (Jolly et al. [25]). Due to their qualitatively similar behaviour phenomenological models of ER
and MR fluid devices can mostly be applied to either material (Kamath and Wereley [27]).

Property ER Fluid MR Fluid

response time milliseconds milliseconds
plastic viscosity η 0.2 to 0.3 Pa·s 0.2 to 0.3 Pa·s

(at 25o C)
operable +10 to +90o C (ionic, DC) –40 to 150o C

temperature range –25 to +125o C (non-ionic, AC)

power supply 2 to 5 kV 2 to 25 V
(typical) 1 to 10 mA 1 to 2 A

(2 to 50 watts) (2 to 50 watts)
maximum yield 2 to 5 kPa 50 to 100 kPa

stress τy (at 3 to 5kV/mm) (at 150 to 250 kA/m)
maximum field ca. 4 kV/mm ca. 250 kA/m

η/τ
2

y 10−7 to 10−8 s/Pa 10−10 to 10−11 s/Pa

density 1 to 2 g/cm3 3 to 4 g/cm3

Table 1: Typical properties of some electro- and magnetorheological fluids, cf. Carlson and Spencer [12],
Lampe [33], Lord Corporation [36], Weiss et al. [48].

Some properties of typical electro- and magnetorheological fluids are provided in Table 1. Exhibiting about
the same response time and plastic viscosity η as their ER analogues, MR fluids are less sensitive to impurities,
such as water, usually occuring during manufacturing and usage. They have a larger operating temperature range,
and they can be controlled with a considerably lower voltage (Spencer et al. [44]). Moreover, the yield stress
achievable with MR suspensions is at least an ordner of magnitude greater just as the material property η/τ2

y , so
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that MR devices only require a comparatively small amount of fluid and space (Weiss et al. [48], Spencer [43]).
However, since often iron is used as a solute, the density of MR fluids is significantly higher than for typical ER
suspensions. In addition, a greater variety of materials is available for ER fluids, and electric fields are often more
suitable for complex geometries and small dimensions (Böse [8]).

3 Phenomenological models for ER and MR fluid devices

To take maximum advantage of electro- and magnetorheological fluids in control applications a reliable method is
needed to predict their nonlinear response. Several phenomenological models characterising the behaviour of ER
and MR fluid devices have been presented. These models concern ER test devices (Gamota and Filisko [17],
Ehrgott and Masri [15], Powell [42], Gavin et al. [19], [20], Kamath and Wereley [28]) as well as ER
and MR dampers for both seismic protection (Makris et al. [37], [38], Burton et al. [11], Spencer et al. [44],
Dyke et al. [14]) and vehicle applications (Stanway et al. [45], Kamath et al. [26], Kamath and Wereley

[27], [29]). But despite the promise of controllable fluids most of the current models solely reproduce the ER and
MR behaviour for constant field strengths. So far few concepts have been developed that allow for varying field
strengths as needed for the design of active control strategies.

Pressure

Flow

(a)

Applied
Force

Displace-
ment

(b)

Applied Force
Displace-

ment

(c)

Figure 1: Basic operating modes of electro- and magnetorheological fluid devices.
(a) Valve mode. (b) Direct shear mode. (c) Squeeze-flow mode.

Most often, the considered devices operate in the valve (flow) mode, the direct shear mode or a combination of
the two modes (Stanway et al. [46]). In a control valve the electrorheological fluid is constrained between stationary
electrodes, and its resistance to flow is accommodated by adjusting the applied field (Figure 1a); frequently the
performance of hydraulic piston/cylinder dampers is controlled in this way. In the latter mode, the fluid is subjected
to direct shear between electrodes translating or rotating perpendicular to the field (Figure 1b). Few attention is
paid to rheological devices employing the most recently introduced mode of squeeze-flow. This operating mode
involves electrode motion in the direction of the applied field (Figure 1c); therefore the field strength continually
varies according to the electrode distance (Stanway et al. [46]). In case of magnetorheological fluids the magnetic
poles take the place of the electrodes.

The proposed models do not strictly distinguish between the different modes of operation; but commonly
adjustments have to be made corresponding to the design and the components of the respective devices. For reasons
of wider commercial availability the recent research has mainly concentrated on modelling the ER fluid response
(Kamath and Wereley [29]). But due to their similar behaviour little difference is made between electro- and
magnetorheological materials in the following survey. It is useful to distinguish between models which qualitatively
simulate the ER or MR response and are fitted to experimental results by adjusting few parameters (parametric
models) and models which are entirely based on the performance of a specific fluid device (non-parametric models).

3.1 Parametric models

Parametric models are represented by a mathematical function whose coefficients are determined rheologically, i. e.,
the parameter values are adjusted until the quantitative results of the model closely match the experimental data.
Thus, the dynamic response of ER and MR fluid devices is reproduced by a semi-empirical relationship. Numerous
parametric models can easily be described by an arrangement of mechanical elements such as springs and viscous
dashpots.
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3.1.1 Bingham model

Most commonly the behaviour of ER and MR fluids is described by the Bingham plastic model. An ideal Bingham
body behaves as a solid until a minimum yield stress τy is exceeded and then exhibits a linear relation between the
stress and the rate of shear or deformation. Accordingly the shear stress τ developed in the fluid is given by

τ = τy · sgn(γ̇) + ηγ̇ (1)

where γ̇ is the (shear) strain rate and η denotes the plastic viscosity of the fluid, i. e., the (Newtonian) viscosity at
zero field (Gavin et al. [19]).

x

F

fc

c0

Figure 2: Bingham model (Spencer et al. [44]).

In order to characterise the ER damping mechanism Stanway et al. [45] proposed a mechanical model, com-
monly referred to as the Bingham model, that combines viscous and Coulomb friction. The mechanical analogue,
a Coulomb friction element in parallel with a viscous dashpot, is shown in Figure 2. In this model, the force F
generated by the ER or MR fluid device is given by

F = fc · sgn(ẋ) + c0ẋ (2)

where ẋ denotes the velocity attributed to the external excitation, and where the damping coefficient c0 and the
frictional force fc are related to the fluid’s viscosity and the field dependent yield stress respectively (Spencer et
al. [44]).

The Bingham model accounts for electro- and magnetorheological fluid behaviour beyond the yield point, i. e.,
for fully developed fluid flow or sufficiently high shear rates. However, it assumes that the fluid remains rigid in the
pre-yield region. Thus, the Bingham model does not describe the fluid’s elastic properties at small deformations
and low shear rates which is necessary for dynamic applications (Kamath and Wereley [28]). A comparison
between the predicted force-velocity characteristic and the result of experiments conducted by Spencer et al. [44]
is provided in Figure 3.

Force

Velocity

Figure 3: Comparison between the predicted ( ) and the experimentally obtained ( )
force-velocity characteristic for the Bingham model (Spencer et al. [44]).

3.1.2 Extended Bingham model

Gamota and Filisko [17] presented an extension of the Bingham model to describe the ER fluid behaviour in
the pre-yield and the post-yield region as well as at the yield point. This viscoelastic-plastic model consists of the
Bingham model in series with the three-parameter element of a linear solid (Zener element) as shown in Figure 4.
The force in this system is given by

F =































c0ẋ1 + fc · sgn(ẋ1)
k1(x2 − x1) + c1(ẋ2 − ẋ1)

k2(x3 − x2)
, |F | > fc

k1(x2 − x1) + c1ẋ2

k2(x3 − x2)
, |F | ≤ fc

(3)
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where again the damping coefficient c0 and the frictional force fc in the Bingham model account for the plastic
viscosity and the yield stress respectively. The field dependent parameters c1, k1 and k2 are associated with the
fluid’s elastic properties in the pre-yield region (Gamota and Filisko [17], Spencer et al. [44]).

x1 x2 x3

F

fc

c0

k1

c1

k2

Figure 4: Extended Bingham model (Spencer et al. [44]).

As depicted in Figure 5, the extended Bingham model qualitatively describes the hysteretic response of
the MR fluid device considered by Spencer et al. [44]. However, the resulting system of ordinary differential
equations is extremely stiff due to the nonlinear Coulomb friction element. Thus, the numerical simulation with
explicit integration methods requires very small time steps (cf. Stoer and Bulirsch [47]).

Force

Velocity

Figure 5: Comparison between the predicted ( ) and the experimentally obtained ( )
force-velocity characteristic for the extended Bingham model (Spencer et al. [44]).

3.1.3 Three element model

F

F

fc

fk

c

Figure 6: Three element model (Powell [42]).

Focussing on predicting the behaviour of an ER fluid device Powell [42] proposed a mechanical analogue consisting
of a viscous damper, a nonlinear spring and a frictional element in parallel (Figure 6). In order to reproduce the
hysteretic force-velocity characteristic that is observed experimentally (cf. Figure 7b), the Coulomb friction force
fc is modelled with static and dynamic friction coefficients fcs and fcd respectively. Furthermore, to facilitate
the numerical integration smoothing functions are introduced for the friction force instead of the signum function.
Hence,

fc =







fcs

(

1 + (fcd/fcs) · exp(−a |ż|)
)

· tanh(eż) , ż · z̈ ≥ 0

fcd

(

1 − exp(−b |ż|)
)

· tanh(eż) , ż · z̈ < 0
(4)

where z is the displacement transmitted to the ER fluid device, and ż and z̈ denote the corresponding velocity and
acceleration respectively. The force generated by the device is given by

F = fc + fk + cż (5)
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where fk = k · tanh(dz) is the nonlinear force of a softening spring. In this model, the field-dependent values of the
damping parameters fcs, fcd, a, b, c and e as well as the elastic parameters d and k are fitted to the experimental
results. A comparison between the predicted and the observed behaviour of the ER device is provided in Figure 7.

Force

(a) (b)Velocity

Figure 7: Comparison between the predicted (a) and the experimentally obtained (b)
force-velocity characteristic for the three element model (Powell [42]).

The three element model predicts the experimental ER response well, and it is numerically easier to deal with
than the extended Bingham model. However, it cannot always represent the experimentally observed variations
in the forces (Powell [42]), and it demands a large number of parameter values depending on the applied field
strength and the specific external excitation, as it is suggested by the presented simulation data.

3.1.4 BingMax model

A discrete element model with similar components, referred to as the BingMax model, is reviewed by Makris et
al. [38]. It consists of a Maxwell element in parallel with a Coulomb friction element as depicted in Figure 8.

u(t)

F (t)

Fy

K C

Figure 8: BingMax model (Makris et al. [38]).

The force F (t) in this system is given by

F (t) = K

t
∫

0

exp

(

−
t − τ

λ

)

u̇(τ) dτ + Fy · sgn [u̇(t)] (6)

where λ = C/K is the quotient of the damping constant C and the spring stiffness K, and Fy denotes the permanent
friction force. Equivalently the constituting Equation (6) can be written as

F (t) + λ ·
dF (t)

dt
= C · u̇(t) + Fy · sgn[u̇(t)] (7)

(see for example Bird et al. [4]).

To evaluate the performance of the BingMax model the predicted behaviour of the electrorheological device
was compared with its experimental response to an earthquake excitation. The model is analysed in more detail
by Burton [10].

3.1.5 Bouc-Wen model

In their survey of phenomenological models Spencer et al. [44] presented the so-called Bouc-Wen model in order
to characterise the behaviour of a MR fluid damper. The concept is based on an approach due to Wen [49]. It is
supposed to reproduce the response of hysteretic systems to random excitations [9].
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k0
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Figure 9: Bouc-Wen model (Spencer et al. [44]).

A mechanical analogue of the Bouc-Wen model is shown in Figure 9. The force generated by the device is
given by

F = c0ẋ + k0(x − x0) + αz (8)

where the hysteretic component z satisfies

ż = −γ |ẋ| z |z|
n−1

− βẋ |z|
n

+ δẋ. (9)

By adjusting the parameter values α, β, γ, δ and n it is possible to control the shape of the force-velocity charac-
teristic; an initial displacement x0 of the spring was incorporated into the model to allow for the presence of an
accumulator in the considered damper.

Force

Velocity

Figure 10: Comparison between the predicted ( ) and the experimentally obtained ( )
force-velocity characteristic for the Bouc-Wen model (Spencer et al. [44]).

The Bouc-Wen model is well suited for the numerical simulation, since the resulting dynamic equations
are less stiff than for the extended Bingham model. But as it is depicted in Figure 10, it cannot reproduce the
experimentally observed roll-off in the yield region, i. e., for velocities with a small absolute value and an operational
sign opposite to the sign of the acceleration.

3.1.6 Modified Bouc-Wen model

To better predict the response of the MR damper in the region of the yield point Spencer et al. [44] proposed an
extension of the Bouc-Wen model which is depicted in Figure 11. The equations for the force in this system are
given by

F = αz + c0(ẋ − ẏ) + k0(x − y) + k1(x − x0) (10)

= c1ẏ + k1(x − x0)

where

ż = −γ |ẋ − ẏ| z |z|
n−1

− β(ẋ − ẏ) |z|
n

+ δ(ẋ − ẏ) (11)

and

ẏ =
1

c0 + c1

[αz + c0ẋ + k0 (x − y)] . (12)

The hysteretic component z accounts for the time history of the response (Dyke et al. [14]). The spring k1 and
its initial displacement x0 allow for both the additional stiffness and the force offset produced by the presence of
an accumulator. The latter was included into the considered damper for reasons of pressure compensation.
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Bouc-Wen

k0

c0

k1

c1

Figure 11: Modified Bouc-Wen model (Spencer et al. [44]).

To obtain a model which is valid for varying magnetic field strengths the parameters are assumed to depend
linearly on the voltage v applied to the current driver, i. e.,

α = α (u) = αa + αbu (13)

c1 = c1 (u) = c1a + c1bu (14)

c0 = c0 (u) = c0a + c0bu (15)

where u is governed by

u̇ = −η(u − v). (16)

The first order filter given by Equation (16) was introduced to allow for the fluid’s dynamics of reaching rheological
equilibrium.

Force

Velocity

Figure 12: Comparison between the predicted ( ) and the experimentally obtained ( )
force-velocity characteristic for the modified Bouc-Wen model (Spencer et al. [44]).

A comparison between the force-velocity characteristic predicted by the modified Bouc-Wen model and the
result of experiments conducted by Spencer et al. [44] is provided in Figure 12. The model is able to accurately
reproduce the MR fluid behaviour, even over a broad range of operating conditions (Spencer et al. [44]). Moreover,
its parameter values are independent of the applied voltage and need not be estimated anew for different field
strengths. However, the proposed model is highly dependent on the design and the components of the specific
magnetorheological fluid device. In particular, an additional spring was incorporated to account for the accumulator
present in the considered damper.

3.1.7 Nonlinear viscoelastic-plastic model

The viscoelastic-plastic model presented by Kamath and Wereley [28] combines two linear shear flow mechanisms
with nonlinear weighting functions in order to characterise the response of an ER fluid device.
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Fvi

X

(a) (b)

Figure 13: Viscoelastic-plastic model (Kamath and Wereley [28]).
(a) Viscoelastic mechanism. (b) Viscous mechanism.

In the pre-yield region the fluid’s behaviour is simulated by the three-parameter element of a linear fluid
(Jeffreys model) as depicted in Figure 13a. The viscoelastic force Fve generated by this system is governed by

Fve +
C1 + C2

K1

·
dFve

dt
= C2Ẋ +

C1C2

K1

· Ẍ (17)

where C1, C2 and K1 denote the parametric damping and stiffness constants respectively, and where X is the
displacement transmitted to the device. In the post-yield region the ER response is represented by the viscous
relationship

Fvi = CvẊ (18)

where the damping coefficient Cv is related to the apparent viscosity of the fluid (Figure 13b).
The transition from the pre-yield to the post-yield regime is performed by nonlinearly combining the vis-

coelastic and viscous components Fve and Fvi to the net force

F = FveSve + FviSvi. (19)

The shape functions

Sve =
1

2

[

1 − tanh(
α − αy

4εy
)

]

(20)

and

Svi =
1

2

[

1 + tanh(
α − αy

4εy
)

]

(21)

depend on the velocity α non-dimensionalised with respect to its amplitude, the yield parameter αy which is
correlated with the fluid’s yield point and a smoothing parameter εy (Kamath and Wereley [29]). A scheme
of the force-displacement relationship is shown in Figure 14; Lve and Lvi are the linear operators representing the
Equations (17) and (18) respectively.

X

Lve

d
dt

Lvi

Sve

Svi

Σ F

Figure 14: Scheme of the viscoelastic-plastic model (Kamath and Wereley [28]).

The values for the parametric constants were found to be strong functions of the electric field, and it was
proposed to approximate the coefficients associated with the viscoelastic and plastic properties as polynomial
functions of the field strength. Comparisons between predicted and experimental data showed that the model is
able to reproduce the nonlinear effects of the ER behaviour qualitatively. In addition, the model is numerically
robust due to the linearity of the parallel shear flow mechanisms (Kamath and Wereley [28]).
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3.1.8 Augmented nonlinear viscoelastic-plastic model

To further reproduce the force-velocity characteristic of the considered ER fluid device Kamath and Wereley

[29] extended the nonlinear model described above. In the pre-yield region the friction force Fc weighted by a
shape function Sc was added to allow for Coulomb-like sticktion effects observed at low velocities. Thus, the force
Fby generated in the pre-yield branch is given by

Fby = Fve + ScFc (22)

where

Sc =
1

2
tanh

(

Ẋ

4εc

)

, (23)

and εc is a smoothing factor. The viscoelastic component Fve is governed by Equation (17).

Cv R

Fay

X

Figure 15: Inertial mechanism of the augmented viscoelastic-plastic model
(Kamath and Wereley [29]).

To account for fluid inertia effects beyond the yield point Kamath and Wereley [29] introduced the viscous
and inertial mechanism depicted in Figure 15. Thus, the force Fay in the post-yield branch is given by

Fay = CvẊ + RẌ. (24)

X

PRE-YIELD

POST-YIELD

Sby

Say

Sc Fc

Lve

Lvi

Li

F

Figure 16: Scheme of the augmented viscoelastic-plastic model (Kamath and Wereley [29]).

Both shear flow mechanisms are combined by the two nonlinear weighting functions Sby = Sve (Eq. 20) and
Say = Svi (Eq. 21) yielding the nonlinear network depicted in Figure 16. The total force F generated by this
augmented viscoelastic-plastic model is given by

F = SbyFby + SayFay. (25)

A comparison between the force-velocity characteristic predicted by the proposed model and obtained from
experimental results is provided in Figure 17. The model precisely depicts the behaviour of the considered ER
fluid device at different field strengths and displacement amplitudes (Kamath and Wereley [29]). The added
mechanisms, such as the friction component Fc, largely depend on the design of the considered damper, but they can
be adjusted by choosing suitable parameter values. Moreover, the nonlinear combination of linear flow mechanisms
is numerically tractable.
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Force

Velocity

Figure 17: Comparison between the predicted ( ) and the experimentally obtained ( )
force-velocity characteristic for the augmented viscoelastic-plastic model
(Kamath and Wereley [29]).

3.1.9 Other models

For the analysis of ER or MR fluid devices operating in the squeeze-flow mode the equation governing the shear
stress τ in the Bingham plastic model can be generalised to the bi-viscous relationship

τ =

{

ηrγ̇ , |τ | < τ1

τ0 + ηγ̇ , |τ | > τ1

(26)

where γ̇ is the strain rate, and ηr and η are related to the elastic and the viscous fluid properties respectively
(Stanway et al. [46]). The yield parameters τ0 and τ1 satisfy

τ0 = τ1

(

1 −
η

ηr

)

, (27)

as it is illustrated in Figure 18. The Bingham plastic model is obtained for ηr → ∞.

τ

τ1

τ0

slope ηr

slope η

γ̇

Figure 18: Bi-viscous model (Stanway et al. [46]).

Makris et al. [37] developed a continuum mechanics constitutive model to characterise the behaviour of an
ER fluid prototype damper. The fluid’s motion in the valve of the damper was approximated by Hagen-Poiseuille
flow theory assuming laminar, one-dimensional flow through a stationary annular duct. The authors derived a
linear first-order equation with variable coefficients to account for the elastic-viscoplastic properties of the fluid:

dτ

dt
+

Gγ̇

η0γ̇ + τysgn (γ̇)
· τ = Gγ̇ (28)

where η0, τy and G denote the plastic viscosity, the yield stress and the elastic shear modulus of the fluid respectively.
However, the model considerably depends on the physical properties of the fluid and the design of the damper
(Makris et al. [38]).

3.2 Non-parametric models

Non-parametric models are entirely based on the performance of a specific ER or MR fluid device. Commonly an
elevated amount of experimental data, obtained by observing the electro- or magnetorheological response to different
excitations under varying operating conditions, is used to predict the device’s response to random excitations.
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3.2.1 Chebyshev polynomial fit

Ehrgott and Masri [15] used a Chebyshev polynomial fit to approximate the force generated by an ER test
device. For fixed electric field strength (and fixed exciting frequency) the restoring force F of the ER fluid device
was predicted by an analytical function F̂ constructed by two-dimensional orthogonal Chebyshev polynomials

F (x, ẋ) ≈ F̂ (x, ẋ) =

m
∑

i,j=0

CijTi(x
′)Tj(ẋ

′) (29)

where the Cij ∈ R denote the two-dimensional Chebyshev coefficients, and m is the maximum degree of the basis
polynomials Ti. The values x′ and ẋ′ are obtained by normalising the displacement x and the velocity ẋ that are
associated with the external excitation to the interval [−1, +1]. In the same way, the force F can be determined
as a function of the velocity ẋ and the acceleration ẍ.

Gavin et al. [20] extended this curve-fitting method to three dimensions. They related the restoring force F
of an ER fluid damper to the displacement x, the velocity ẋ and the electric field strength E:

F (x, ẋ, E) ≈ F̂ (x, ẋ, E) =

m
∑

i,j,k=0

CijkTi(x
′)Tj(ẋ

′)Tk(E′) (30)

where the Cijk ∈ R denote the Chebyshev coefficients, and x′, ẋ′ and E′ are normalised values. Conversely for
the purpose of controlling an ER fluid device the electric field strength may also be approximated by a function
Ê(x, ẋ, |F |) of the displacement, the velocity and the (desired) damping force.

Force

Velocity

Figure 19: Comparison between the predicted ( ) and the experimentally obtained ( )
force-velocity characteristic for a Chebyshev polynomial fit
(Ehrgott and Masri [15]).

A comparison between a force-velocity characteristic approximated by Chebyshev polynomials and the result
of experiments conducted by Ehrgott and Masri [15] is provided in Figure 19. The predicted ER response
resembles the corresponding experimental data. However, the force plots published by Ehrgott and Masri partly
exhibit oscillatory behaviour which is frequently observed for polynomial interpolation. In addition, Kamath and
Wereley [28] pointed out the computational effort to determine the large number of Chebyshev coefficients.

3.2.2 Neural networks

Burton et al. [11] analysed the performance of a multilayer neural network to predict the electrorheological
response. Neural networks consist of several processing units (neurons) whose inputs are weighted and passed to
an activation (signal) function producing one single output. The weighting depends on the strength of the neurons’
interconnections and can be adjusted by a kind of learning process (Burton et al. [11]). The network presented
by Burton et al. was constructed by an algorithm known as the Dependence Identification Algorithm which is
attributed to Moody and Antsaklis1. It was trained with different earthquake displacement histories and the
corresponding responses of the considered seismic ER damper at varying field strengths.

Makris et al. [38] extended the use of neural networks to a combination with mechanical models mentioned
earlier. As the latter were assumed to reproduce most of the linear ER response, the above network was trained
with the difference signal between the response predicted by the parametric models and the actual response of the
damper.

1Moody, S. O.; Antsaklis, P. J.: The dependence identification neural network construction algorithm. IEEE Transactions on
Neural Networks, New York, NY, 1995.
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Force

Velocity

Figure 20: Comparison between the predicted ( ) and the experimentally obtained ( )
force-velocity characteristic for a neural network combined with the Maxwell model
(Makris et al. [38]).

Burton et al. [11] found that the performance of the mere neural network was surpassed by discrete element
models such as the Bingham model. When combined with simple mechanical models the network’s prediction was
partly superior to the results achieved with parametric methods alone. However, a conjunction with the more
sophisticated BingMax model showed no improvements in simulating the ER fluid device (Makris et al. [38]).
A comparison between experimental data and a prediction obtained from the neural network combined with the
parametric Maxwell model is shown in Figure 20.

4 Numerical simulation of a passive MR fluid vibration damper

In this section, simulation results are presented for a vehicle suspension design containing a magnetorheological
vibration damper at a constant field strength, i. e., a passive magnetorheological fluid (MRF) damper; the latter
was represented by mechanical models described above. The simulations conducted for a quarter vehicle model (cf.
Figure 21) subject to different road excitations have been performed with MATLAB/SIMULINK 2.02.

4.1 Quarter vehicle model

m1

m2

K C

k Frh

u2

u1

u0

Figure 21: Quarter vehicle model with a passive MR fluid damper.

The equations of motion for the above depicted quarter vehicle model can be derived as

m1ü1 = K · (u0 − u1) + C · (u̇0 − u̇1) + k · (u2 − u1) + Frh (31)

m2ü2 = −k · (u2 − u1) − Frh, (32)

where m1 and m2 are the masses of the axle and the vehicle body, u1 and u2 denote their vertical displacement,
and u0 is the road disturbance. Furthermore, K and C represent the spring and damping constants of wheel and
tyre, k denotes the stiffness of the suspension, and Frh is the force exerted by the MRF damper.

The mass parameters m1 = 250 kg and m2 = 1300 kg used for the following simulations correspond to the
values of a small bus or utility vehicle; the stiffness K = 650000 N/m and the damping rate C = 800 Ns/m of the
tyre, as well as the spring constant k = 110000 N/m of the suspension have been adapted as for a typical ground
vehicle (cf. Hać [21], Margolis and Goshtasbpour [39]).

2N. N.: Using SIMULINK. The MathWorks, Natick, MA, 1997.
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The MRF damper is reproduced by the Bingham model and the modified Bouc-Wen model described in the
Sections 3.1.1 and 3.1.6. The performance of the quarter vehicle model subject to two different road disturbances
is investigated (cf. Koslik et al. [32]).

A simple, conventional damper model is used for comparison. Its excerted force is given by

F = c · (u̇2 − u̇1) (33)

where the damping constant was chosen as c = 6000 Ns/m.

4.2 Bingham model of a passive MRF damper

In case of the Bingham model, the force generated by the MRF damper results from Equation (2) as

Frh = fc · sgn(u̇2 − u̇1) + c0(u̇2 − u̇1). (34)

The parameter values used in the simulations correspond to the experimental data presented by Spencer et al.
[44] for the prototype of a magnetorheological fluid damper. Thus, the parameters related to the fluid’s viscosity
and the yield stress have been chosen as c0 = 5000 Ns/m and fc = 670 N.

4.3 Bouc-Wen model of a passive MRF damper

The equations governing the force of the MRF damper in case of the modified Bouc-Wen model can be derived
from the Equations (10), (11) and (12) yielding

Frh = c1(ẏ − u̇1) + k1 [(u2 − u1) − x0] (35)

where

ẏ =
1

c0 + c1

[αz + c0u̇2 + c1u̇1 + k0 (u2 − y)] (36)

and

ż = −γ |u̇2 − ẏ| z |z|
n−1

− β(u̇2 − ẏ) |z|
n

+ δ(u̇2 − ẏ). (37)

Likewise the parameters in this model have been chosen according to the data presented by Spencer et al. [44]
thus, c0 = 5300 Ns/m, c1 = 93000 Ns/m, k0 = 1400 N/m, k1 = 540 N/m, α = 96300 N/m, β = 2000000 m−2, γ
= 2000000 m−2, n = 2, δ = 207 and x0 = 0.

4.4 Simulation results for a step disturbance

Numerical results for the first disturbance resulting from a step with a height of 0.1m at time t = 0 (cf. Koslik

et al. [32]) are depicted in Figs. 22–24.

For the passive MRF damper a faster decay of the excitation, especially in u2 is achieved as compared to the
conventional device (Fig. 22). No significant difference is observed between the behavior of the Bingham and the
modified Bouc-Wen model.
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Figure 22: Simulation results for the quarter vehicle model subject to a step of height 0.1m at initial time. Here,
the results for the Bingham model and the modified Bouc-Wen model reproducing the performance of
the MRF damper are quite similar (first row). A conventional viscous damper is used for comparison
(second row). Left column: Vertical displacement of the vehicle body. Right column: Vertical velocity
of the vehicle body.
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Figure 23: Simulation results for the quarter vehicle model subject to a step of height 0.1m at initial time. The
passive MRF damper is represented by the modified Bouc-Wen model (first row). The similar behavior
of the Bingham model is omitted. A conventional viscous damper is used for comparison (second row).
Left column: Vertical displacement of the vehicle axle. Right column: Vertical velocity of the vehicle
axle.
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Figure 24: Simulation results for the quarter vehicle model subject to a step of height 0.1m at initial time. The
passive MRF damper is represented by the Bingham model (first row) and the modified Bouc-Wen
model (second row). A conventional viscous damper is used for comparison (third row). Left column:
Relative velocity between the vehicle body and the axle. Right column: Zoom into the force-velocity
characteristic.
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4.5 Simulation results for a sinusoidal bump
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Figure 25: Disturbance signal simulating the ride over a sinusoidal bump
with a maximum height of 0.1m.

The second disturbance consists of a sinusoidal bump of the same maximum height of 0.1m as depicted in Figure 25.
The corresponding numerical results are displayed in Figs. 26–28.

The damping of the vibration is again faster for the passive MRF damper than for the conventional damper.
For the sinusoidal bump, a slightly different behavior of the Bingham and the modified Bouc-Wen model can be
observed, especially for the state u2 (Fig. 28).

Figure 26: Simulation results for the quarter vehicle model subject to a sinusoidal bump of height 0.1m. The passive
MRF damper is represented by the modified Bouc-Wen model (first row). The similar performance of
the Bingham model is omitted. A conventional viscous damper is used for comparison (second row).
Left column: Vertical displacement of the vehicle axle. Right column: Vertical velocity of the vehicle
axle.
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Figure 27: Simulation results for the quarter vehicle model subject to a sinusoidal bump of height 0.1m. The
passive MRF damper is represented by the Bingham model (first row) and the modified Bouc-Wen model
(second row). A conventional viscous damper is used for comparison (third row). Left column: Relative
velocity between vehicle body and axle. Right column: Zoom into the force-velocity characteristic.
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Figure 28: Simulation results for the quarter vehicle model subject to a sinusoidal bump of height 0.1m. The
passive MRF damper is represented by the Bingham model (first row) and the modified Bouc-Wen
model (second row). A conventional viscous damper is used for comparison (third row). Left column:
Vertical displacement of the vehicle body. Right column: Vertical velocity of the vehicle body.
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5 Further applications of electro- and magnetorheological fluid devices

Adaptively controllable ER fluid devices to be used as shock absorbers in vehicles are described by Hartsock et
al. [22] and Petek [41]. Other automotive and related applications such as ER or MR clutches or engine mounts
are investigated by Hartsock et al. [22], Lampe et al. [34] and Whittle et al. [50]. Backé et al. [3] developed
an ER fluid servo drive in a joint project with Bayer AG and Carl Schenck AG. Adaptively controllable MR fluid
devices are now available for semi-active vibration damping of driver seats in trucks and as rotational brakes for
controllable resistance in aerobic exercise equipment (Lord Corporation [36], Jolly et al. [24]). An ER fluid
damper for semi-active control of vibrations of a flexible, leightweight robot arm is described by Li et al. [35]. MR
fluid devices for seismic protection of structures are investigated by Carlson and Spencer [12], Dyke et al. [14]
and the Lord Corporation [36]. ER fluid devices for this purpose are described by Burton et al. [11]. Choi

et al. [13] investigate the vibration characteristics of a composite beam filled with an electrorheological fluid. The
application of electroviscous fluids as movement sensor control devices in active vibration dampers is discussed by
Oppermann et al. [40]. MR fluid lag mode dampers for helicopters with hingeless and bearingless rotors which
improve aeromechanical stability with respect to air and ground resonance are mentioned by Kamath et al. [30].

Many more designs and applications of electro- and magnetorheological fluid devices can be expected in the
near future.

6 Conclusions and outlook

The basic properties of electro- and magnetorheological fluids as well as various models for electro- and magne-
torheological fluid devices, especially vibration dampers, and their applications have been discussed in this paper.
However, there is still a need for rigouros mathematical models which accurately describe electro- and magnetorhe-
ological fluids and devices, and which are suitable for understanding, investigating and predicting their behaviour
by numerical simulation.

Furthermore, to fully utilize the innovative potential of adaptively controllable electro- and magnetorheolog-
ical fluid devices, (optimal) control strategies must be developed taking into account the dynamical behaviour of
the specific complex mechanical system including the controllable ER or MR fluid device. For example, when using
a semi-active suspension based on controllable ER fluid shock absorbers, the full dynamical behavior of the vehicle,
the ER fluid dampers and the road disturbances must be considered in order to maximize the driving comfort and
the safety of a car by adaptive damping and level control [23]. For this purpose, models for actively controllable
ER and MR fluid devices must be developed describing the dynamical behaviour of a specific device with respect
to changes in the electric or magnetic field.
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