In: K.-H. Hoffmann, R.H.W. Hoppe, V. Schulz (eds.):
Fast Solution of Discretized Optimization Problems (Birkhduser Verlag, 2001) 221-241.

Numerical Optimal Control Strategies
for Semi-Active Vehicle Suspension
with Electrorheological Fluid Dampers

Uwe Rettig and Oskar von Stryk

Abstract. Optimal control problems for semi-active vehicle suspensions and
their numerical solution are discussed in this paper. For this purpose, several
models of the vehicle dynamics with different levels of details and a general
formulation of different sub-criteria for rating the ride comfort and safty are
presented and investigated in this paper. The benefits and drawbacks of var-
ious numerical optimal control methods such as LQR~, H* and direct collo-
cation when applied to the different optimal control problems for semi-active
vehicle suspension are investigated. Furthermore, the semi-active vehicle sus-
pension is based on a dynamic model of the recently developed prototype of
a continuously controllable shock absorber with a smart, electrorheological
fluid. These are smart materials and have been known for already more than
50 years. They belong to the group of colloidal suspensions which are able
to change their viscosity drastically. This depends upon molecular chain for-
mations in the fluid caused by an electric field perpendicular to the direction
of flow. Very low control costs and fast response times of the ERF devices
have sparked much an interest in ERF's in the last couple of years. The de-
velopment of new control strategies for ERF devices integrated into complex
multi body systems require a high level of knowledge of the behavior of the
ERF subsystems. Dynamic models of controllable ERF devices are studied
with respect to their particular dependencies, effects and requirements. An
application is presented here which merges linear optimal control strategies
and ERF shock absorbers within a complex model of full car dynamics. Here
we give a mathematical formulation for the objectives of ride comfort and
safety that takes into account various measurement possibilities. The result
demonstrates the large potential of optimally controlled ERF devices.

1. Introduction

Electrorheological fluids (ERF) change their viscosity depending on an externally
applied electrical field strength. An analogous phenomenon exists for the viscosity
of magnetorheological fluids which depends on the applied magnetic field strength.
The bandwidth of the resulting flow properties is large; the state varies between
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FIGURE 1. Submodels and flow chart of control, perturbation,
and state variables for the problem of optimal semi-active vehicle
suspension using ERF shock absorbers.

fluid and nearly solid material. The phenomenon of these fluids, caused by polar-
izable particles within a nonconducting carrier fluid which disturb the flow when
excited, has been known since the late 1950’s [2]. Hence flow, shear and squeeze
processes can be controlled using easily generated electrical fields. ERF devices
have additionally several advantageous control properties. The response time be-
tween one and 15 ms is extremely fast. Furthermore, ERF devices are continuously
controllable and operate subject to almost no wear.

ERF devices thus represent an excellent class of interfaces between electronic
control units and mechanical components which have gained increased scientific
and economic interest in recent years. As a result, new generations of ERFs with
optimized properties are now available. In particular, the difficulties like stability
over long time periods and sedimentation of the polarizable particles have largely
been resolved. The application areas for ERF devices are numerous. High frequen-
cies and forces may be relatively easily controlled using flexible electronic units.
Already many different applications have been reported [7] including a prototype
of an adaptively controllable ERF-shock absorber by Schenck AG, Darmstadst.

There are two major problems which arise when investigating the simulation
and optimal control of the continuously controllable ERF-shock absorbers and
their application to (semi-)active vehicle damping. First there lies the question
of modeling and simulating the dynamic behavior of ERF-shock absorbers which
depend on the applied electrical field. Second, with regards to the computation
of controls that maximize safety and comfort, suitable models for the vehicle dy-
namics and the safety and comfort objectives must be developed together with
applicable numerical methods (Figure 1). A control framework which serves well
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FIGURE 2. Submodels of the full motor vehicle dynamics model of VEDYNA

to evaluate the potential of semi-active damping with optimally controlled ERF-
shock absorbers is that of deterministic optimal control methods which provide
an open-loop optimal trajectory numerically. For its application in a semi-actively
suspended vehicle, feedback controls must be computed under real-time conditions
and, thus, the control will likely only be suboptimal.

2. Optimal Control Problems for Optimal Semi-Active Suspension

2.1. Models of Motor Vehicle Dynamics

Motor vehicles are very complex systems which include many significant compo-
nents for its dynamical driving behavior and yield a high number of degrees of
freedom. A detailed and comprehensive vehicle model is needed to represent the
nonlinear kinematics of the wheel and axle and to describe the drive train, the
steering mechanism, the tire dynamics and ground contact forces [12, 18]. De-
pending upon the specific design purpose for the dynamical model, a reduction
of the system dimension can often be achieved. The influence of the neglected
components of the full model are interpreted then as general perturbations of the
reduced system.

2.1.1. FuLL VEHICLE DYNAMICS MODEL The numerical, real-time simulation
of a full motor vehicle dynamics model that accounts for all significant effects is
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used in our investigations to verify optimal and suboptimal controls that have
been computed using reduced and small scale models of the vehicle dynamics. Our
vehicle model consists of a suitable multibody system with kinematical connections
and force elements which is supplemented by a sophisticated tire model. A general
purpose modeling approach to multibody systems based on the descriptor form
of the equations of motion results in a large-scale system of differential-algebraic
equations (DAEs) of index 3. However, we make use of an optimally tailored model
description which yields a system of ordinary differential equations (ODEs) and is
well suited for simulation in real-time.

The vehicle model of VEDYNA [9, 28] consists of a system of nine rigid
bodies comprising the vehicle body, the axle suspensions and the wheels. Fur-
ther submodels are employed to depict the characteristics of the drive train, the
steering mechanism, and the tires (Figure 2). Suitable minimum coordinates and
generalized velocities are used to describe the spatial state of the vehicle and its
components. The equations of motion are derived from Jourdain’s Principle yield-
ing

Mgy (ysv) 2Bv = @BvV(YBV,2BV,YST,2ST,YDT,2DT) (1)
gpv = Kgy(ysv) 2BV (2)

Mpr 2pr = Qpr(YpT,2DT) (3)

ypr = Vprzpr (4)
Mst(ysT,yBv) 2sT = @QsT(ysT,2sT) (5)
yst = Vst zsT (6)

Dyr = Fsga — Cuyr. (7)

Thus, the vehicle dynamics are fully characterized by the system of 24 first-order
ODEs comprising the vehicle body and the axles, (1) and (2). Eight ODEs (7)
describe the lateral and longitudinal deviations of the tires by means of spring and
damper elements. The vertical deformations of the tires are covered by (1). The
dynamic model of the drive train consists of 19 ODEs, (3) and (4), including four
equations governing the angular wheel speeds. Five additional ODEs account for
the dynamics of the steering system (5) and (6). Couplings between the separate
systems occur via the generalized forces and torques @ py. Wind forces and mo-
ments result in additional forces applied to the multibody system of the vehicle
[9, 28].

The tire forces have a significant impact on the dynamical behavior of a vehi-
cle. The semi-empirical tire model that is used here describes the behavior of a real
tire accurately [9, 28]. About 80 parameters which can be measured or estimated
enter the model for each tire in VEDYNA. The model covers different driving
situations, including effects at the driving limits such as sliding and spinning. The
actual tire model is selected online depending on the respective road and weather
conditions.
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Due to the stiffness of the system (1)—(7) its numerical integration is carried
out recursively with a semi-implicit one-step Euler scheme using a constant step
size [9, 28]. In particular, the integration method makes efficient use of the special
block structure of the ODEs. It turns out that a fast and stable solution is possible
in real-time on modern PC hardware.

For a realistic implementation of virtual test-drives using the simulation,
models for the driver and the road have been developed [9, 28].

2.1.2. MODELS OF QUARTER CARS AND LINEAR VEHICLE DYNAMICS The os-
cillating behavior of a vehicle excited by perturbations of the ground and driving
maneuvers are investigated using vertical dynamics models, i.e. reduced models for
vertical displacements of the vehicle and wheel bodies. The unknown maneuvers
such as braking, acceleration and cornering under high velocities, if considered,
may be regarded as perturbations.

Vertical models of vehicles may be classified into different levels of detail.
There are so-called full-car-models (in the context of vertical models) including
two axles, which reflect both vertical deflections and inclinations. Bounce, roll and
pitch motions are investigated simultaneously. Separated and decoupled investi-
gations are possible using half-car-models (cf. Figure 3, right). The inclination is
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FIGURE 3. Quarter car model (left) and half car model (right).

variable denotation

2820,/ f displacement and inclination of vehicle body, displacement of the wheel
ms, Ig mass and moment of inertia of the vehicle body

Fp force at the spring/damper element

Fr wheel load (wheel model assumed to be a spring, often in addition with

a parallel damping element or as a more complex model)
N perturbation of the ground, (r - rear, f - front)
Fy, Ty perturbing force and moment (induced by maneuvers)
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FIGURE 4. Typical ERF damper characteristics (left) under min-
imum and maximum excitation of the ERF, the enclosed area
describes the bandwidth of adjustable damping rates compared
to conventional linear damping. Sketch of a ERF damper (right),
1 - valve between the electrodes, 2 - chambers filled with ERF,
3 - gas filled accumulator. Different designs with longer electrodes
are commonly used.

interpreted as roll or pitch motion. The most common and simple model is the
quarter-car-model (cf. Figure 3, left), which represents the vertical motion of a
system including a quarter of the vehicle body and one of the wheels. Its corre-
sponding simplified equations will be the base of our calculations with respect to
our goal of optimal semi-active suspension.

2.1.3. NONLINEAR SINGLE TRACK VEHICLE MODEL The vehicle dynamics mo-
del should also take into account the particular properties of the ERF shock ab-
sorbers. Substitution of the commonly used linear damping behavior within the
models of Section 2.1.2 by a realistic dynamic model of the ERF damping charac-
teristics yields a highly nonlinear system of differential equations (cf. Section 2.2).
This may be extended by further substitutions such as nonlinear models for tires.
Such a more realistic upgrade of a half car model is commonly used for calculation
of different optimal controls [28]. Specially calculated damping controls take into
account pitch motions which are significant for time shifted perturbations on front
and rear wheels.

2.2. Dynamic Model of a Continuously Controllable ERF Shock Absorber

Conventional damping behavior is usually described by a fixed damping charac-
teristic defined by the force-velocity rate. In general, dampers exhibit nonlinear
behavior. Depending on the actual damper design, the damping rates are differ-
ent in the bump and rebound phases while within each phase the system is best
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FIGURE 5. Proposed phenomenological models for ERF devices.
(a) Peel, Stanway, Bullough [24] (b) Powell [19]; (c) Ehrgott,
Masri [11] resp. Kamath Wereley [14]; (d) Spencer et.al. [23].

described by progressive damping characteristics. For a more realistic simulation,
piecewise linear or higher order polynomial approximations of realistic tabular
data are used.

Measurements of ERF dampers indicate strong nonlinear behavior and char-
acteristics with hysteresis. The dynamics of the characteristics depend upon the
damping velocity and on the exciting electrical field.

Poiseuille flow within the valve has already been calculated under highly sim-
plifying assumptions (steady state, laminar, incompressible flow neglecting mass
inertia, cf. [1, 20]). The results demonstrate that the Bingham property of the ERF,
defining the ratio between shear stress and strain rate, dominates the force-velocity
characteristics of the damper. A comparison of the calculated and measured damp-
ing rates also suggests the necessity for more complex simulations, including the
effects of dynamic flow, particular geometry, vortices, etc.

Another approach which avoids these complex and expensive calculations
are parametric models. A sufficiently precise prediction of the dynamic behavior
of an ERF shock absorber using parametric models depends upon an optimal
set of parameters that minimize a particular distance between model prediction
and provided measurements. Of course, the type of dynamic model dominates
the error between prediction and reality. General approximation techniques, for
instance Cebysev polynomials (cf. [11]) and multilayer neural networks (cf. [6, 15])
have previously been investigated. More common models are phenomenological
models. Here the approximation of the ERF effects is usually induced by friction
elements or nonlinear spring or damper elements (cf. Figure 5). However, only a
few of them take into account the dependency on a variable electrical field. An
overview is given in [7, 25].

The augmented Bouc-Wen model (cf. [23], see also [7, 13]), Figure 5(d)) is
the most flexible one and is used in the following sections. It describes a dynamic



8 U. Rettig and O. von Stryk

system depending on Zp, the velocity of the piston rod.

1
&, — 5 _ _k
S1 = o o (clzD aSy 081) (8)

g2 = (A—B(L+sgn(3152))53)41

The output function
F = Cl(ZD - 31) + kl(ZD — Zo) (9)

denotes the damping force and depends on Zp and zp, the relative displacement
of the damper. The system (8) describes a hysteresis operator, and its properties
are parameterized with respect to the applied electrical field. This gives

43 = n(up — s3) (10)
with control up as the applied field strength and

Co = Co1 + 83C02
€1 = cC11 + 83C12 (11)

o =1 + 8302 .

The states s = (s1,52,53)" denote the inner variables of the virtual model of each
ERF damper. For a more realistic ERF damper model, the 11-dimensional pa-
rameter vector p = (c11,¢co1, 01, A, B, c11,Co2, @2, ko, k1, 20,m)T must be estimated
numerically from measurements of a prototype damper.

2.3. Objectives for Comfort and Safety

2.3.1. PARAMETERIZED COST FUNCTIONAL The two primary objectives for a
vehicle ride with semi-active suspension are ride safety and ride comfort. For both,
mathematical models must be provided.

The characterization of safety in the vehicle dynamics depends primarily on
wheel loads. High loads have greater longitudinal and lateral transmission forces
between wheels and ground. On the contrary, low wheel loads can cause the loss
of controllability of the vehicle. Larger magnitudes for the roll and pitch angles
will indirectly influence ride safety as the wheels’ contact force magnitudes might
reach zero causing lift-off.

The comfort of a ride can be of almost equal importance to passengers than
safety. Comfort is mainly characterized by the accelerations of the vehicle body,
often called the sprung mass contrary to the wheel body, which in this sense is
called the unsprung mass. With respect to the vertical models (cf. Section 2.1.2),
vertical accelerations are treated here. For models with a higher level of detail,
angle accelerations of pitch and roll motions may also be considered.
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FIGURE 6. Comparison of optimal controls and trajectories re-
sulting from the two extremes of cost functional weights. The
curves in the upper row are obtained for the optimal control with
respect to safety only, the lower ones for optimal control with re-
spect to comfort only. All curves are depicted over time in [s] and
are based on a quarter car model and an initial step disturbance.
(wheel displacement: bright, vehicle body displacement: darc line)

Altogether a performance index consisting of a weighted sum of various cri-
teria of safety and comfort may be used

F k z 2
L(X,u):Nsafety Z [ dyn.load,z:| +|: b :|

Puryt Fstat.load,i 2, max
— (12)

. 2 . 2
Zs 20
+ Ucomfort “: :| + [ :| ] .
Zs,max 20, max

For an example of the state and control variables x and u, we refer to the half-car-
model of Figure 3. For a full-car-model (in the sense of vertical models) one can
extend the functional by terms of the second angular magnitude. The variables
Fayn.10ad,i> %s, 29, 29 denote the deviation from the corresponding stationary value.

2.3.2. THE WEIGHTS The weights u, have to be chosen properly, i.e. depending
on the purpose of investigation. For example, their actual value may depend on the
actual driving situation where either comfort or safety may be more desirable. Fig-
ure 6 shows suspension behavior under different optimal semi-active damping with
respect to either only safety or comfort. Here, the purpose is to demonstrate the
antagonistic character of the two goals. Optimized safety leads to fast regulation
of the oscillations under high accelerations of the vehicle body, whereas optimized
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FIGURE 7. Comparison of curves by different optimization con-
figurations (all curves over time in [s], wheel displacement: bright
line, vehicle body displacement: darc line).

first row: optimal safety, comfort ignored

second row: optimal comfort with constrained wheel load

third row:  optimal comfort, safety ignored

fourth row: version with a slack variable.
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FI1GURE 8. Controls corresponding to the four rows depicted in
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four).

comfort yields almost decoupled motions of vehicle and wheel body under very
low accelerations of the sprung mass and high frequencies of the unsprung mass.
Please note the periods of time intervals of contact losses to the ground.

2.3.3. DIFFERENT VERSIONS OF OBJECTIVES Evidently it is not possible to
simultaneously ensure a maximum value for the respective cost functionals corre-
sponding to both safety and comfort by choosing particular weights of the cost
functional

L = psatety Lsatety +  Hcomfort Licomfort-

Another approach to handle this problem is to optimize one of the objectives and
to restrict the other one to suitable bounds.

min Ly under Ly < Ly max.

This approach usually yields satisfactory results. A third approach is to maximize
a positive slack variable ¢ which is subtracted from both objective values of safety
and comfort

max o under Li<Limax—o0, 1=1,2 0o>0.

Each difference is then constrained to a proper maximum value. Figure 7 shows
the behavior of the state variables of a quarter car model for the resulting optimal
controlled semi-active suspension. Although the displacement state variable shows
similar behavior for the first three examples, the optimal damping rates are very
different (see Figure 8). The last optimization configuration using a slack variable
yields high gain damping.
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Optimization with respect to safety Values derived by general non-

linear calculation of optimal

constant parameters 18.85 d i ;
. . . amping forces for a quarter
semi-active damping 11.57 (61,4%) = 0o oy respect, to oc-

active damping 7.05  (37,4%) curring inequality constraints.

TABLE 1. Comparison of optimal values of the cost functionals
for different damping configurations.

However, weighting remains a subjective task. Sporty racing cars, ambulance
vehicles or ordinary automobiles have to be designed by different requirements.

3. Numerically Calculated Controls and Results

The goal of the control problem for controllable ERF-shock absorbers integrated
into a semi-active vehicle suspension is a combination of optimal safety and op-
timal comfort of the ride. Nowadays available standard techniques for damping
control are rather simple: The driver or a control unit selects a fixed damping
characteristic from several optional settings. The new technology of ERF-shock
absorbers permits continuous control. This supposes the calculation of suitable (if
possible optimal) controls taking into account the dynamics of the vehicle and of
the damper (Section 2.1). The resulting dynamical system may be highly nonlinear
and further constraints have to be taken into account.

3.1. State Feedback Controller based on LQR and H* Techniques

In order to test the capability of semi-active damping with ERF-shock absorbers,
state feedback controls for various linearized, reduced vehicle models (cf. Sec-
tion 2.1.2) were computed and implemented. The general problem formulation for
a linear vehicle dynamics model is written as

. 0'"/;:7'"/2 Inm,nm On‘-E,nu 0”,7;7'"/9
X = ( M-1A, M-1A, )X+ ( M-8, )"t m-ip, )& (13)

> ~ > ~ >

A B D

with zero matrix 0, unit matrix I, mass matrix M, stiffness matrix Ay, damp-
ing matrix A., control matrix B,, and perturbation matrix D,,. The state x is
controlled by u and perturbed by g, n, denote their dimensions, ¢ = x,u, or g.
Perturbations include shocks caused by an uneven ground as well as forces and
moments acting on the vehicle body caused by driving maneuvers. The linear
quadratic cost functional

J[u] = / x'Qx+2u'Sx +u"Ru dt (14)
0
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F1GURE 9. Comparison of some of the state variables of a single
track model for a ride over a step of 2.5 cm height at a speed of
100km/h for different controls.

upper left motion of center of gravity of the sprung mass z;
upper right  curve of the pitch angle 29
middle left ~ wheel load of the front wheel Fry
middle right wheel load of the rear wheel FRr,
lower left front(---) and rear (-) characteristics Fp, )¢

lower right  sprung mass accelerations Zs

13



14 U. Rettig and O. von Stryk

front left 3 front right
[kN] ” | [kN]
4 | I v 4 4 .4'/\-\
oL+ o — M- —
10 14 [s] 18 10 14 s] 18
uncontrolled e controlled

FIGURE 10. Wheel loads on right and left front wheels of the
full vehicle dynamics model for a controlled and uncontrolled ride
within the critical phase.

again is a weighted criterion for safety and comfort with

1 krs 2
Q = Mcomfort Z ..Q—ATeie;’I‘A‘F,U/safety Z |:$:| (eie;'r)

32 F .
vehicle body ~ %Mmax wheels stat.load,i
velocities
1
T
-t E Mi,state 22 (ez'ez' )
states i,max
1
T T T T
R = [pcomfort ——B €;e; B + fcosts B €;e; B
2 "
vehicle body ~%Max wheels ~ »TaxX
velocities
1
T T
S = Hcomfort E ..2—B €;e; A.
vehicle body ~#:max
velocities
The optimal active damping force can now be obtained by
u* = -Kx=R(S+BTP)x (15)

with the solution P of the algebraic Riccati equation corresponding to the cost
functional of Equation (14). Expanding the approach of conventional optimal con-
trol (LQR, cf. [5, 10, 16]), H* control techniques include the worst influence of oc-
curring perturbations (cf. [3, 10, 13]). Here the extreme (optimal resp. pessimistic)
controls are saddle-point solutions of the dynamic game with the parameterized
cost functional

Jyu,g] = / xTQx +2uTSx +u'Ru—~%gTg dt, (16)
0
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FIGURE 11. Double lane change maneuver (path through the
cones) on a very uneven street simulated with the full vehicle
dynamics model. The uncontrolled car, i.e. with a conventional
passive suspension, swerves off the road whereas the controlled
car, i.e. with an (sub-)optimally controlled semi-active suspen-
sion, follows the desired time optimal path.

where u is the minimizing and g is the maximizing player. For v > 0 and optimal
u’ = u’(g) we have J [u’g] /||g||> <~* Vg, i.e. the disturbance of the system
is bounded. The optimal disturbance attenuation is related to a minimal bound
~v*, which is calculated iteratively. Since the existence of an optimal controller for
the “infimum” is not guaranteed, suboptimal solutions for v = v* + € may be
sought for (see [13]). Both the approaches LQR and H* are feasible and yield

useful damping performances (cf. Figure 10).

3.2. Verification within a Dynamic Full Car Simulation

The linearity of the problem formulation merely allows the calculation of the opti-
mal damping force but not the optimal damping rate or field strength at the valve
of the ERF-shock absorber as in the general nonlinear case. Hence the applica-
tion of ordinary algorithms for linear quadratic regulators causes active damping.
Technically speaking this requires energy input into the vehicle suspension system
which is not supported by the technique of ERF-shock absorbers. Table 1 shows
the difference between optimal cost functionals under various damping configura-
tions. Please note that obtaining the best performance with fully active damping
must in practice be payed with a substantially more expensive technical effort than
for semi-active damping.



16 U. Rettig and O. von Stryk

Based on the calculated optimal damping force (Section 3.1), a prediction of
a capable semi-active damping rate is computed by a heuristic compensation regu-
lator. A “clipped optimal” algorithm is suggested in [22]. Here a related approach

w= Umin fOr FoptFa.ppl <0
Min(Umax, MaX(Umin, ¥ + (| Fopt| — |Fappi|) * K)) otherwise

(17)

is applied with the requested optimal active force F,p¢ and the current force Fyppi
for each ERF damper. It is assumed that an estimate of F,pp) is available. The
constant K depends on the scaling of w.

Generally in this context, the measurability and observability of the state
variables is important. In addition to an estimate of F}1, the damping velocities
of the shock absorber and the vehicle body accelerations are assumed to be given,
e.g., by measurements. A Kalman state estimator is used to provide state estimates
for the system (13), cf. [10].

The calculated feedback controllers are verified within the real-time full car
simulation VEDYNA (Section 2.1.1), which includes 56 dynamic state variables
in its basic version and accounts for the most relevant effects of a complex vehicle
model. A typical test maneuver for vehicles, the double lane change, cf. Figure 11,
simulated on a very uneven street demonstrates the improvement in safety. A car
equipped with an ERF-shock absorber remains on a commanded minimum time
path through the cones (cf. [28]), whereas the conventional car begins to slide.
Higher wheel loads are provided by controlled vehicle suspensions as shown in
Figure 10.

3.3. Nonlinear deterministic optimization

3.3.1. THE DIRECT COLLOCATION METHOD as implemented in DIRCOL, cf. [26],
computes the numerical solution for general, nonlinear optimal control problems
with the following general problem formulation

min J[u] = ®(x(te), tr)

(t) fa(t),u(t), t) (18)
under 0 = r(x(0),z(t), tr)
0 < g(x(t),u(t),t), OStStf-

The method belongs to the class of direct transcription methods [4]. The optimal
control u*(¢t) and trajectory z*(t) minimize the cost functional J subject to the
given inequality and boundary constraints and subject to the differential equations.
Tasks with cost functionals of different types, namely with an integral part, have
to be transformed into a problem with a Mayer-type objective, cf. Equation (18).
The discretization process approximates the controls u(t) on a time grid {t : to <
tr < tp+1 < tn, = tr} by a continuous, piecewise linear function; the states z(t)
are interpolated by continuously differentiable cubic functions on the same time
grid. DIrcOL further permits the modeling of multiple phases used for switching
dynamics or controls. In this case, the time interval is decomposed within each
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FI1GURE 12. Principle of the direct collocation method

phase. This yields additional conditions on the phase transitions. In order to save
expensive writing effort a one phase problem is described here. The discretization
scheme leads to

min J[u] = ®(x(te), tr)

fx(),u(t) = @(b) Vt = trg1)2 (19)

r(z(to),z(t)) = O

g(t,z(t),u(t)) = 0 Vit =ty

For Y = (z(10),u(70), .- .,2(Ta),u(Ts), tr) a nonlinearly constrained mini-
mization problem results in

min®(Y)
a(Y) =0 (20)
b(Y)>0.

Solutions of (20) are currently obtained by SQP-methods. If structure and sparsity
of the NLP functions and their gradients are exploited and the large-scale SQP
method SNOPT [21] is applied, a computational speed-up and storage savings by
two orders of magnitude can be obtained [27].

3.3.2. RESULTS Several local error estimators are investigated to monitor the
accuracy of the computed approximation of the solution and the need for a local
grid refinement. The estimates of the adjoint variables X and the multipliers i of
the constraints resulting from the optimal control problem and calculated from the
Lagrangian multipliers of the discretized minimization problem make the following
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calculation possible

tht1 .
o = / AW (@@, a0 - 30) + Mg, a@,0dt (1)

k

for k=1,...,n—1. The sum of the values wy, called the optimality error, vanishes

for exact optimal solutions & = z*, 4 = u* and exact multipliers A = A*, i = p*.
Furthermore, defects of the differential equations and of the nonlinear constraints
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F1GURE 13. Calculated results of an optimal semi-active damping
control for a single track vehicle model equipped with ERF shock
absorber during a ride over a step (speed 100 km /h). The solutions
shows the 68 marked grid points.
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are evaluated at the points t = tgyy/4, I = 0,1,2,3 (cf. [26, 27]). These error
estimators are used for an automatic iterative grid refinement which can produce
more exact and robust solutions. This yields problems with a high number of grid
points; nevertheless, they can be calculated very fast with the sparse version of
DircoL.

Figure 13 depicts a calculated example. Here the lower figures show the es-
timated Hamiltonian and the adjoint variable for the scaled time variable. These
trajectories demonstrate the high accuracy of the solutions although adjoint differ-
ential equations have neither been formulated nor solved numerically. The location
of the marked grid points are obtained by evaluation of the error estimators in the
sequence of solutions.

4. Conclusions

The problem of optimal semi-active suspension of vehicles using the new technology
of electrorheological fluid dampers has been investigated. For the formulation of
the corresponding optimal control problems, several models of the vehicle dynamics
with different levels of detail for the ERF shock absorber dynamics and the safety
and comfort objectives are presented and investigated.

Reduced, linear vehicle dynamic models permit the application of LQR and
H®° control techniques which provide an optimal and real-time capable feedback
control for the reduced model. The resulting controls are only suboptimal with
respect to the full scale vehicle dynamics model but provide remarkable improve-
ments over passive suspensions as has been demonstrated in numerical experi-
ments. In spite of the improvements (in particular for the ride safety), significant
nonlinearities in the dynamics of the ERF-suspensions continue to counteract the
calculated control, whereby the potential of the ERF technology can not fully
be exploited by this approach. On the other hand, direct transcription methods
can deal with general, nonlinear dynamic models and constraints, but they only
provide optimal open-loop state and control trajectories.

Furthermore, it has been demonstrated that comfort and safety have antago-
nistic properties. Several ways to deal with comfort and safety in a single objective
have been investigated and discussed here.

Future work will focus on nonlinear H*® control and the approximation of
optimal feedback controls in the case of general nonlinear dynamics.
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