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Abstract

Dynamic optimization problems are typically quite challenging for
large-scale applications. Even more challenging are on-line applications
with demanding real-time constraints. This contribution provides a con-
cise introduction into problem formulation and standard numerical tech-
niques commonly found in the context of moving horizon optimization
using nonlinear differential algebraic process models.

Keywords: dynamic optimization, optimal control, direct methods

1 Introduction

Safe and economical process operation is of crucial importance for the success
of chemical companies. Model based optimization is a promising technique to
increase the operational profit in process operation. Moving horizon optimiza-
tion includes model predictive control (MPC) and receding horizon estimations
(RHE) and requires on-line dynamic optimization (see, e.g., Helbig et al. [61]).
MPC regulates processes whereas RHE is used to estimate unaccessible pro-
cess states and parameters (see Allgbwer et al. [3] for an excellent survey on
both problems). In these applications a multi-variable optimization problem
restricted to a large scale mathematical process model has to be solved on-line.
The large scale nature as well as the real-time requirement of the problem is a
clear challenge where the cutting edge of currently commercially available tech-
nology needs to be pushed further forward. It is the intention of this article to
provide a concise introduction into the exciting field of dynamic optimization
applied on moving horizons and to summarize the available numerical tech-
niques. However, due to the limitations in space we only focus on techniques
which from our point of view are considered as standard technologies currently
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applied. Recent results developed within the Schwerpunktprogramm are cov-
ered elsewhere in this book by additional contributions of each research group
(Binder et al., [21]; Diehl et al., [47]; Kronseder et al., [85]).

This introductory article is organized as follows. In Section 2 we introduce
the generic problem formulation of control and estimation problems which are
closely related. However, we will also illuminate the differences between both.
Special attention is given to the mathematical process model in Section 2.1
whereas in Sections 2.2 and 2.3 the optimization problems on fixed and moving
horizons are defined respectively. Furthermore, we emphasize the particular
real-time character intrinsic to moving horizon optimization.

Closed loop stability of the applied algorithm is of crucial importance. A
short introduction into the terminology and basic concepts is given in Section
3. Here, we motivate how stability problems arise when a finite dimensional
horizon instead of an infinite dimensional one is chosen.

Section 4 summarizes the basic techniques to solve the dynamic optimization
problem on a fixed horizon. We start with a short introduction into optimal
feedback controls which are described by the Hamilton-Jacobi-Carathéodory-
Bellman partial differential equation, and briefly introduce techniques based on
the so called Maximum Principle in Section 4.2.

In Section 5 we focus on the so called direct methods for the numerical
solution of optimal control problems. Here, the infinite dynamic optimization
problem is transformed into a nonlinear program (NLP) by parameterizing the
controls. Special room is given to direct single shooting (Section 5.1), direct
multiple shooting (Section 5.2) and direct collocation (Section 5.3), techniques
which are commonly used so solve large scale problems. The numerical solution
of the NLP by sequential quadratic programming (SQP) is outlined in Section
5.4, and the three presented direct techniques are compared in Section 5.5.

Extensions of fixed horizon optimization to moving horizon optimization
are discussed in Section 6. We start with the well-known recursive solution
approaches for regulation (Section 6.1) and estimation (Section 6.2) available
for unconstrained linear quadratic optimization problems. The simplicity and
power of these recursive techniques motivate extensions to nonlinear models.
Therefore Section 6.3 discusses optimal feedback control obtained by lineariza-
tion along a specific reference solution. In moving horizon optimization the
numerical cost can be lowered substantially using appropriate initialization tech-
niques. The various options of commonly applied approaches are outlined Sec-
tion 6.4.

The article is concluded in Section 7 by a short summary.

2 Problem Formulation

2.1 Model

Mathematical process models are an abstraction of real process systems and aim
to capture the essential features of concern. In general, the process models are
either based on fundamental principles or empirical observations or in the hy-
brid case on a mixture of both. The basis for virtually all fundamental process
models are the general conservation principles of mass, momentum and energy.
As long as the underlying assumptions remain valid, fundamental models can be



expected to extrapolate to new operating regions where no data sets are avail-
able. However, it is a rather difficult and time consuming task to construct and
validate good fundamental process models (see, e.g., Aris, [4]; Bauer et al., [13];
Marquardt [95]). An empirical model built from available process data might be
more convenient in some instances since a detailed process understanding is not
required for the model development, although a suitable model structure has to
be selected as well. Artificial neural networks are the most popular framework
for empirical model development (Su and McAvoy, [130]), but other techniques
based on Hammerstein and Wiener models (Norquay et al., [107]; Pearson and
Pottmann, [111]; Wellers and Rake, [144]), Volterra models (Maner et al., [94]),
and polynomial ARMAX models (Sriniwas and Arkun, [127]) might be consid-
ered alternatively. In this contribution a detailed discussion of the particular
advantages and disadvantages of fundamental or empirical modeling are off fo-
cus since from an optimization point of view we only need a sufficiently good
process model. The underlying principles of the building process are of minor
importance, although they very well might affect the applicability of the model
and the particular choice of the numerical solution method. We assume that a
fundamental process model is available, but we keep in mind that other model
types might be used as well. There is a wide variety of phenomena in chem-
ical process systems such that we have various types of process models which
vary over a large range starting from simple algebraic equation systems, to or-
dinary (ODE) or differential-algebraic (DAE) equations systems, and to more
complicated (partial-) integro-differential equations. Despite this richness our
discussion is limited to mathematical process models which can be represented
as DAE systems given by

0 = f(x(t),x(t),2z(t),u(t),w(t),p,t), Vtel, 1)
0 = g(x(t),2(t),ut), w(t),p,t), Viel, (2)

Here, x(t) € R™ and z(t) € R™ denote the differential and the algebraic sys-
tem state vectors, respectively. u(t) € R™ are operational variables which can
be directly manipulated by process operators. Modeling uncertainties and dis-
turbances are concatenated without further specification into a vector function
w(t) € R™. p € R™ denotes a vector of time-invariant system parameters.
The function f (with 2% invertible) describes the differential portion while the
function g represents the algebraic portion of the process model. In general the
Jacobian %f might be singular such that the DAE could be of a higher index,
where roughly spoken, the index denotes the minimum number the system has
to be differentiated with respect to time to be able to transform the DAE system
into an ODE system. Details on the theory of DAE’s can be found for example
in Brenan et al. [32] or Unger et al. [133]. Because of the richness of phenom-
ena occuring in higher index problems we limit ourselves to problems of index
one. The time interval of interest is denoted in the sequel by I := [to, t¢] where
to, ty are starting and final times respectively. The process model (1) and (2)
might be used for simulation. Given particular values of u*(t)!,w*(t), t € I, p*
and appropriate initial conditions the process model (1) and (2) can be solved
using a suitable integration routine. For notational convenience we assume in
the remainder that initial conditions are provided for the differential states, i.e.,
x(tg) = X¢. A more general discussion on the specification of initial conditions

! The superscript * denotes specific but arbitrary values.



can be found in e.g., Kroner et al. [83], Brenan et al. [32] or Unger et al. [133]
for index one and higher index problems.

Some functions of the system states are measurable, therefore we augment
the model (1) and (2) by the sensor model

y(t) = h(x(t),z(t), u(t),p,t) € R™, Vtel, 3)

that determines the output variables y as a function of the other system vari-
ables.

2.2 Off-line Optimization on a Fixed Horizon

Before we start to outline moving horizon dynamic optimization we consider
first an off-line problem on a fixed horizon such as the optimization of batch
processes. These problems require the minimization of an objective function
by adjusting the free operational variables u, also referred to as controls, in
an appropriate manner within the finite interval I" = [tf, 7] which denotes an
operational phase of the process, such as the time required for a grade change
of a continuous process or the reaction phase in a batch process. The final time
may be fixed or subject to optimization.

The controls u cannot be adjusted arbitrarily since they might be restricted
by constraints which are typically associated with physical limits such as, e.g.,
restrictions on valve position or rate of change.

Further (mixed) constraints on controls and states comprise, e.g., limits on
capacity of production units and quality specifications on the product, as well as
safety constraints. For notational simplicity, both types of restrictions are con-
catenated in a general constraint vector function c(x, z,u,p,t). The constraints
¢ have to be enforced during process operation at any time ¢t € I.

Optimal operation of the process with respect to the specified cost functional
could be achieved if a perfect process model (1), (2) and (3) of the process
would be available and if the initial state x¢ at tp, the parameters p, and
the disturbances w were known exactly. Then the controls and therefore the
operational trajectory could be determined entirely off-line through the solution
of the following dynamic optimization problem (provided that it is solvable)

¢
min ET(X’"(t?),zT( ;),pr) +/ L™(x",2z",u",p",7) dr (4)
x"(),2"(-), to
ur(')at}
s.t. 0 £(x"(t),x"(t),2"(t),u"(t),w"(t),p",t), te€l,
x"(tg) = xp,
0 = g(x"(t),z"(t),u"(t),w"(t),p",t), tel,
0 < c"(x"(t),z"(t),u"(t),p",t), te,
0 = r"(x"(t7),2"(t7),p")-

In the case of tracking problems the Lagrange term L" may be given by an
appropriate norm of the difference between the output trajectory y and a given
reference trajectory 9" (t), such as a weighted Euclidean norm with the particular
weighting S:

L'(x",2",u’,p",t) := ||h(x"(¢), 2" (t), 0" (t),p",t) — 0" (t)I[3.



ET is then the penalty for the final states. In a more general case L™ and E" may
denote an economical cost function. The vector function r” is used to account
for endpoint constraints. The superscript r in all quantities indicates that (4)
is typically an optimal control problem which aims to determine the regulating
optimal trajectory for the control u. Furthermore, problem (4) is commonly
referred to as an open loop optimal control problem, since no feedback from the
process enters the problem formulation.

A similar dynamic optimization problem can be formulated if one aims to
determine unknown or hardly accessible process quantities such as initial con-
ditions, process parameters, process disturbances, or model uncertainty from
process measurements on ¢ = [t§,%]. We can formulate the following dynamic
optimization problem for the off-line estimation of the unknown quantities using
data that have been collected during an operational phase I°.

i3
min Ee(xe(tg),ze(tg),pe)+/ Le(x%, 2%, w®,p®,7) dr (5)
x0,x°(+),2°("), t5
we(),p°
8.t = f(x°(t),x(t),2°(t),u(t), we(t),p* 1), te€l’,
x¢(t5) = x§,

= g(x*(t),z°(t), u’(t), w*(t),p%, 1), tel’,
< e (x(t),2° (), u"(t), p%, 1), tel”.

O O — O

Now, the superscript e is used to indicate the estimation. Here, the Lagrange
term is typically given as a weighted Euclidean norm of the difference between
the measurements n°(t) and the model response y

Le(x%,2°,w, p°, 1) == ||h(x°(t),2° (t), u®(8), °, ¢) —n°()]I3.

A typical weighting matrix S is the inverse of the covariance matrix of the mea-
surement error. Nevertheless, more general weights like, e.g., time dependent
operators are possible, too (Binder et al. [20]). The measurement function 5 (t)
has to be generated appropriately from the measurements taken from the pro-
cess at discrete sampling times. The measurements might be as well included
pointwise by substituting the integral by a finite sum. The initial conditions x§,
the parameters p°, and the disturbances w¢ are free variables to be determined
by the optimizer.

A reference value %o which could be close to the true initial conditions can
be incorporated into the initial penalty E*¢, e.g., by

E°(x°(t5), 2° (t5), p°) = [[x°(t5) — I3,

where the particular weight S reflects the confidence in such a reference value.
The controls u® are typically accessible and therefore assumed to be known.
So far we considered the regulating and estimation problems independently
of each other, each formulated on a fixed horizon. It is obvious that both
problems can be also coupled. For example, consider an operational phase of
a production process where first process data is collected in some interval to
estimate unknown quantities. Then, based on these estimates an optimal oper-
ational trajectory is determined on the remaining time interval. Let’s assume
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Figure 1: Moving horizon approach.

the time interval [to,?y] is split in two parts, i.e., I¢ = [t§,t5], I" = [tg,t}]
where t§ = to, 15 = tj , t§ = ts; see Figure 1. The optimal solution of (5)
provides estimates on I¢ of parameters p, disturbances w(t), and measured or
unmeasured states x(t),z(t) which are consistent with the process model. The
estimates can then be used in the regulator problem (4) on I". In (4) the uncer-
tainty and disturbance vector w” is assumed to be fixed and known. Typically
its values are suitable predictions based upon the estimates w® computed on I¢,
e.g. W' = Py (w®) where P, denotes a prediction operator. The predictions are
computed by extrapolation or by use of simple disturbance models as discussed,
e.g., in Ricker ([121]). Furthermore, the problems (4) and (5) are coupled by the
initial condition x*(t§) = x°(t§) and the parameters p” = P,(p®) which have
been determined from (5) for further use in (4) using the prediction operator
Pp. Note that in this example the solution to (4) and (5) cannot be computed
off-line anymore.

The concept of estimation and regulation has been outlined for a simple
setting. It is clear that the methodology also applies in more general situations,
to better deal with the uncertainty in the model and the disturbances acting
on the real process. Next, the horizons are repetitively shifted with time by a
sampling time interval AT such that a moving horizon optimization problem is
obtained.

2.3 On-line Optimization on Moving Horizons

In moving horizon optimization problems (4) and (5) are solved repeatedly. Un-
known process quantities are estimated from the collected process measurements
using (5). Based on this estimates an optimal trajectory u™*(t) t € I" is deter-
mined by solving (4)2, but u™*(¢) t € I", is applied to the process only during an
interval AT, i.e., u"*(t), t§ <t < t{+AT. Then, new measurement information
is collected, the estimation and regulation horizons I¢, I" are shifted by AT, and
(4), (5) are resolved. We now have several horizons which typically overlap such
that we introduce a horizon index k which is also used as subscript in notation,
i.e., the horizons are denoted by I := [t§ ;,t% ;] and I} = [tg ;. t} ;]. Further-
more, we include I{, I} as a second argument in all quantities appearing in (4)

2The superscript * denotes the optimal values.
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and (5) to distinguish the solutions computed on different horizons. Therefore
u™(t|I}) ,t € I}, denotes the optimal solution u"* in problem (4) obtained on
horizon I}. Similar notation applies for all other quantities in problems (4) and
(5). Note, that in this problem setting we estimate all quantities simultaneously.
In practice the unknowns might live on different time-scales such that there is
no need to estimate slowly varying quantities in each time step (Helbig et al.,
[61)).

So far, the framework introduced is quite idealistic since it assumes that
problems (4) and (5) can be solved instantly. For practical applications the
estimation and prediction horizons have to be separated by some time to per-
form the necessary numerical computations and data input/output operations.
Therefore, the estimation and prediction horizons are separated typically by
one sampling time, i.e., {7, = t7, + AT. An illustration of the moving hori-
zon approach is given in Figure 2, where however w,z, p are not displayed to
avoid an overload of the graph. With these definitions the basic moving horizon
algorithm is given by:

1. While &, <t <15 ,:

e Apply u”(t|I;_,) to the process.
o Access the measurement values n°(t), ¢t € If.

e Solve the estimation problem (5), use the so far injected controls as
u®(t) for t € I, i.e., compute x°(¢[I5), z°(t|15), w(t|I}), pf..

e Compute x'(tf ;) using the model f, g in (5) as prediction model with
initial condition x°(t% ), control u”(¢|I;_;) and suitable prediction
models Py, Py to extrapolate w(t°|I§) and p§, on [t$;,t5 ,]. Extend
the extrapolation to I} such that w”, p7, is obtained.

e Solve the control problem (4) with the extrapolated quantities and
determine u”(¢|I}) to be injected into the process in the upcoming
step ¢ 41 <t <1 py1-



2. k:=k+1.
3. Goto 1.

The underlying assumption of the algorithm is that the prediction models are
of sufficient quality such that the initial guess x"(tf ;) and the extrapolations
we(t), tp SESHG g W (t), t € I}, are close to the true values.

Obviously, the time AT should be as small as possible where at least AT has
to be sufficiently smaller than the dominating process time constants. These
time constants depend on a number of factors such as for example on the partic-
ular chemical species involved or on the particular unit operations used. While
distillation column time constants with regard to product concentration are in
the range of hours the product concentration of chemical reactors can change
in seconds. The computational complexity of an algorithm to solve (4) and (5)
depends in addition on a number of other factors such as the used model (type,
structure, dimension), numerical solution approaches (optimization method, dis-
cretization), choice of cost functional and the horizon length. While the time
constant is given by the process, the computational complexity is affected by en-
gineer and mathematician through modeling and algorithmic design decisions.
The designed algorithm has to prompt in any event the optimal values (or at
least suitable approximations) of (4) and (5) within the available time span
AT since otherwise proper function of the on-line optimization scheme cannot
be guaranteed. This is an important real-time requirement which should be
addressed by the design of the algorithms.

The functionality of the process is further affected by the closed loop sta-
bility properties (e.g., Bitmead, Gevers and Wertz, [22]) of the moving horizon
approach which will be addressed in the next section.

3 Remarks on Closed Loop Stability

First, we discuss closed loop stability for the regulator problem (4) assuming
fully accessible differential states, i.e., y" = x", and given p”, w"(t). Let’s as-
sume that we want to find an optimal control u”(t),t} < t < oo which moves
the process state x" from some given initial conditions x" (tS, ) to a target state
which for simplicity is chosen to be the origin, i.e., " (t) = 0, Vt. Suppose, that
the considered system is controllable (see, e.g, Ogunnaike and Ray, [109], for
an introduction to the concept of controllability) and that no unknown distur-
bances, unknown parameters and model uncertainties are present. Furthermore,
we assume to know the true initial conditions x(¢j ;).

It follows from Bellman’s Principle of Optimality (e.g. Anderson and Moore,
[2]), that in each horizon k the predicted state and control trajectories x" (¢, I,’°°), z" (¢, I;>°),u" (¢, I;>™)
of problem (4), where I"™> := [t ,,00], are equal to the optimal process tra-
jectories x" (t, 1), z" (t, I;'°°),u" (¢, I;>™) of the process system determined on
[th,00]. This holds only if the first problem k = 0 is feasible and if the initial
conditions x"(tg ;) are known for all k¥ (Keerthi and Gilbert, [73]). Therefore,
for infinite horizons there is no difference between the subsequent control se-
quences determined at certain time steps and the control trajectory obtained
by solving a single problem. This implies closed loop stability, as any feasible
optimized trajectory goes to the origin (Keerthi and Gilbert, [73]).



When instead a (small) finite horizon I}, t;, < oo, is chosen the actual
closed loop control and state trajectories will differ in general from the predicted
open loop trajectories even if no model uncertainty and unknown disturbances
are present which is nicely illustrated by Bitmead, Gevers, and Wertz ([22]).
The solutions computed on I;>*° and I may differ significantly the shorter
I} is chosen. Since from a theoretical perspective the minimum requirement
of a model based controller is that it yields a stable closed-loop system if a
perfect model of the plant is available and if the state is completly accessible by
measurements (Henson, [64]), intense research has been undertaken in the last
decade to develop schemes with guaranteed nominal stability properties. The
major developments are summarized in excellent surveys given by Mayne ([96]),
Morari and Lee ([103]), Allgéwer et al. ([3]), and Mayne et al. [97]. However,
the developed approaches are yet computationally expensive, difficult to design
and therefore limited to processes with low state dimensions. So far, moving
horizon schemes with guaranteed stability have been only applied in academia.
Besides the inherent drawbacks of the approaches with guaranteed stability this
might as well be due to the fact that it is typically not difficult for practical
problems to find long enough horizons by trial and error such that closed loop
stability is obtained. However, it should be admitted that it is difficult to come
up with a generally applicable horizon design procedure, which, given a specific
problem, determines stabilizing prediction and control horizons based on the
process model and the cost functional chosen (Allgdwer et. al, [3]).

Similar stability considerations apply to the estimation problem. Here, sta-
bility of the estimator is defined as the convergence of the estimated states to the
true states for t — oo for arbitrarily specified initial conditions, if the measure-
ments contain no errors, the model is correct and the disturbances and param-
eters are known. Stability is trivially obtained by dropping the Mayer term in
the objective (E¢ = 0), because the minimization of the cost immediately moves
the initial state to the correct value. However, such a strategy would lead to
poor estimation quality if measurement noise and model uncertainty would be
present as in any real situation. In these cases one should include an appropri-
ate guess of the initial condition, say Xg ,, to improve estimation quality. This
can be accomplished by introducing the Mayer term E°(x°(tg ;) — X§ ;) where
E* typically reflects some kind of least-squares formulation of the error. Alter-
natively, one could account for all available measurement information for the
current estimation by keeping g , = to,0, Vk. The resulting problems are not
computationally tractable since the problem dimension grows as the estimation
horizon grows. Instead in the k-th horizon past data in [t§ o,t% ;] are indirectly
accounted for by x§ , which is used to reflect the past estimate and thus indi-
rectly the information content of the past measurement data. Thus the weights
in E° reflect the confidence in the past estimates. E°¢ has to be chosen rather
carefully to ensure proper weighting of the old data. Estimator divergence may
result if the initial penalty E° biases the old data by too strongly weighting the
past estimates, while performance may suffer if the initial penalty neglects the
old data by not sufficiently weighting them. Stability and performance impli-
cations for several choices of E°¢ for a number of problems are discussed in a
rigorous manner by a number of contributions, e.g., see Michalska and Mayne
([101]), Muske and Rawlings ([104]), Robertson et al. ([122]), and Rao and
Rawlings ([120]).

So far stability has been illuminated separately for the regulator and estima-



tion problem. For linear time invariant models with quadratic cost functionals
and no inequality restrictions present the separation principle holds and closed
loop stability of the combined problem follows if the estimation and regulation
problem are stable independently. Furthermore, it can be proven for general
systems (Meadows and Rawlings, [98]) that if an exponentially converging esti-
mator is combined with a stable control algorithm where all states are measur-
able, then this observer-controller system is stable. This holds even for nonlinear
regulators where the separation principle obviously does not hold.

4 Overview of Solution Methods for Optimal
Control Problems on Fixed Horizon

Next, we discuss the numerical techniques which are commonly applied to solve
dynamic optimization problems. First we review available methods to solve
optimal control problems on a fixed horizon before we examine particular ex-
tensions towards a moving horizon.

Many methods for the on-line solution of optimal control problems on mov-
ing horizons are based on algorithms designed for the off-line computation of
solutions to optimal control problems on a fixed interval I := [to,ts] in time
(including problems where ¢y is as well a degree of freedom in the optimization
problem). Therefore, in this section we give an overview of the most common
off-line optimal control methods which will form the core of any receding horizon
strategy.

In the previous sections the necessity to distinguish the estimation and reg-
ulator problems required an extended notation which we drop here for conve-
nience, since both types of optimal control problems can be solved using similar
numerical techniques. Additionally, we restrict our attention to ODE models
as the DAE case introduced above poses additional theoretical and practical
difficulties which are beyond the scope of this general discussion. However, for
further information on dynamic optimization with DAE systems we refer to
Pytlak [119] as well as to the articles by Biiskens et al. [38], Diehl et al. [47],
and Kroner et al. [84] within this book as a starting point.

We consider a deterministic optimal control problem in Bolza form on a fixed
horizon I := [to,tf] with

ol ity O XL = B + /t L (x(t), u(t), ) dt (6)

subject to
x(t) =f(x(t),u(t),t), tel (7)
x(to) = %o, (8)
0 <c(x(t),u(t),t), tel 9)
0 = r(x(tf)), (10)

where x : I — R" , n, > 1, and u : I - R™, n, > 1, denote the state and
control variables. The model ODE is denoted by f : R"* x R™ x I — R,
c:R?% x R*™ x I — R", n. > 1, is a general nonlinear inequality constraint
function, and r : R* — R™, n, > 0 describes the end point constraints. The

10



objective incorporates a Mayer term E : R** — R and a Lagrange term with
L:R*» xR™ xI =R

For simplicity, the final time t; > ¢, as well as the initial conditions x¢ and
the model parameters are assumed to be known and fixed, but an extension of
the solution methods presented towards a free end time and unknown initial
initial conditions and model parameters can be obtained straightforwardly. For
convenience, the model parameters have been suppressed in Eqns. (6)-(10).

The functions E, L, f, ¢, and r are assumed to be twice continuously differ-
entiable with respect to their arguments.

There are three basic approaches to solving optimal control problems of the
form (6)-(10):

(I) Hamilton-Jacobi-Carathéodory-Bellman (HJCB) partial differential
equations (PDEs) and Dynamic Programming,

(IT) Calculus of Variations, Euler-Lagrange differential equations (EL-DEQ),
and the Maximum Principle (indirect methods), and

(ITI) direct methods based on a finite dimensional parameterization of the con-
trols.

We will briefly comment on the first two approaches in Subsections 4.1 and 4.2.
The direct methods will be presented in detail in Section 5, as they have proven
to be most successful for the treatment of real life large scale optimal control
problems.

4.1 Hamilton-Jacobi-Carathéodory-Bellman Partial Differ-
ential Equation, Dynamic Programming

In HJCB the optimal feedback control u*(x,t) is obtained by solving a PDE
for a so-called value function (e.g., Pesch and Bulirsch, [113]). In practice,
however, the PDE can be solved numerically for very small state dimensions
only. A further severe drawback is that inequality constraints on the state
variables as well as dynamical systems with switching points usually lead to
discontinuous partial derivatives and cannot easily be included. Discretization
methods to compute numerical approximations of the value function by solving a
first order PDE with dynamic programming are described by Bardi and Dolcetta
[10], Falcone and Ferretti [49], and Lions [92] (viscosity solutions of the HJICB
equation). It is worth mentioning here that for the subclass of linear-quadratic
regulator problems, the HJCB-PDE can be solved analytically or numerically by
solving either an algebraic or dynamic matrix Riccati equation. This approach
is described in more detail in Section 6.2.

A similar solution methodology is obtained by dynamic programming (Bell-
man [14]), which provides the global optimal control. Unfortunately, its ap-
plication is severely restricted in the case of continuous states systems — at
most three state dimensions seem feasible so far because of the curse of di-
mensionality. Recently, the application of neural network approximations has
been investigated to handle the curse of dimensionality and the curse of mod-
eling if dynamic programming is applied to higher dimensional, nonlinear and
also stochastic problems (neuro-dynamic programming, Bertsekas and Tsitsiklis
[15]). Another new development is the adaptive critic method which relies on
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neural network approximations, reinforcement learning strategies and dynamic
programming (e.g., Naumer [105]; Werbos [143]). However, these approaches
are still restricted to problems with small state dimension.

4.2 Calculus of Variations, Euler-Lagrange Differential Equa-
tions, Maximum Principle (Indirect Methods)

A common approach to compute the optimal control is based on the Maximum

Principle, that we will sketch for the case of optimal control problems with the

control constrained to the (nonempty) set U(t) := {u € R™ |0 < ¢ (u,?)}.
First, a Hamiltonian is defined as

H(x,u,\, 1) ;= —L(x,u,t) + At)T- f(x,u, 1), (11)

where the vector A(t) : I — R™ denotes the so-called adjoint variables. Neces-
sary conditions for optimality of solution trajectories x*(t) and u*(t), t € I, can
then be given by the following boundary value problem in the states x*(¢) and
in the adjoints A*(¢) 3, which form the EL-DEQ for the situation considered

X* (t(]) =X

0 =r(x"(ts))
X (ty) = VxE(x*(ty)) — Vxr(x*(t5))a
and for almost all ¢ € [to, tf]
X*(t) = VaH (x" (1), u”(8), A" (), 1)

.k

A (1) = =V H(X" (1), u™ (), A" (), 7).

The vector @ € R™ denotes Lagrange multipliers for the end point constraints.
The optimal controls are obtained by a pointwise maximization of the Hamilto-
nian, which may lead to discontinuities:

u*(t) = arg max H(x*(t),u,X*(t),1). (13)
ucU(t)

Early developments of the Maximum Principle have been carried out by
Pontryagin et al. [116], Isaacs [68], and Hestenes [65]. The approach has been
extended to handle general constraints (9) on the control and state variables (for
an overview see, e.g., Hartl, Sethi, and Vickson [60]). Then the EL-DEQ form an
intricate multi-point boundary value problem (MPBVP) with a priori unknown
interior switching points denoting the times when one of the constraints becomes
active or inactive. Activation or deactivation of a state constraint generally leads
to jumps in the adjoint variables.

Several families of numerical methods are based on the EL-DEQ and the
Maximum Principle, some of which are listed in Figure 3.

Gradient methods are intended to iteratively improve an approximation of
the optimal control by minimizing the Hamiltonian subject to a boundary value
problem (Cauchy [41]; Kelley [74]; Tolle [132]; Bryson and Ho [33]; Miele [102];
Chernousko and Luybushin [43]). In each iteration step, the model (7) is nu-
merically integrated forward in time while the adjoint differential equations are
integrated backwards in time.

T
3V \H(x, u, A, t) i= [f’tﬁjf;(l'),...,g;‘::] for A= A1,y Ang]”
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Figure 3: Overview of numerical methods based on the indirect approach

Multiple shooting is one of the most powerful numerical methods for solving
the resulting MPBVP derived from the necessary conditions of optimality of a
constrained nonlinear optimal control problem, generating highly accurate and
verified (with respect to necessary conditions of optimality) solutions. Numer-
ical multiple shooting methods have been developed by Fox [51], Keller [75],
Bulirsch [35], Deuflhard [44], Bock [23, 24], Oberle [108], Bock [28], Kiehl [76],
Hiltmann [66], and Callies [39]. For an introduction into multiple shooting we
refer to Ascher et al. [7] or Stoer and Bulirsch [129].

Collocation methods have also been investigated to solve the boundary value
problem of the EL-DEQ (e.g., Dickmanns and Well, [45]; Bér, [9]; Ascher et
al. [6]) but they have been applied more successfully in the context of direct
methods (Section 5).

The practical drawbacks of indirect methods are:

e Proper formulations of the necessary conditions (EL-DEQ etc.) in a nu-
merically suitable way must be derived. The application of automatic
differentiation (e.g., Griewank, [58]) may help to partly reduce the efforts
to formulate the MBPVP (e.g., Mehlhorn and Sachs, [99]). In spite of this,
significant knowledge and experience in optimal control is still required by
the user of an indirect method.

e In order to handle active constraints properly, their switching structure
must be guessed.

e Suitable initial guesses of the state and adjoint trajectories must be pro-
vided to start the iterative methods.

e Changes in the problem formulation (e.g., by a modification of the model
equations), or low differentiability properties of the model functions (e.g.,
by low order interpolation of tabular data), are difficult to include in the
solution procedure.

5 Introduction into Direct Solution Algorithms
The basic idea of direct methods for the solution of optimal control problems

introduced above is to transcribe the original infinite dimensional problem (6)-
(9) into a finite dimensional Nonlinear Programming problem (NLP) (Kraft,
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Figure 4: Overview of numerical methods based on the direct approach

[79]; Bock and Plitt, [27]; Biegler [19]; Betts [16]; von Stryk and Bulirsch [140]),
which has been pushed by the progress in nonlinear optimization (Han, [59];
Powell, [117]; Barclay, Gill, and Rosen [11]; Betts [16]). Two basically different
solution strategies for the reformulated problem exist (see Pytlak, [119], for a
survey):

(i) Sequential simulation and optimization:
In every iteration step of the optimization method, the model equations
(7) are solved “exactly” by a numerical integration method for the current
guess of control parameters. This method is also referred to as control
vector parameterization.

(ii) Simultaneous simulation and optimization:
The discretized differential equations (7) enter the transcribed optimiza-
tion problem as nonlinear constraints that can be violated during the op-
timization procedure. At the solution, however, they have to be satisfied.

Figure 4 outlines four particular methods which differ in the way the tran-
scription is achieved. Collocation methods arise from general Galerkin type
approaches by an appropriate choice of the approximation spaces and quadra-
ture rules (see, e.g., Fletcher, [50]). Therefore, we will not comment any further
on Galerkin type methods since the statements made for direct collocation ap-
ply as well for the more general Galerkin type methods. In this section we will
only elaborate on direct single shooting, direct multiple shooting, and direct
collocation.

Direct single shooting represents a pure sequential approach, whereas collo-
cation is a pure simultaneous approach; direct multiple shooting may be con-
sidered a hybrid method, as the model equations are solved “exactly” only on
intervals during the solution iterations.

5.1 Direct Single Shooting

In the direct single shooting method (e.g., Kraft [79], [80]), the infinitely many
degrees of freedom u(t) for ¢ € I are reduced by a control parameterization
u(t,q) that depends on a finite dimensional vector q € R"¢. The parameteriza-
tion of the control can be based on general functions with local or global support
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to ti ta , t3 ty ts =1y

Figure 5: Piecewise constant representation of a control (N = 5). The control
intervals are given as I; = [t;,t;41] fori =0, ... ,4 with intermediate time points
tieo ta

or a mixture of both. An example based on a parameterization using functions
with global support, e.g., a polynomial with N coefficients qq,... ,qn_1, is
given by

N-1
u(t,qo,.-- ,qQN_1) == Z qit', tel.
1=0

A second example (see Fig. 5) employing a localized parameterization is obtained
using a piecewise constant control representation on a partition of the interval
I into N subintervals I;, 7 =0,1,... ,N — 1, such that

fl(taCIo,--- ,CIN—1) =q;, te€l;.

Besides these two explicit parameterizations of the controls one can also de-
fine controls implicitly via additional parameterized ODEs (or — if DAE models
are admissible — by additional algebraic equations containing the so called shape
parameters), e.g.,

u(t;q) = £ (x(t),d(t;q),t,q), tel
ti(to;q) = 1io(q)-
The additional equations can be added to the model equations Eq. (7). In this
case, the parameterized controls @ are reinterpreted as (parameter dependent)
states.

Given an initial value xo and a parameter vector q, the following Initial
Value Problem (IVP) can be solved:

x(t) = f (x(t),a(t,q),t), tel,
X(to) = Xo.

The solution of this problem is a trajectory x(¢) which is a function of q only.
To keep this dependency in mind we will denote this solution by %(¢; q) in the
following. By substituting this trajectory into the objective functional defined
in (6) we can define the cost function J : R™ — R as

ty
J(a) = E&(ty; @) + / L (%(t; @), (t, @), ¢) dt
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In order to incorporate the path inequality constraints c¢ into the NLP, dif-
ferent methods have been developed (cf. Vassiliadis, Sargent, and Pantelides
[135]). Two popular methods are

1. Introduction of a penalty term in the objective function:

~ "h ty 2
Tt x()] = T, %O+ s - [ (max(0, ;)" a
=1 0
where k; € Rt, j = 1,...,ny are large positive constants. A difficulty

with the max operator is that it hides all information about a constraint
as long as it is inactive, and that its smoothness is limited.

2. Using a time grid ¢y < t1 < ... <ty = ty the infinite dimensional path
inequality constraints (9) are reformulated into N + 1 vector inequality
constraints

Oféz(Q) ::c(i(ti;q)7ﬁ(tiaq)7ti)a i=0,... 5N'

By construction, this method enforces the path inequality constraints at
the points on the time grid only. A sufficiently good approximation of
the original constraint can be obtained by a sufficiently fine grid. Also a
combination with the first method is possible.

In the sequel we adopt the second approach.
The endpoint constraint is similarly reformulated as

0 =1(q) :=r(X(t~;q)).

In summary, the finite dimensional NLP in the direct single shooting param-
eterization is given as

subject to
(14)

The numerical effort to solve the NLP (14) is determined to a large extent by the
complexity of the parameterization of the control vector. Clearly, a piecewise
constant parameterization with a uniform mesh length might not be the best
for general problems such that adaptive parameterization schemes should be
employed to resolve the trajectory at the right place. However, it is by no
means trivial to generate such problem adapted meshes a-priori, i.e., before the
actual optimal solution is known (see Waldraff et al. [142], Betts and Huffmann
[18], Binder et al. [20]).

The solution of the NLP (14) requires sensitivity information of the states
with respect to the control parameters q. The computation of these sensitivi-
ties should be done according to the principle of Internal Numerical Differenti-
ation (IND) (Bock, [25]) and not by trying to generate derivates by finite dif-
ferences of independently computed approximations of the solution of disturbed
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initial value problems * . Many ODE and DAE solvers exist that can efficiently
compute sensitivities according to the principle of IND; see, e.g., Caracotsios
and Stewart [40], Leis and Kramer [91], Heim [62], Buchauer, Hiltmann, and
Kiehl [34], Bock, Schléder, and Schulz [30], Maly and Petzold [93], Kiehl [77],
Engl et al. [48], Bauer [12].

In many practical applications the problem functions have only low, local
differentiability properties, i.e., discontinuities in the first or second order deriva-
tives occur. In these cases, obtaining a useful gradient approximation is rather
involved, since a numerical sensitivity analysis for initial value problems with
switching points must be carried out, e.g., Rozenvasser [123], Bock [28], von
Schwerin, Winckler, and Schulz [136], Galdn, Feehery, and Barton [52].

5.2 Direct Multiple Shooting

In the direct multiple shooting method (Plitt, [115]; Bock and Plitt, [27]), the
transcription of the optimal control problem (6)-(9) into an NLP starts similar
to the direct (single) shooting method with a local control representation. First,
the time horizon I = [to,ts] is divided into N subintervals I; := [t;, ti41], ¢ =
0,1,...,N =1, with ¢ty < ¢; < ... <ty = ty. Then, the control trajectory is
parameterized by a piecewise representation

w;(t,q;) for t € [ti,tiy1]

with NV local control parameter vectors qo,qi,---qn—1, 9; € R® . The trivial
example for such a parameterization is again the piecewise constant representa-
tion shown in Fig. 5.

In a crucial second step, N + 1 additional vectors sg, s1, - .. ,sx of the same
dimension n, as the system state are introduced, to which we will refer to as
the multiple shooting node values. All but the last serve as initial values for N
independent IVPs on the intervals I;:

%;(t) = £ (x;(t), ws(t,q:),t), t€ [ts,tig1]
Xi(ti) = S;.

The solutions of these problems are N independent trajectories x;(t) on [t;, tiy1],
which are a function of s; and q; only. To keep this dependency in mind, we
will denote these solutions by X;(t;s;,q;) in the following. For an illustration,
see Fig. 6.

By substituting the independent trajectories X;(t;s;, q;) into the Lagrange
term L in Eq. (6) we can calculate the objective contributions J; : R? xR? — R
fori=0,... ,N—1as

tit1
Ji(si, qi) II/ L (%;(t;s5,q:),0(t,q;),t) dt.
t;

The decoupled IVPs are connected by matching conditions which require
that each node value should equal the final value of the preceding trajectory:

Si+1 =iz(tz+1,sz,qz), 7,=O, 7JV-—]. (15)

4This is also valid in the context of multiple shooting which we will introduce in the next
section.
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Figure 6: Five trajectories in the multiple shooting parameterization (N = 5).

The first multiple shooting node variable s is required to be equal to the initial
value xg of the optimization problem:

Sg = Xp. (16)

Together, the constraints (15) and (16) remove the additional degrees of
freedom which were introduced with the parameters s;, i = 0,... ,N. It is by
no means necessary that the constraints (15) and (16) are satisfied during the
optimization iterations — on the contrary, it is a crucial feature of the direct
multiple shooting method that it can deal with infeasible initial guesses of the
variables s; and q;.

Using for notational convenience the same time grid as for the multiple
shooting parameterization (finer or coarser grids are equally possible), the in-
finite dimensional path inequality constraints (9) are transcribed into N + 1
vector inequality constraints

0 < &(si,qi) :=c (s, wi(ti, qi), i), i=0,...,N.

Summarizing, the finite dimensional NLP in the direct multiple shooting
parameterization is given as

N-1
min E(sy) + Z Ji(si, qs)
S0,--- SN ,40,5--- AN —1 i—0

subject to

Si+1 = ii(ti+1;s’i7qi)7 1= 07" - 7N - ]-7

Sp = Xo,
0 < &;(si, i),
0=r(sy).

An important feature of the direct multiple shooting method is the sparse struc-
ture of this large scale NLP. Its Lagrangian function L is partially separable, i.e.,
its Hessian matrix V2L is block diagonal with non-zero blocks V2, £ that
correspond to local variables s;, q; only (Bock and Plitt, [27]).

Extensions of the Direct Multiple Shooting Method to treat DAE systems
efficiently are described by Bock, Eich, Schloder [29], Schulz, Bock, Steinbach
[126], and Heim and von Stryk [63] for the case of parameter estimation and for
very general multistage optimal control problems by Leineweber [89].
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5.3 Direct Collocation

We now consider a general direct collocation discretization of the optimal control
problem Egs. (6)-(10). For ease of notation, we assume that the functional
Eq. (6) is in Mayer form J[u,x] = E (x(tz)). This is no restriction of generality,
as the transformation of the Bolza functional (6) to Mayer form is easily done:
As afirst step, an additional state x,,,+1 and an additional differential equation

Xn,+1(t) = L (x(t),u(t), 1),  Xn,41(to) :=0

are introduced. In the second step, the objective F (x(tf)) is redefined as
E (x(t¢)) +Xn,+1(tf) (in order to keep notation at a minimum, no new symbol
for the redefined objective is introduced).

Both state and control variables are approximated by piecewise defined func-
tions X(t;-) and (¢;-) on the time grid

t0<t1<...<tN+1:tf.

Within each collocation interval [t;,t;11], 0 < ¢ < N, these functions are chosen
as parameter dependent polynomials of order k,l € N respectively:

M

x(t;s)
(t;q)

i(t;80) = m; (t;80) € IL;”,
;(t; q;) =i (t;q;) € e

[titigr] *

=

[tstipr] 7

Here, I}, denotes the space of v-dimensional vectors of polynomials up to degree
u. The coefficients of the polynomials (shape parameters) are collected in the
vectors

s:=(sd

gy

S%)T € RN-(lc+1)-nm , s € R(k+1)-nm7 i=0,...,N,
T

q:=(q},...,qq)" € RV g, e R j=0,...,N.
Matching conditions of the form
Tty ) = mipa(thy,)), i=0,...,N—1

have to be imposed at the boundaries of the subintervals to enforce continuity
of the approximating functions in [to, ts]. Additionally, higher order differentia-
bility may be imposed by

K dﬁ Kj:l
_ o +
%m( ,~+1;‘)—Ch—n77i+1(ti+1")’ {iz(),__.,N—l

where J denotes the desired order of differentiability.
In order to formulate a nonlinear optimization problem, the model equations
and the continuous constraints are explicitly discretized:

1. The model equations (7) are only to be satisfied at the collocation points
tiw, p=1,..., M, within each subinterval [t;,t;41[,¢=0,... ,N —1, and
[tn, tnal:

ti <tio <...<tim < tit1, 1=0,..., N—-1
tvn <tno <...<tnm S tN41,
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2. The inequality constraints c(-) are sampled on a second grid within [to, tf]:

to <t7 < ... <t} <ty

Altogether, this leads to the formulation of the discretized optimal control
problem derived from (6)-(10) (in Mayer form) by collocation:

r;{glE(S) = E(x(ty;s)) (17)

subject to the nonlinear (point) constraints

f (%(tu;s), a(ta; ), ) — X(tu;s) =0, {;;8::]]\\; (18)
c (i(tfy;s),ﬁ(tfy;q),tfy) >0, yv=1,...,L (19)

X(tg;s) —x0 = 0, (20)

r (x(ts;s)) = 0. (21)

If the solution is restricted to (higher order) continuously differentiable state
and control variables, the matching conditions have to be fulfilled additionally:

& & k=0,
g™ tinis) = el (tnisi) =0, { o N-1
o dr k=0,....J
%”?(tiﬂ; Qi) — %W;{H (tFiiqie1) =0, {z —o,... ’NC_ 1 (22b)

where Js is the order of differentiability in the state variables and J, is the order
of differentiability in the control variables.

The constrained nonlinear optimization problem Eqs. (17), (18)-(20), (22a)-
(22b) can be efficiently solved using SQP algorithms that will be discussed in
Section 5.4. SQP methods are based on the availability of gradient information.
This gradient information can be obtained very easily, e.g.,

d - of 0%; 0x%;
d_si(f - X) e 0% 8—Si(tilysi) - 6—Si(tz’lysi)-
Due to the full discretization of both control and state space, the NLPs gener-
ated by direct collocation tend to become very large for practically interesting
problems. Thus, special care has to be taken in the implementation of a collo-
cation algorithm to account for the special structure and the high sparsity of
the Jacobian of the constraints Eqgs. (18)-(20), (22a)-(22b); see, e.g., Betts [16],
von Stryk [139].

5.4 Numerical Solution of the NLP by Sequential Quadratic
Programming

Sequential quadratic programming (SQP)(Han, [59]; Powell, [117]) is a very
efficient iterative method for the solution of NLP arising from the discretization
of optimal control problems by direct transcription methods as described above.
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Now, let € be the set of parameters introduced by the discretization of an infinite
dimensional optimal control problem. In each SQP iteration a current guess of
the optimal set of optimization variables €* is improved by the solution of a
quadratic subproblem derived from a quadratic approximation of the Lagrangian
of the NLP subject to the linearized constraints (for a description see, e.g.,
Barclay, Gill, and Rosen [11]; Gill, Murray, and Saunders [54]).

In the sequel, we consider an NLP of the form

min p(€) (23)
subject to a(§) =0, b(€) >0,

and their solution by SQP methods equipped with a relaxation strategy based
on line search.

For the class of SQP methods considered, the vector of optimization variables
&1, € R™ itself and the vector of multipliers v, := (,0); € R%¥™ are changed
from (the major SQP) iteration number % to iteration number k + 1 by

() = () e (,2,) . k=012
Vi+1 Vi Ui — Vi

where the search direction (dy,u;) is obtained as the solution of a linearly
constrained quadratic problem (QP) resulting from a quadratic approximation
of the Lagrangian £

L&, p,0) := () — Zamai(ﬁ) =Y o;bi(€), pER™, g ER™ :
i=1 j=1

1
Join Sd"Crd + V(€)' d (24)

subject to  Va;(éx)Td +a;(€x) =0, i=1,...,n,,
Vb, (€x)Td+b;(€x) >0, j=1,... ,m,.

Usually, Cy, is a positive definite approximation of the Hessian Hy of the La-
grangian L{(&, pr,0). The search direction dy is the solution of the QP (24)
and uy, is the corresponding multiplier. The quadratic (sub-)problem Egs. (24)
itself is solved by an iterative method (usually, an active set strategy or an
interior point method is employed).

The step size oy € R is obtained by a (approximate) one-dimensional mini-
mization of a merit function (line search)

o ((0) 7o ()

with respect to a. A suitable merit function is, e.g., the Lagrangian augmented
by penalty terms (augmented Lagrangian, e.g., Gill, Murray, Saunders, and
Wright [55])

(€)= 9(€) = 3 (ias®) - riat(©))
1 ) 1 o3
- JEZJ (Ujbj(f) - §Tna+jbj(£)) - 5;{ s
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The index sets J and K are chosen according to J = {j|1 < j < ng, b;(y) >
0j/Tnatits K ={1,...,np}\J, where r; >0, i =1,... ,nq + np.

A widely used and robust general-purpose line search based SQP method is
NPSOL (Gill, Murray, Saunders, and Wright [56]), which is suitable for small to
medium sized problems. The new, sparse SQP method SNOPT is a successor
of NPSOL and one of the most advanced, efficient and robust, general-purpose
SQP methods currently available for large-scale problems (Gill, Murray, and
Saunders [54]; Gould and Toint [57]).

A discussion of other SQP methods, e.g., of the trust-region method, can be
found in Gould and Toint [57] or in Nocedal and Wright [106].

5.5 Comparison of Direct Methods

We will try to develop the advantages and disadvantages of the previously de-
scribed three methods — direct single shooting, direct multiple shooting, and
direct collocation — when the resulting NLPs are solved by appropriately de-
signed SQP methods. A brief summary of this discussion is given in Table 7.
Additional background information and a broad list of references regarding di-
rect methods can be found, e.g., in von Stryk [139].

5.5.1 Direct (single) shooting

e In each major SQP iteration an initial value problem is numerically solved
with high solution accuracy (even though the controls may be far from
from their optimal solution values).

e Possible use of existing dynamic simulation facilities (Engl, Kroner, Kro-
nseder, and von Stryk [48]) can increase the confidence of users not deeply
familiar with optimization techniques.

e Use of efficient state-of-the-art ODE and DAE solvers allows to profit from
recent developments in the field.

e Small size of NLP facilitates the use of off-the-shelf NLP/QP solvers.

e Only initial guesses for the control parameters (and if free, for the initial
values) are needed.

e For highly unstable systems (i.e., initial value problems with a strong de-
pendence on the initial values) the optimization algorithm inherits the ill-
conditioning of the initial value problem, even if the optimization problem
itself is well-conditioned (this well-conditioning may, e.g., be due to end
point constraints or an objective function penalizing trajectory deviations
as, e.g., in tracking/estimation problems).

e The dynamic model is fulfilled during all SQP iterations (up to integrator
accuracy), so that in time critical cases a premature stop with a physical
system trajectory is possible. However, state and end point constraints (9),
(10) may still be violated — roughly spoken, they have only second priority
in the single shooting formulation.
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Direct Single Direct Multiple Direct

Shooting Shooting Collocation
general solution approach

sequential hybrid simultaneous
use of (state of the art)
DAE solvers yes yes no
number of variables /
size of NLP small intermediate large

initial guess for system
states

initial state

all node values

all node values

applicable to highly

unstable sytems no yes yes
DAE model fullfilled
in each iteration step yes partially no

Figure 7: Comparison of direct methods.

e If the initial value is fixed (as in the optimal control problem (4), but not

in the estimation problem (5)), the number of derivatives corresponds to
the number of control parameters — this may limit the numerical effort
very efficiently for large scale systems with few control parameters.

The single shooting algorithm can, e.g., be found in the software packages
gOPT (Process Systems Enterprise, [118]), DYNOPT (Abel et al., [1]),
OPTISIM" (Engl et al., [48], Kroner et al., [84]). These packages have
been successfully applied to solve large scale industrial problems.

5.5.2 Direct multiple shooting

e Similar to single shooting, the underlying initial value problems are nu-
merically solved with prespecified accuracy in each SQP iteration.

Use of existing dynamic simulation facilities, and of efficient state-of-the-
art DAE solvers is possible, as for single shooting.

The relatively large number of variables requires specially tailored NLP/QP
algorithms. On the other hand, the structure can be exploited to yield
even faster convergence than for direct single shooting (“high rank up-
dates”, Bock and Plitt, [27]), which is especially useful in the case of long
horizons with many control parameters. For the QP solution, recursive
schemes allow to reduce the linear algebra effort to essentially the same as
for single shooting (“condensing”, Bock and Plitt, [27]). Alternatively, an
efficient QP solution based on dynamic programming (Steinbach, [128]) is
possible which is linear in the number of control intervals.

Initial guesses for the whole state trajectory are needed. This is an ad-
vantage, if a-priori knowledge about the state trajectory is available, as,
e.g., in tracking problems, where it can damp the influence of poor initial
guesses for the controls (which are usually much less known).
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The optimization of highly unstable or even chaotic systems can be possi-
ble (cf. Baake et al. [8]; Kallrath et al. [70]). A detailed numerical stability
analysis for the case of parameter estimation is given by Bock ([28]).

The method is well suited for parallel computation, since the IVP solutions
and derivative computations are decoupled on different multiple shooting
intervals (Gallitzendorfer and Bock, [53]).

The continuity (Eq. (15)) of the system trajectory is only fulfilled after
successful termination of the SQP solution procedure (up to the solution
tolerance). At premature stops, both, continuity conditions (15) and state
and end point constraints (9), (10) may be equally violated.

An implementation of the multiple shooting method is found, e.g, within
the highly advanced optimal control package MUSCOD-II (Leineweber,
[89]), or in Petzold et al. [114].

5.5.3 Direct collocation

The ODE simulation (7) and the control optimization problems (6)-(10)
are solved simultaneously, which leads to potentially faster computations
compared to shooting techniques.

Existing dynamic simulation facilities and DAE solvers cannot be reused
directly.

The very large number of variables requires tailored NLP/QP algorithms.
On the other hand, similar as for the direct multiple shooting method,
a careful exploitation of the structure can lead to excellent convergence
behaviour and very efficient QP solutions. Furthermore, sparsity can be
exploited at all levels.

As for multiple shooting, initial guesses for the whole state trajectory are
needed, which may be an advantage, if a-priori knowledge about the state
trajectory is available.

The optimization of highly unstable systems is also possible.

The discretized DAE model equations (7) are only fulfilled after succesful
termination of the SQP solution procedure (up to the solution tolerance).
At premature stops, all constraints (18)-(22b) are equally violated.

A reliable estimation of the adjoint variables is available on the entire state
variable discretisation grid. Moreover, the estimates are also valid along
arcs with active state constraints. The estimation of the adjoint variables
from the Lagrange multipliers at the solution of the NLP corresponding
to the infinite dimensional optimal control problem has been described,
e.g., in von Stryk [137] for the case without state constraints and in von
Stryk [138] for problems including state constraints.

In this way, collocation can be used within a hybrid approach (von Stryk
and Bulirsch, [140]) to provide information required for a highly accu-
rate indirect multiple shooting method (see Section 4.2), i.e., good start
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estimates for all optimal trajectories including the adjoint states (e.g., Bu-
lirsch et al., [31]), as well as for the switching structure (e.g., von Stryk
and Schlemmer [141]).

e Highly advanced collocation algorithms have been implemented by Betts
and Huffmann [18] (SOCS), Cervantes and Biegler [42], Schulz, [124, 125]
(OCPRSQP), and von Stryk [139] (DIRCOL).

The development of these pieces of software has been facilitated by the
advent of new optimization methods which allow the solution of very large
scale NLP. °

6 Optimization Techniques on Moving Horizons

When a sequence of moving horizon optimization problems is solved on-line,
several questions regarding the employed numerical algorithm arise:

e Can the solution of each optimization problem be computed in a time AT
that is known a-priori?

e If not so, what are suitable approximations of the feedback control that
can be used instead?

e What can in advance be computed off-line, what has necessarily to be
done on-line?

e How can the similarity of subsequent optimization problems be exploited
to reduce computation times?

As the approaches to address these questions vary broadly and are not easily
classified, we will here only mention some classical approaches which we consider
a useful basis for understanding current developments. We explicitly encourage
the reader to consult the research articles of Binder et al., Kronseder et al. and
Diehl et al. in this book for some recent approaches.

Before briefly introducing some classical approaches, let us first go a step
backwards and formulate what is the aim of numerical moving horizon opti-
mization algorithms. Further, we will distinguish between those problem spe-
cific data that are known a priori, and those that are only available on-line. For
simplicity, we will here only treat the optimal control problem (4). In Subsec-
tion 6.1, however, we will briefly address the estimation problem (5) for linear
systems and introduce the Kalman filter algorithm.

Optimal moving horizon feedback control

Let us recall that the task of on-line optimization on moving horizons is to
compute an open-loop control u(¢|I}) for all ¢ € Ij. Only the first part on

50CPRSQP uses a partially reduced SQP method.
DIRCOL employs SNOPT (Gill et al., [54]). SNOPT approximates the Hessian of the NLP
Lagrangian by limited-memory quasi-Newton updates and uses a reduced Hessian algorithm
for solving the QP subproblems. The null-space matrix of the working set in each iteration is
obtained from a sparse LU factorization.
In the code SOCS of Betts and Frank [17] a Schur-complement QP method is implemented
instead of a reduced-Hessian QP method.
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the time interval t € [tf ,,t5, + AT] is applied to the process. In the limit
of negligible computation times the sampling time AT could be set to zero, so
that the only essentially needed output of the algorithm is the first value of the
open-loop control, i.e., the vector u”(tox|I};) € R™.

On the other hand, what data are necessary to specify the k-th optimal con-
trol problem (4)? First, a DAE model, constraint functions and an objective
functional have to be given a priori — however, some of the model parameters p”
and similarly the disturbance prediction w”(¢),t € I may not be known before
the process runs. In practice, we have to provide in advance a disturbance model
that provides explicitly the predicted disturbance trajectory w”(t), depending
on some additional parameters. We will assume that this parameterized distur-
bance model is contained in the model equations, and that the vector p” of a
priori unknown parameters is suitably enlarged. Secondly, the objective func-
tion, or more precisely, the reference trajectory ”(t),t € I, may be changed
during process operation — e.g., due to a change in the desired operating point.
Again, we have to assume that a parameterization of all possible reference tra-
jectories 9" (t) exists, and that the additional parameters are again added to the
general parameter vector p”.

Thus, the only quantities that are on-line inputs to our optimization algo-
rithm are

e the parameter vector pj,
e the initial value xg ;, and
e the starting time 4g ;.

In summary, the purpose of idealized on-line optimization on moving horizons
is to compute the optimal moving horizon feedback control function, that we
define as follows:

u:DCR» xR xR — R

25
OF X0t )~ uh X)) = w1,

where we have introduced the bounded domain D C R? x R"» x R to account
for the fact that all inputs are expected to vary in a finite range only. Note that
the control vector u(pj, X0,k b, &) is computed as the first value of an open-loop
optimal control, but that the idea of optimal moving horizon feedback control is
to apply exactly this value to the real system. If pf, X, were directly accessible
(and not the result of on-line estimation), the optimal moving horizon feedback
control function alone would define the closed-loop system behaviour.

In principle, this function could be precalculated off-line on a sufficiently fine
grid on its domain D, thus eliminating the need for any on-line calculations. In
practice, even for moderate state and parameter dimensions n, and n,, the nec-
essary off-line calculation time and the storage requirements would be excessive,
thus creating the need for on-line optimization.

For notational convenience, we go back to the problem formulation (6)-(10)
introduced at the beginning of Section 4, and therefore omit the parameters pj,
in the rest of this section. In the presented framework they can be treated in
the same way as the initial values xg ;.
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Time Dependence of Moving Horizon Problems

We can divide the possible moving horizon problem formulations into three
major classes:

Finite Moving Horizon Problems: In this class of problem, the initial
and the final time of the horizon move simultaneously, i.e., the horizon length
T = % — to, is constant for all k. If the model equations and objective
function are time independent, the output of the optimization algorithm looses
its direct dependence on ¢ ;. This can be exploited in the numerical solution
of subsequent problems.

Shrinking Horizon Problems: This class comprises problems with a finite
horizon length ¢}, — 45, which is typically decreasing with growing k. Two
cases are distinguished:

a) Fixed end time problems, where % r =t y—1 = t}. This may, e.g., occur
in batch processes with a prespecified delivery time. Even when the system
model and objective are time independent, the optimal control problems
differ in the horizon length ¢ —t0,0, so that the resulting feedback control
u(tg | I;) usually has a time dependence.

b) Open end time problems, which leave the final time t%7 r as a degree of
freedom of the optimization (or restrict them by a state dependent con-
straint). This may occur, e.g., in batch processes that should stop when
the product or conversion specifications are attained. This formulation
leads again to a time independent feedback control, if the system model
and objective is time invariant.

Infinite Horizon Problems: Though so far not numerically tractable for
general systems, it is worth mentioning here that they again lead to time inde-
pendent control laws if the problem formulation is time invariant. This can so
far only be exploited in the linear quadratic regulator problem investigated in
Subsection 6.2.

Unconstrained optimal control problems for linear systems with quadratic cost
can be solved very elegantly by dynamic programming techniques that will be
reviewed in the first two subsections for both, the estimation and the regulator
problem. It will be seen that subsequent problems can essentially be solved with
negligible computational cost. Many textbooks consider this topic in far greater
detail (see, e.g., Anderson and Moore, [2]). Let us first treat the estimation
problem.
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6.1 Linear Quadratic Estimation problem

The typical problem formulation of such systems is given by

min 3 (x°(t6.4) — X6.0) TEC(X°(t5 1) — X5.4) (26)
xe(:),ye(),we ()
t5 %
+ 3 / (1) —y*(1))"Q*@* (1) —y* (7)) + w* (r) " R°W*(r)dr
ok
s.t. x°(t) = Ax°(t) +Bu®(t) +w(t), Vtel; ,

ye(t) = Cx°%(t), Vtel;.

The matrices A, B, C reflect the time-invariant model matrices and E¢, Q¢, R¢
are time-invariant positive semi-definite weighting matrices. X, refers to a
reference value of the initial state. The control u¢(t) is assumed to be known.
Since we have a linear quadratic problem the optimal solution x¢(t|If) of (26)
can also be written as (Kailath, [72])

x°(t) = €°(t) + Pe()A°(¢), t € I}, (27)

where P¢(t) and X°(t),£°(t) denote differentiable time dependent matrix and
vector functions, respectively. Explicit equations for P¢(t), A°(t), and £°(t) can
be derived exploring the necessary optimality conditions commonly referred to
as Euler-Lagrange Equations, which have been discussed in Section 4.2 (cf.
Egs. (12) and (13), and more specifically Kailath, [72]):

Pe(t) = APe(t) +P¢(t)AT + R~ —P¢(t)CTQCPe(t), telf, (28)
N@t) = (CTQCP(t) — ATX(t) — CTQE(n°(t) — CE°(t)), t € I§,(29)
() = AE(t)+Bu(t)+P(t)CTQ°(t) — CE° (1), telf. (30)

The initial conditions arise from transversality conditions and are given by

P(tos) = E°7, (31)
X(tox) = 0, (32)
Etor) = Ko (33)

Equation (28) is commonly referred to as the matrix Riccati equation, (29) is the
governing equation for the dual variable A°(¢) and (30) denotes a filter equation
which will be further discussed at the end of this section. Note that initial
conditions (31) and (33) are specified at t§ , while (32) is a final condition at % ;.
£°(t) and P#(t) can be solved by forward integration using the derived initial
conditions. If the trajectories for P¢,£° are available, A*(t) can be computed by
an integration backwards in time starting at % ;. Thus forward and backward
integration are necessary to determine x°(t|I), t € I¢. However, the integration
of (29) becomes unnecessary if only the end value x(tzx|If) is of interest. It
refers to a filtered state estimate using all preceeding data collected in the
interval If. On the other hand, the estimates x¢(t|If), t§ , < t < 15, in the
interior of If, which require a backward integration of (29), are referred to as
smoothed states.
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The Kalman Filter

The solution of (26) has been outlined using a deterministic problem formula-
tion. The equations can also be derived using a stochastic approach. Then,
we(t) and v°(t) := n°(t) — y°(¢t) are assumed to follow an uncorrelated zero-
mean Gaussian statistic with covariances E{we¢(t)w°T(r)} = Re™'6(t — 1)
and E{ve(t)v¢T(r)} = Q° '6(t — 7) where § denotes the Dirac distribu-
tion and E is the expected value. Furthermore, let E{(x®(t5;)} = X§, and
E{(x*(t5,5) — %5,) (x°(t5,1) — Zok)T} = B¢, Then, (26) defines a maximum
likelihood problem. Bias free estimates of minimal variance are obtained and
P¢ can be interpreted to be the covariance matrix of the state estimation er-
ror. However, one should be aware that the statistical assumptions might not
be justified in practical applications. The problem (26) based on a statistical
formulation was originally formulated and solved by Kalman (1960).

If subsequent estimation problems differ only by an increasing end time,
Le., if ¢, >, 1, but £§ , =15 (= to,0), and if only the filtered state esti-
mates x°(ty,|I) are of interest, a solution can be obtained efficiently as follows:
Starting with the end values P°(t%, ;) and £°(¢% ;) of the previous problem,
Eqgs. (28) and (30) have to be integrated on the appended part [t} ,_;,%% ;] of
the interval only. The end value £°(t$ ;) provides already the new filtered state
estimate because of Eq. (32) and (27) evaluated at ¢ ;. In fact, the integration
of (28) and (30) can be performed simultaneously with the data acquisition,
providing a continuous stream of filtered state estimates. Equation (30) is com-
monly referred to as the Kalman filter equation for continuous problems where
K¢(t) := P¢(t)C¢T' Q¢ denotes the filter gain.

For t — oo, the matrix P¢(t) approaches a constant steady state P¢ that
can be calculated a priori as the solution of the algebraic Riccati equation that
is obtained by setting P¢(t) = 0 in Eq. (28). In this case, the (relatively
expensive) integration of the matrix Riccati equation (28) can be omitted, and
only a constant gain matrix K¢ = P°C¢T Q¢ has to be kept for use in the
Kalman filter equation (30).

The Extended Kalman Filter (EKF)

The Kalman filter algorithm for linear systems can be extended to non-linear
systems to obtain a heuristic algorithm that is known as the Extended Kalman
Filter. Though successful in practical applications, this algorithm does neither
provide a solution to a general non-linear optimization problem of a similar form
as (26), nor does it have a statistical interpretation. However, for a discrete-time
system and a horizon length of one time step, the extended Kalman-filter can
be related to moving horizon estimation (Robertson et al., 1996).

The extension of the Kalman filter equations is as follows: Assuming a non-
linear ODE system with outputs

x(t) = f
y(t) = h(x(t),u(t)),

the matrix Riccati and Kalman filter equations (28) and (30) can be gener-
alized to obtain nonlinear analogues: Eq. (28) can directly be used with the
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substitutions

and Eq. (30) is modified to

5.€

£t = £EW),u®)+PHCH QM () —h(E®),u)).

The initial conditions (31) and (33) are the same.
Note that the EKF, when applied to linear systems, coincides with the
Kalman filter.

6.2 Linear Quadratic Regulator problem

Similar analysis as for the linear quadratic estimation problem holds for the
Linear Quadratic Regulator (LQR) problem which is given by

1
L P )T (349)
1 [the T . -
w3 [ TR ) 4 2 (TSR + () R (1) dr
5.k
s.t. )'(T(t) — AXT(t)—I—BuT(t), Vte[,: 7
XT(toyk) = xg’k‘

The optimal control u”(¢|I}), ¢t € I}, has to be determined by the optimizer.
For the sake of simplicity, w has been left out in (34) but extensions to include
known forcing functions are only a matter of notation. The optimal solution
to (34) for any initial state is a linear function of the state u(t) = —K"(¢)x(t)
where the time-variant gain K" (t) is given by

K'(t)=R" ' (BTP"(t) +8S). (35)

Similar to the solution of the estimation problem, P"(t) denotes a differentiable
time dependent matrix which has to satisfy a matrix Riccati equation given by

P'(t) = —-P"(t)A-ATP"(t)-Q" (36)
+ P ®)B+ST)R" (BTP"(t) +8), telf,
Pr(t7;) = E" (37)

Equation (36) can be solved by integration backwards in time starting at % ke

Three interesting cases of moving horizons allow very efficient on-line
schemes to calculate the optimal moving horizon feedback control u(xg ;,to,x)
for problem k. All of them make use of the fact that the solution of the matrix
Riccati equation (36) is independent of the initial value Xp,, and can thus be
solved before xg ;, is specified.
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Shrinking Horizon

For a sequence of problems with fixed end time ¢ , =175, _;, but ¢g, > ¢f 4,
e.g. for batch problems with a fixed end time, we can use the fact that the
backwards integration of the matrix Riccati equation (37) starts at the identi-
cal “initial” condition (37) and thus gives identical trajectories P"(t), but on
shrinking time intervals. It is possible to perform the computation of P7(t)
on the interval [tg 0, 8% 0] off-line, and to store just the gain matrix trajectory
K"(t), t € [t6,0>tf,0] ThlS allows to obtain the optimal feedback control law
u(xg g, to ) = —K" (25 £)Xg, 1, that can be evaluated in negligible time.

Note that this method is equally applicable to linear time-variant systems.
It also provides the basis for the linearized neighboring feedback control method
for non-linear systems presented in Subsection 6.3.

Moving Horizon:

A second interesting simplification arises in the case that the initial and the final
time of the horizon move simultaneously, i.e., that T = t% r — to 5 is constant
for all k. An inspection of Egs. (36) and (37) shows that the solution P7(t) of
problem k does not depend on the index k. In particular, PT(tS’k) is identical
for different problems k, and therefore also the gain matrix K" (¢ ,) = K". The
optimal moving horizon feedback control is therefore simply givén by a matrix
multiplication u(xg ;) = —I_{’"xg, x- In contrast to the shrinking horizon case,
this feedback law is time independent and requires storage of one matrix K"
only. Unfortunately, this method cannot be generalized to time variant linear
systems, because Eq. (36) would loose its time invariance.

Infinite Horizon:

A third and very prominent case arises when %y = oo for all k. Here, the
matrix P(¢) is simply constant for all times in all problems; it is the solutlon
of an algebraic Riccati equation that can be obtained by requiring P () = 0 in
Eq. (36). As in the moving horizon case, the gain matrix is constant, K" (to.x) =
K" for all k, and can be computed off-line. The resulting linear controller is
commonly referred to as the Linear Quadratic Regulator (LQR).

For both problems, the linear state estimation (26) and the linear quadratic
regulator (34), efficient and robust numerical techniques have been developed
which are also applicable to large scale processes (see, e.g. Mehrmann [100];
Jacobson et al. [69]). However, the problem formulations are restricted to linear
process models and general inequality restrictions cannot be considered.

6.3 Linearized Neighboring Feedback Control along Ref-
erence Solutions

The simplicity and the power of the recursive techniques that are applicable to
linear systems with quadratic cost motivates the question how they can help
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to provide an approximation to the optimal moving horizon control for non-
linear systems. One such technique will be briefly described in this subsection.
The method is applicable to a much wider class of problems than considered.
Numerical techniques to solve them have been developed, e.g., by Pesch [112],
Kréamer-Eis et al., [81, 82], and Kugelmann and Pesch [86, 87]. Linearized neigh-
boring techniques have also been used in similar approaches, e.g., by Terwiesch
and Agarwal [131] and de Oliveira and Biegler [110].

Let us assume that we have found an optimal solution to the problem (6)-(10)
for some xg and tg by the indirect approach. The result are trajectories x*(t),
u*(t) and A*(¢), which have to satisfy the necessary conditions for optimality
stated in Egs. (12) and (13). We rephrase these equations here for a slightly
simplified problem:

0 =x"(to) — Xo

0 = A*(ty) — VxE(x*(ty))

and for almost all ¢ € [to, 5]

0 = f(x*(t),u*(t),t) — x*(t)

0 = Vo H(x* (), u* (1), A*(t),t) + A" (¢)
0 = Vo H(x*(t),u*(t),X*(t),t).

(38)

The final state constraint (10) and all path constraints (9) are omitted and
we assume that the Hamiltonian # from Eq. (11) depends twice continuously
differentiable on x and u and is concave in u, so that the last equation is
equivalent to the maximization of H(x*(t),u,A*(t),t) with respect to u.

Let us now investigate how the solution trajectories change if the initial
value changes to a slightly disturbed value x{ = x¢ + €. Under mild regularity
assumptions, the solution trajectories depend continuously differentiable on x;
let us introduce the shorthands

x<(t) = ZExe)(xf - xo),
WD) = (xh — xo),
Ae(t) = L) (x) —xq).

We can apply the implicit function theorem to compute these derivatives. A
linearization of system (38) along the reference trajectories x*(t), u*(¢t) and
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A*(t) yields®

0 = x“(to) — (x5 — Xo),
2
0=X(ty) - g Lj(tf) x“(ty),

and for all ¢ € [to, t/],

0= g—,f((t) (6 + g—f(t)uf(t) —x(1),
°" %(t)xe )+ jx;{u (t)ut(t) + g—i(t)T)\e(t) + (1),

0= gu;i;c (B)x(t) + %(t)uf (t) + g—lfl(t)T,\f (t).

It turns out that this system of linear equations is nothing else than the indirect
approach applied to a time variant linear quadratic regulator problem of the
same form as (34). This problem can be formulated as follows:

62E
min —x t
o in, x“(ty)" “(tr)
82 O’H O’H
eTV 71T eT € eT
+ (x x¢ + 2u Futn™ +uf el )dt (39)
o€ 6f € 6f €
x‘(to) = (%o —Xo)

The matrix Riccati equation (36) can be solved on the horizon [tg,ts] for the
linearized problem (39) along the reference trajectory with initial value xq (cf.
Eq. (38)). Then the feedback matrix K(tp) can be precalculated to provide a
first order approximation i1 to the optimal feedback for a system state x; at
time to:

1~1(X6,t0) = ll*(t()) - K(to)( - Xo) (40)

6.3.1 Shrinking Horizon:

For shrinking horizon problems, the matrix function K(¢) can be precomputed
along the reference solution for ¢ € [to,t;] and can serve to provide an immediate
feedback analogous to the shrinking horizon method described in Section 6.2.
For given xq and to,; € [to,tf] we compute a first order approximation @ of
the optimal moving horizon feedback control that is given by

a(xo,k, tok) := u*(to,x) — K(to,x)(xo,e —x"(to,x))-

SFor the Jacobian of a vector valued function f(x) we write g—i which denotes the matrix

with entries (ng:) = gﬂ’: L. The second derivative matrix of a scalar function H(x,u) is
ij J

2 2 2 .
denoted, e.g., by gngl with ( gxg'fl )ij = #gfbj. For brevity, we do not repeat all function

arguments, but only the time ¢, and implicitly assume that the derivatives are evaluated at
the corresponding point of the trajectories x*(t), u*(¢) and A*(t).
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The motivation for this approximation is the expectation that the real sys-
tem trajectory stays sufficiently close to the reference trajectory. In particular,
we assumed that no model uncertainties and disturbances have been present.
However, if severe model uncertainty and disturbances are present the approach
will encounter difficulties.

6.4 Initialization techniques for direct methods

A straightforward approach to moving horizon optimization is to apply one of
the direct methods described in Section 5 to solve the moving horizon optimiza-
tion problems. Though they are originally designed for off-line use, their on-line
application can lead to good results, depending on the real-time requirements of
the problem, as the advantages of direct methods (flexibility, robustness, han-
dling of constraints) can be fully exploited (see, e.g., Leineweber, [90]). It should
be kept in mind, however, that no general run-time guarantees can be given for
these methods as the number of SQP iterations is not limited (an interesting
approach that requires only one iteration per sampling time can be found in the
research article by Diehl et al. [47] in this book).

The computing times for the subsequent NLP solutions depend considerably
on the initial guess &g for the optimization variables and the initial setup of the
SQP algorithm (in particular the Hessian). We will present some apparent
approaches to find a good initial guess €f for the optimization variables in
the NLP (23) that arises after the discretization of the k-th optimal control
problem (6)-(10). We will briefly discuss them for moving and shrinking horizon
problems.

6.4.1 Moving horizon problems:

For time independent moving horizon problems, three possibilities seem to sug-
gest themselves for the initialization € of the NLP (23):

o Set-point initialization: If the optimization problem is formulated with the
objective to steer the system into a desired steady state (the setpoint state
Xgs and controls u;), the (constant) setpoint trajectory is the solution of
an optimization problem (6)-(10) with initial value x9 = xs5. The NLP
solution £€2° of this optimization problem in the chosen transcription may
be used to serve as an initial guess for the NLP solution iterations (5.4):
£k = £2°. As long as the real system state X stays close to X, this
may be a good initial guess. The setpoint initialization provides every
optimization problem with the same initial guess.

o Simple warm start: This strategy is based on the conjecture that the
solution £€¥~1 of the previous optimization problem k — 1 would provide
a good initial guess for the current problem k: £ := £€¥~1. This may be
justified if the new initial state x¢ ; has not changed much compared to
Xo,k—1, as can be expected if the sampling time AT is short relative to
the time constant of the system.

o Shift strategy: The third strategy is motivated by the following observa-
tion: for a fictitious undisturbed system controlled by a moving horizon
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algorithm with infinite horizon, the (open-loop) solution of the first opti-
mization problem on [tg,0,00] would already provide the whole closed-loop
control trajectory — thanks to the dynamic programming property, the
part of the precalculated control strategy that remains at problem & on the
horizon [tg , oo] is still optimal (this is similar for shrinking horizon prob-
lems). In the finite moving horizon framework the dynamic programming
property does no longer hold strictly, but the idea to shift the problem in
time may still be advantageous if the horizon is chosen to be sufficiently
long. We will illustrate this strategy in the context of the direct single
shooting method described in Section 5.1; we choose a piecewise constant
control representation with N intervals I; each of length AT. Using the
(k — 1)st solution €5~ = (ql3',... ,qly_,), the initial guess £k of the
kth problem would be determined by a “shift” in the controls
af; = df;, for i=0,1,...N-2.

The new initial value for the last control variable cannot be obtained by
the shift and must be extrapolated; a convenient initialization is, e.g.:
qg’ N1 = q’j;\}_l. This method is applicable to general time-variant
nonlinear systems.

The setpoint initialization provides every optimization problem with the same
initialization and thus leads to optimization outcomes that are independent of
the optimization history. In practice, however, both the warm start and shift
strategy perform clearly faster (cf. Diehl et al., [46], for a test in the context
of the direct multiple shooting method). From the programmer’s point of view,
the warm start technique can often easier be incorporated into existing off-line
optimization software and may therefore be preferable.

6.4.2 Shrinking horizon problems:

An initialization method very similar to the shift strategy can be applied for
shrinking horizon problems with fixed end time ¢y = t;o. Here, only the
part of the old solution £&¥~1 that corresponds to the new horizon [to k,t5,0] C
[to,k—1,%7,0] is used to initialize the (reduced) optimization variable vector &€& of
the new problem. For the direct single shooting method this would, e.g., mean
that the reduced new piecewise control vector £&§ = £§ = (qfo,-- - ,qg’ Nk )

where N¥ = N*~1 — 1 is initialized by

qgi = qf;j_l for i=0,1,...NF—1.

3

As the shift strategy this method is applicable to general time-variant nonlinear
systems.

7 Summary
An introduction has been given to dynamic optimization on moving horizons.
We first focused on the generic problem formulation for both, control and es-

timation problems where we illuminated the special on-line character of the
problem. Secondly, we reviewed standard numerical techniques to solve the
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problem on a fixed horizon. Special emphasis has been given to direct optimiza-
tion methods which are typically used in practise. Furthermore we discussed
basic extensions of the fixed horizon approaches to the moving horizon case. An
extended discussion of more advanced concepts to solve these demanding dy-
namic optimization problems, proposed by the authoring research groups, can
be found in this book elsewhere.

In particular, a methodology using a multiscale approach is suggested by
Binder et al. [21] where a hierarchy of successively refined finite dimensional
problems are constructed and solved as long as time permits. Therefore an
approximate solution is provided at any time where the approximation quality
of the solution scales with the used computation time.

Diehl et al. (2001) develop a real-time iteration scheme for the direct multiple
shooting method that is aimed for large-scale real-time optimization problems
arising in nonlinear MPC. They perform closed-loop experiments with a high
purity distillation column that is described by a DAE model involving 164 state
equations; sampling times of a few seconds are feasible with this approach.

In Kronseder et.al. [85] a concept for model predictive control of very large-
scale dynamical systems that arise in the control of air separation plants and
consist in thousands of DAEs is developed. The concept considers the different
time scales prescribed by the nature of the process. Emphasis is put on mid term
and short term computations, which are here represented by online computation
of parameterized optimal set point trajectories on a moving horizon and by
update of set point trajectories via linearization of neighboring parameterized
extremals respectively. Additionally, fundamental issues of the notion of real-
time optimality are discussed.
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