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SUMMARY

An active suspension system for improving the ride comfort and safety of a
tractor is investigated. The underlying planar dynamic tractor model and a
suitable objective for optimal suspension are introduced. The problem of op-
timal active suspension leads to a linear-quadratic optimal control problem.
Classical Linear-Quadratic Regulator (LQR) theory provides a closed-loop
control for the steady state problem which is optimal only for an initial dis-
turbance input from the road. A direct transcription method can handle
more general disturbances and models but provides only an open-loop solu-
tion, where the time history of the optimal control is given along the optimal
trajectory for one type of deterministic disturbance and initial value only.
Simulation results for two different road disturbances are given comparing
both approaches.

KeEy WORDS: optimal active suspension; steady-state LQR problem; closed-
loop solution; open-loop solution; direct transcription method

1 Introduction

Back problems as spinal affection are a common disease for agriculturists
driving tractors. One reason is that the rear axle of a tractor usually has

*Correspondence to: Dr. Oskar von Stryk, Zentrum Mathematik, Technische Univer-
sitdt Miinchen, D-80290 Miinchen, Germany. E-mail: stryk@mathematik.tu-muenchen.de



no suspension dampers, which seems to be contrary to the otherwise highly
technical standard of modern tractors. The only vibration damping of the
rear axle is by the deflection of the large tires of the rear wheels. However,
with a perfectly adjusted front axle suspension, ride comfort and ride safety
can be improved significantly. ® To improve the ride comfort further and the
overall stiffness to resist body forces — especially in the case of tractors with a
heavy rear-mounted implement (a load or a work tool) — an active suspension
system for the front axle could be used in principle in combination with an
active control of the rotational motion of the implement (Figure 1).

Actively controlled suspension systems have gained increasing interest in
automotive engineering research during the last two decades. The superi-
ority of active suspension systems to passive suspension systems has been
shown. 9212224 Tp the case of a passive suspension system, the vibrational
behavior of a vehicle for various excitations from road disturbances is given
by the stiffness and the damping rates of the shock absorbers. In the case
of an active suspension system, the stiffness and damping properties of the
shock absorber can be controlled, e.g., by a hydraulic actuator. When op-
timal active suspension systems are addressed in literature, most often this
problem is formulated as a linear-quadratic optimal control problem using a
quarter car model consisting of two bodies, namely the chassis and a wheel.
Regarding the steady-state LQR problem, the well-known Riccati-equation
solution provides an optimal feedback-control law. ®

But, as it is shown later on, the steady-state solution is optimal for a lim-
ited class of road disturbances only. Optimal open-loop controls for arbitrary
disturbances as well as for more general optimization criterions and subject to
nonlinear differential equations and general constraints can be computed with
a direct transcription method. The direct collocation method DIRCOL '&19
will be introduced and numerical solutions are compared to the LQR solution
for a given initial value problem and different disturbances. For simulation,
a planar tractor model !¢ is used.

2 Dynamic tractor model and objective for suspension

In the sequel, a planar model of a tractor with a suspended front axle and
a rotable rear-mounted implement '® will be investigated in detail. The me-
chanical system consists of three bodies, namely vehicle body, front axle,
and rear-mounted implement. It exhibits four degrees of freedom, which are
the generalized coordinates of the system: vertical displacement zy/[m] of the
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Figure 1. Planar tractor model with (i) passive suspension,
(ii) active suspension.

front axle, vertical displacement zz[m] of the vehicle body, rotational motion
Br[rad] of the vehicle body and rotational motion #4[rad] of the implement
relative to the vehicle body. The dynamical behavior of this multi-body-
system is described by the equations of motion

M z(t) = q(t, z,z) (1)

with 27 = (2v, 2r, Br, B4) € R®. The mass matrix M € R*** is constant,
symmetric and has the lower triangle

my
M _ 0 mag +mp
w10 maLg  Oa+0p+ma(LE+ HZ)
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where Lg := Lg1 + Lgo. The excitation q(¢,z,z) € R is given by

B P, + Fy -~
=1 ,p, — L Fy, —_
MG -

my g

(mp+ma)g

ma Lag
ma Laa g

The values of the constants are listed in Table 1.

Table 1: Parameters of the tractor model.

Quantity Parameter Value | Unit
vertical distances:

body (center of mass) — front wheel Ly 1.400 | m
body — rear wheel L, 1.450 | m
body - rotational joint | Lgy 2.000 | m
implement (center of mass) — rotational joint | Lgo 1.500 | m
horizontal distance:

body — implement Hg 0.100 | m
mass of the vehicle body mr 9.0-10% | kg
mass of the implement ma 1.0-10% | kg
mass of the front axle my 5.0-10% | kg
inertia of the vehicle body Or 6.0 -10* | Nms?
inertia of the implement, 04 5.0-10% | Nms
stiffness of the front wheel CR1 1.0-10°% | N/m
stiffness of the rear wheel CR2 1.5-10°% | N/m
stiffness of the front axle cv 1.0-10* | N/m
stiffness of the rotational joint e 6.4-10° | N/m
damping rate of the front wheel dr1 7.0-10* | Ns/m
damping rate of the rear wheel dp2 9.0-10% | Ns/m
damping rate of the front axle dy 1.0-10° | Ns/m
damping rate of the rotational joint da 2.8-10* | Ns/m
acceleration by gravity g 9.81 | m/s?

Defining the state vector




the front wheel load force P;[N] and the rear wheel load force P,[N] depend

linearly on the states by
Py
( P, ) =C(x—d)
with

C— —CR1 0 0 0 —de 0 0 0
N 0 —Crz —Cpalo 0O 0 —dpy —dgoLly 0 )~

The road disturbance is d” (t) = (wy (t), wa(t), 0, 0,1, (t), w5 (t),0,0) € RS,

In the case of a passive suspension system, the state-dependent functions
of the front axle suspension force Fy/[N] and the moment of the rotational
joint Mg[Nm] are determined by the stiffness and damping parameters cy,
cq, dy and dg:

FV _ Cy —Cy CvL1 0 dV —dV dVLl 0 (4)
Mg )~L0 0 0 —¢ 0 0 0 —dg) ™

By optimization of the parameters ¢y, cg, dv, dg within certain bounds an
optimal passive suspension system can be obtained for the ride over a given
road disturbance.!® In order to improve the ride comfort and the overall
stiffness to resist body forces the objective of the optimization in Reference
16 is to minimize the relative steady-state errors of the wheel load forces and
the relative acceleration of the vehicle body. The steady-state values of the
forces P, P, Fy and the moment Mg, which are the solution of the system
of equations given by (2) if q = 0, are approximately

Py gior = 42768158 N, Pygar = 60236.842 N |
Fy g1a0 = 37863.158 N, Mg g0 = 14715.0 Nm.
Then (2) is equivalent to

Pl_Plstat - (FV_FVStat)

q= PQ_PQStat + FV_FVstat
L2(P2 - PQstat) - LI(FV - FVstat)

MG - MGstat

and the optimization criterion for the passive suspension design reads as

ty 2 2 . 2
P gyn P gyn ZF
= [ (B (B () )
P i ( Plstat P25tat g ( )



with the increments of the dynamic wheel load forces P4y, := P1 — P g0t
and PQdyn =P — Py

In the case of an active suspension system, the time dependent controls
Fy and Mg have to be determined in a proper way, e.g., by minimization
of a suitable objective. Here, besides safety and comfort the objective has
to take into account another, contrary goal, namely to minimize the control
effort required. Therefore, the incremental controls u” = (Fy gyn, M ayn) :=
(Fv — Fy stat; Mg — Mg siat), which are the deviations from the steady-state
controls, are included in the optimization criterion after division by their
steady-state values:

p n P n 2 5 2 F n 2 M . 2
actwe—/ < Ly ) (2_@> + (Z_F> +< v dy ) +< G dy ) dqt
Py ga P 101 g Fygtar Me stat

However, for jactive as objective of an optimal active suspension system no
stable solution exists (see Remark 1 of Section 5). Three of the four degrees of
freedom zy, zr, Br, B4 do not reach their steady-state value zero. Therefore,
jactive is augmented by the rotational motion of the implement relative to
the vehicle body (4 and the vertical displacement of the spring of the front
axle relative to the vehicle body

2yret = —2v+2p—Lifp=(—-1 1 —Ly 0)z.

Both are incremental quantities with steady-state values of zero. For weight-
ing their values in the performance index, they are divided by suitable
choosen constants 04 max and 2y max, respectively. The values

Zymax = 0.025,  Bamax = 0.105

have been used. ' Then, the optimization criterion finally results in

2 3 2
Jac e — Jactive / < V_rel > A dt . 6
i i * ( 2V max * ﬂA max ( )

3 Linear-quadratic optimal control problem

The described problem for the optimal control u of an active suspension
system can be formulated as a linear-quadratic optimal control problem.




The basic control problem consists of a linear system of first order differ-
ential equations

x(t) = f(x(t),u(t),t) = Ax(t) + Bu(t) + Gd(t) (7)

and a quadratic performance index

Jut;] = /L(x(t),u(t),t) dt =

_ /(XT(t)Qx(t)+uT(t)Ru(t)+2xT(t)Su(t)) dt.  (8)

to

The matrices A € R"", B € R, G ¢ R, Q ¢ R, R €¢ R™"™
and S € R™™ are all time-invariant. x(¢) € IR" describes the state vector,
u(t) € R™ the control vector and d(¢) € IR? the vector of inputs from the
road disturbance.

Now we derive the optimal control problem corresponding to the planar
tractor model. The dimensions are n = 8, m = 2 and p = 8. Using definition
(3) and the regularity of the mass matrix M the second order system (1) is
transformed into the first order system

% = ( (0(4,?\)/[11(211,4)) X ) (9)

with zero matrix O 4 € R** and identity matrix I ;4 € R*™*. Since g
depends linearly on x and u,

q:(CR DR)(X—d)+Bu

with
—cp; O 0 0
Cw — 0 —CR2 —cpaLly 0
R 0 —Cra Ly —cpo L22 0 ’
0 0 0 0
—dp; 0 0 0 -1 0
. 0 —dRQ —dRQ LQ 0 S 1 0
Dr=1 o  _ipnl, —dwmr? o] ™ B=| _1 o
0 0 0 0 0 1



the dynamic system (9) is linear and can be written in the form of Equa-
tion (7). The system matrices A, B, G are given by

A= O(4,9) T4, B— O(a,2) G- O(4,4) O(4,9)
M~'Cg M™'Dg )’ M 'B /)’ ~M~'Cr -M™'Dg /)~
The performance index of Equation (6) is equivalent to the form of Equa-
tion (8) using the matrices

- 1 1 1
Q = C’diag (2—, 2—) C+ — ATegeg” A,
g

Q — Q + ( B dlag <_Z\2/11ax, 6124—11;”() ]§T 0(4’4) ) |

O(s9) O
1 1 1
R = — BTGGGGT B + dlag < , ) ,
92 F‘Q/ stat Mgv’ stat
1
S = - ATegeﬁT B ,
g

and defining eg” := (0,0,0,0,0,1,0,0) € IR®.

4 Solution of the optimal control problem

4.1 Riccati solution of the steady-state regulator problem
An optimal control problem given in the form of Eqs. (7) and (8) is called
a disturbance-rejection problem.® The objective is to determine the control
input that minimizes the effect of the additive disturbance signal G d(¢) on
the value of the performance index.

If Gd(t) = 0 for t > ty, the objective is to maintain the state vector x
close to zero. Since G has non-zero elements, this is the case for a step input
at initial time only, which can be transformed into an initial condition

d(tg) - dg s

di) = 0, to<t<t,. (10)

Then, the above problem is referred to as optimal linear-quadratic regula-
tor (LQR) problem. More specifically, since the matrices A, B,Q and R
are time-invariant it is a so-called steady-state LQR problem assuming s
approaches infinity. Investigation of the matrices A, B, Q,R and S for the
tractor model shows that



e« Q=D'D,

e R is positive definite and symmetric,

e Q — SR !ST is non-negative definite and symmetric,
e (A,B) is controllable and

e (A,D) is observable.

Then, a unique solution of the steady-state LQR problem exists, and the
optimal closed-loop system x = (A — BK)x is asymptotically stable.® The
optimal feedback-control law reads as

u=-Kx=-RYB"P+87)x, (11)

where P is the unique positive definite symmetric solution of the algebraic
matrix Riccati equation

ATP+PA+Q-(PB+S)R (PB+S)! =0

(A-BR 'ST)’P + P(A-BR !ST) +

(Q - SR !ST) — PBR 'B’TP = 0.
The numerical solution of the Riccati equation results in the rounded feed-
back matrix

— (12)

K = 10"
—101.633 132.748 —206.156 —1.658 —2.125 9.988 —21.924 —-1.167
—0.656  0.609 —9.196 13.984 —0.005 0.367 2,774 4536 )

On the other hand, the minimum principle from optimal control theory '3
results in

1
u = —ER‘l (B" X +28"x)
with the vector of adjoint or co-state variables A7 := g—i. Comparison to

Equation (11) shows that the solution P of the matrix Riccati equation also
provides an expression for the vector A of the adjoint variables according to

A(t) = 2P x(t). (13)



4.2 Direct collocation method DIRCOL

DIRCOL ' is a special direct transcription method. '*?° By a discretization
of state and control variables using piecewise polynomial approximations, the
infinite dimensional optimal control problem in first order standard form

minimize Ju,tf] = d(x(tf),t5), ¢: R =R
subject to the equations of motion
Bi(t) = fi(x(),u(t),t), i=1,...,n, ty<t<ty,
the boundary conditions (14)
r(x(0),x(ty). tf) = 0,
and the inequality constraints
0 <g,(x(t),u(t),t), j=1,...,my, to <t < ty.

is transcribed into a finite dimensional nonlinearly constrained optimization
problem (NLP) for the parameters y of the discretizations of x and u

minimize ¢(y), ¢:R"™ - R
subject to a;(y) =0, i=1,...,m,, (15)

The dimensions n,, m., m; mainly depend on the dimension n4 of the dis-
cretization grid A = (#;)p2,

t(]:tl<t2<---<tnd—1<tnd:tf- (16)

Here, the state variables are approximated by piecewise cubic polynomials
Tapp and are choosen to be continuously differentiable at the grid points. The
control variables are approximated continuously by piecewise linear functions
uapp- The differential equations have to be satisfied at the grid points ¢, 541
and at the center #;41/5 of each discretization grid (collocation at Lobatto
points). !

The equality constraints a(y) of the NLP result from the collocation con-
ditions and the boundary conditions of the optimal control problem. The
inequality constraints b(y) result from the inequality constraints of the op-
timal control problem which have to be satisfied at the grid points of the
discretization.

After a first approximation of the solution has been obtained for a first
discretization grid, usually a sequence of refinement steps is applied in order
to reduce local error estimates. Therefore, a sequence of related NLPs with

10
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Figure 2. Discretization of control and state variables by piecewise polyno-
mial functions.

usually increased dimensions has to be solved. '® Each NLP is solved by the
Sequential Quadratic Programming method NPSOL. !°

Problems with a Lagrange-type objective, as in the problem of active
suspension for a tractor,

Jlu,t] = /ttf L(x(t), u(t),t) dt (17)

can be transformed into Mayer-type problems by introducing an additional
state variable

Fnai(t) = Lx(),u(t),t), zupi(t)) = 0, wnur(ty) free,  (18)

in order to obtain the “new” objective

Juty] = wngalty) = o(x"(ty), 1) (19)
with the “new” state variable x* = (z1,...,Tpn, Tyny1)” which is of dimension
n*=n+1.

The direct transcription method DIRCOL has been applied successfully
for solving trajectory optimization problems from aeronautics, robotics and
other fields. '® Knowledge of optimal control theory or dealing with adjoint or
co-state differential equations is not required by the user. 2’ The user doesn’t
have to provide gradients of the model functions as they are approximated
by finite differences. On the other hand, with a computed solution of the
parameterized optimal control problem, a piecewise linear approximation of
the histories of the adjoint variables and multipliers of constraints can be
computed as well from the Lagrange multipliers of the NLP. !8

11



5 Numerical Results

In this section, simulation results are given for the passive suspension de-
sign '8, ¢f. Equation (4), and the introduced active suspensions. Two types
of road disturbances are considered: a step at initial time £, = 0 and a ramp.
In the case of active suspension, the (closed-loop) steady-state LQR solution
is compared to the (open-loop) solution provided by the direct collocation
method DIRCOL.

The solution P of the algebraic matrix Riccati equation (12) and the
matrix K of Equation (11) have been computed using the Control System
Toolbox of MATLAB 5.1%2. Simulations of tractor rides for the different
road disturbances have been performed with SIMULINK 2.0°3.

5.1 A step disturbance at initial time

First, we choose a step disturbance (10) with do” = (0,0.1,0,0,0,0,0,0),
i.e., at initial time t; = 0 the rear wheel falls off a step with a height of
0.1 m.

Figures 3 and 4 show the corresponding histories of the components of the
optimization criterion of Equation (6) for the disturbance transformed into
the initial value x(0) = —dg. Less than three seconds are needed to reach an
almost steady state. As expected, almost no differences are visible between
the approximation provided by DIRCOL for 47 grid points (grey curves) and
the optimal steady-state LQR solution (black curves) within the accuracy
of the drawings. Therefore the direct transcription method provides a good
approximation of the optimal trajectory using [to,¢;] = [0, 5] for the compu-
tation and setting optimality tolerance and nonlinear feasibility tolerance °
to 107°. The value of the performance index computed by DIRCOL is only
2.5% worse than the minimal value:

LQR | DIRCOL
Toective | 3.044 | 3.119

Also the computed estimates of the adjoint variables are relatively accurate,
cf. Figure 5.

12
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Figure 3. Histories of the state-dependent components of the objective Jycsive
for the step disturbance: Approximated optimal (open-loop) solution
provided by DIRCOL (grey curves) compared to the optimal (closed-
loop) steady-state LQR solution (black curves).
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Figure 4. Histories of the approximated optimal (open-loop) controls provided
by DIRCOL (grey curves, piecewise linear) compared to the optimal
state-feedback controls (black curves) for the step disturbance.

)‘5A

0.8

|
|
ot ||
|
|
/ AV

Figure 5. Estimate of the adjoint variable Az, for the rotational motion of the
implement computed by DIRCOL (grey curve) compared to the opti-
mal steady-state LQR solution (black curve) for the step disturbance.
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5.2 A ramp

The second example simulates a ride with velocity v = 10 km/h = 25/9 m/s
over a ramp with height h = 0.1 m and length / = 1 m on a plane road,
cf. Figure 6 and Reference 16. x(0) = 0 is used as the initial value.

wy [m]  l2 U3

0.1
0 11 14
wy [m] tr ts
0.1
0
ts  tio
1 2 3 4 5)

Figure 6. Disturbance signals wy (t) and ws(t) at the front wheel and the rear
wheel, respectively, simulating a ride over a ramp with a height of
0.1m and a length of 1 m at a velocity of 10 km/h.

H

12

6

=

v
—6 tg Tg
1 2 3 4 Y
t[s]

Figure 7. Estimate of the Hamiltonian computed by DIRCOL for the ramp
disturbance.
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The front wheel reaches the ramp at ¢; = 0.5 s, whereas the rear wheel
reaches it with a delay of At = 1.026 s at t5. For this example, the steady-
state solution is not optimal because of the time-varying road disturbance
dT(t) = (wy(t), wa(t), 0,0, (t),wa(t),0,0) with

(

0, 0<t<t, =0.50
Sho(t—t), t <t <t~ 0625
wi(t) =4 h, ty <t <ty 0.745
Sho(t— 1), ty <t <t~ 0871

and wq(t — At) = wy(t). This can be seen also by the estimated history
of the Hamiltonian computed by DIRCOL in Figure 7. For an autonomous
problem, the Hamiltonian H := AT f + L is a constant function of time ¢.
The piecewise definition of w;(¢) and wy(t) results in a piecewise behavior
of the Hamiltonian having the same switching points t, to, t3, t4, t5, t7, ts, t1g
(Figure 7). The two other points, ts and tg, where H is not differentiable are
caused by the wheel loads P, and P,. When the rear wheel is driving over
the ramp, first the front wheel loses contact with the road at tg for less than
0.1 s. Soon afterwards, at tg the same happens to the rear wheel. If the front
wheel (or the rear wheel) leaves the road, then P, (or P,) becomes zero. This
causes nonlinear behavior and influences the history of the Hamiltonian.

Figures 8 and 9 show the histories of several components of the optimiza-
tion criterion (6). About four seconds are needed to reach an almost steady
state. The three curves in each of the pictures have the following meanings:
the black dotted curve shows the solution for the passive suspension design
of Eq. (4) where the parameters cy, c¢g, dy and dg have been optimized with
respect to Juerive Of Eq. (6) (see Table 1 for the corresponding values '¢), while
the grey curve is the open-loop solution provided by DIRCOL using 64 grid
points and the black curve is the closed-loop LQR solution.

The main difference between the open-loop solution compared to the two
closed-loop solutions for the passive suspension design and for the steady-
state LQR problem is that the optimal open-loop solution uses information
about the disturbance of the whole time interval. Therefore, knowing of the
arrival at the ramp, the approximated optimal open-loop control acts before
the front wheel reaches the ramp. The closed-loop solutions do not react on
the ramp until it is actually reached. Consequently, the open-loop solution

16



2yrelr - 10 [m] Ba - 10 [rad]

. i .
0.3 i
v | i

MR AR : |

0 \\\"-{./ AV i

06 | "
—0.6
1 2,93 4 5 1 2,1 4
Py - 1075 [N] Py-107% N
1.6
. i o
081 & | A
[ A/\ A 0.8 : I H
BTN AR e A A A
SRATOATATE N ANy
. : | v \ I il v
L 0 L
1 2,93 4 5 1 2,43 4

5p 1072 [m/s?]

0.1

VAN YT
o WV

1 2 3 4 5

Figure 8. Histories of the state-dependent components of the objective J,eive
for the ramp disturbance: Solution for the passive suspension design
(black dotted curves) compared to the no longer optimal (closed-loop)
steady-state LQR solution (black curves) and the appproximated op-
timal (open-loop) solution provided by DIRCOL (grey curves).
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Fden -107° [N] MGdyn -107° [Nrn]

0.6 0.3

—0.3

—0.6 : —0.6

Figure 9. Histories of Fy 4y, and Mg 4y, given by Equation (4) for the passive
suspension design (black dotted curves) compared to the histories of
the state-feedback controls (black curves) and the approximated op-
timal (open-loop) controls provided by DIRCOL (grey curves, piece-
wise linear) for the ramp disturbance.

does not exhibit as large oscillations compared to the other two. Due to the
smaller amplitudes of oscillations depicted in Figures 8 and 9, the value of
the optimization criterion is essentially smaller for the approximated opti-
mal open-loop control than for the passive suspension and the steady-state
feedback control:

passive suspension | active suspension
LQR DIRCOL
Jactive 13.060 10.251 7.751

However, the superiority of an active suspension system to the passive sus-
pension system is obvious in both cases. In terms of the objective of Equa-
tion (6), even the in this case not optimal but state-dependent steady-state
LQR solution still exhibits an overall better performance than the optimized
passive suspension.

18



Remark 1. For selecting a suitable optimization criterion for active
suspension design, simulations have been performed for different performance
indices. 1>16 As briefly mentioned in Section 2, for the criterion

ty
Jactioe = [ (<70 Qx(t) + u” () Ru(t) + 2x"(1) Su(t)) di

to

the closed-loop system is unstable. Since due to Section 4.1 the system is
controllable, a solution of the steady-state LQR problem exists. But (A, f)),
where D is given by DTD = Q, is neither observable nor detectable which
is the weakest condition for stability. This has been verified numerically
using the Control System Toolbox of MATLAB. Then, the solution P of the

2Vrel [M] Ba [rad]
4.0 ] 2.0
920 1.0
/
0 4/__/.t£~‘ s
0 |~ )
1 2 3 4 5} 1 2 3 4 Y
t [s] t [s]

Figure 10. Histories of 2y, and (4 for the objective jactive and the ramp dis-
turbance: Stable solution for the passive suspension design (black
dotted curves) compared to the steady-state LQR solution (black
curves) and the approximated optimal (open-loop) solution provided
by DIRCOL (grey curves) which both do not reach a steady state.

algebraic matrix Riccati equation is not symmetric, and the state 54 and
the state-dependent function zy,, do not reach their steady-state value zero
(Figure 10 in the case of the disturbance caused by the ramp). Applying
DIRCOL to the disturbance-rejection problem with optimization criterion
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Jactive and using 47 grid points, the computed 4 and 2y, do not reach
a steady state as well (Figure 10). Both do not explicitly appear in the
objective jacme. Therefore, zy,. and 4 have been included in the refined
performance index Jyqie of Equation (6). The passive suspension design is
based on the parameters cy, c¢g, dy and dg which have been optimized with
respect to Jyassive Of Equation (5).T It reaches the steady-state values, cf.
Figure 10.

Remark 2. Generally, H* methods enable a robust solution of a greater
class of control problems than the LQR approach. First experiments with a
minimax approach 7 didn’t turn out successfully yet for the tractor problem.
Besides allowing more general disturbances, the solution of nonlinear systems,
where linearization techniques cannot be applied successfully, is a topic of
active research in control theory.

6 Conclusions and outlook

The problem of active suspension for a planar tractor model and an objective
suited for optimal active suspension have been presented. The solutions
by the widely used steady-state LQR approach and a direct transcription
method based on collocation and nonlinear programming have been obtained
and compared for different road disturbances. The steady-state LQR solution
is optimal in the case of an initial disturbance only, but provides a closed-
loop solution suitable for implementation in an active suspension system of a
tractor. The direct collocation method DIRCOL provides an approximation
of the optimal control for general inputs from road disturbances. But its
solution is in open-loop form only, and therefore is not suited for an online
implementation. However, both approaches for active suspension have shown
better performance than an optimized passive suspension design.

For optimal active suspension of vehicles a closed-loop form of the solu-
tion of the underlying optimal control problems having nonlinear dynamic
equations, (nonlinear) constraints on the state and control variables and gen-
eral objectives is needed. For an implementation in a real vehicle also the
problems of incomplete state information for the design of feedback controls
and of the special requirements of the devices of the real-time system have
to be addressed.

A real-time capable numerical method for approximation of feedback con-

fThe corresponding values ' are ¢y = 6.0-10* N/m, ¢ = 7.15-10° N/m, dy = 3.1-10*
Ns/m and dg = 1.9 - 10* Ns/m.
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trols has been presented in Reference 12. The method uses successive online
corrections related to a reference trajectory. In principle, it can handle quite
general problems, but significant efforts are necessary to obtain the required
highly accurate information about the histories of state and adjoint variables
and about the switching structure of constraints as well. 1214

Because the direct optimization method facilitates the numerical solution
of very many optimal control problems, sets of different open-loop solutions
may be utilized for synthesizing an approximation of a closed-loop solution by
neural networks® or local approximations by Taylor series®. This approach
for synthesizing nonlinear optimal feedback controls has been introduced and
tested in References 4 and 5.

Because of the increasing necessity to deal with complicated and nonlin-
ear systems, much research has been done in the field of adaptive control
within the last few years. One approach is the so-called adaptive critic (AC)
method 23, which is based on Dynamic Programming (DP). In principle, DP
allows the computation of optimal feedback controls even for highly nonlin-
ear systems. But, as it is well known, the computational efforts increase
exponentially with the dimension of the problem. AC methods approximate
DP by incremental training of two neural network approximations of the
state-dependent feedback control and of the value function of the underly-
ing optimal control problem. The latter network approximation is called the
critic. Using this approach for optimal adaptive control, e.g., of an active
suspension system, is work in progress by the first author.
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