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Abstract

This paper gives a brief list of commonly used direct and indirect efficient methods
for the numerical solution of optimal control problems. To improve the low accuracy of
the direct methods and to increase the convergence areas of the indirect methods we
suggest a hybrid approach. For this a special direct collocation method is presented. In
a hybrid approach this direct method can be used in combination with multiple shooting.
Numerical examples illustrate the direct method and the hybrid approach.

Keywords: Constrained optimal control, nonlinear dynamic systems, multiple shooting,
direct collocation, nonlinear optimization, hybrid approach, estimates of adjoint variables.

1. The optimal control problem

Many optimization problems in aeronautics and astronautics, in industrial
robotics and in economics can be fonnulated as optimal control problems.
The dynamic system may be described as a system of nonlinear differential equations

x(t) = !(x(t), u(t), t), to ~ t ~ t/' (1)

with to, x(to) and some Xk(tf ), k E {I, ... , n}, given and tf fixed or free. The n-vector
function of states x(t) is detennined by an I-vector function of controls u(t).

The problem is to find functions u(t) that minimize a functional of Mayer
type

J[u] = (f)(x(t/),t/) with (f):JRn+1 ~ JR. (2)

Also more general types of functionals are possible.
For realistic problems it is important to include path constraints. Most common

are constraints on the control variables

C(u(t),t)~O, to~t~t/,

or constraints on the state variables

S(x(t),t) ~ 0, to ~ t ~ t/,

J.C. Baltzer AG, Scientific Publishing Company

(3)
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or more generally

S(x(t),u(t),t) ~ 0, to ~ t ~ tt. (4)

In summary we have m constraints g(x(t) , u(t),t) = (C,S) = (gt, · · · ,gm).
For example, in aeronautics we often have position, velocity and mass as

state variables, angle of attack, thrust and direction of thrust as control variables
and we wish to minimize the total flight time tfor to maximize the payload. Typical
constraints are constraints for the thrust, dynamic pressure constraints or constraints
on the flight path over certain ground domains.

In economics we may have production rate, amount of capital or number of
employed people as state variables, gross investments and expenditures for education
as control variables and our aim is to obtain full employment by stable growth. As
constraints we must ensure that the living standard does not fall beyond a certain
limit.

There are also applications to nonstandard problems (cf. Feichtinger and
Mehlmann [10]).

2. The numerical solution

For classical problems and some special weakly nonlinear low dimensional
systems the solution can be obtained analytically from the necessary and sufficient
conditions of optimality, see e.g. section 5.1. But to obtain a solution of dynamic
systems described by strongly nonlinear differential equations, see e.g. section 5.2,
it is necessary to use numerical methods. For a first survey these methods can be
classified into two types.

2.1. NECESSARY CONDITIONS FROM CALCULUS OF VARIATIONS

The indirect methods are based on the calculus of variations or the maximum
principle. Under certain assumptions (see e.g. Bryson and Ho [1], Hestenes [14])
the following first order necessary conditions for an optimal trajectory are valid:
There exist an n-vector function of adjoint variables A.(t) and an m-vector function
vet), such that with the so-called Hamiltonian function

(5)

a multi-point boundary value problem in canonical form with piecewise defined
differential equations results for to ~ t ~ tf :

· aH fx = aA.- = , (6)
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.i =- aH =-AT aj _vT ag (7)ax ax ax'
o~ g. (8)

The optimal control is determined by minimizing H with respect to u. For example,
for H nonlinear in u we may use for to ~ t ~ ti

aH = AT aj + vT ag = 0 (9)
au au au

and the Legendre-Clebsch condition a2H/aUiaUk positive semidefinite. We have
additional (trivial) differential equations for tj and the switching points tsi in which
the constraints become active or inactive. Additional constraints at initial, end and
interior points may hold. The numerical procedure described in sections 3 and 4 is
also able to handle optimal singular arcs. However, for the sake of simplicity, this
case is not discussed here.

To obtain solutions from these necessary conditions we may use methods
which are based on the special structure of these necessary conditions, e.g. so-called
gradient methods (see e.g. Gottlieb [12], Tolle [25], Bryson and Ho [1], Chernousko
and Lyubushin [8] and Miele [18]).

Alternatively, we obtain the controls u(t) from aH/au = 0 analytically or
numerically using Newton's method, and we may use a method for the solution of
general boundary value problems such as the multiple shooting method (see e.g.
[2,23]) or a collocation method (see e.g. Dickmanns and Well [9]).

Contrary to other methods the multiple shooting method has the advantage
that all kinds of constraints are allowed and very accurate results can be obtained.
However, a rather good initial approximation of the optimal trajectory is needed and
a rather large amount of work has to be done by the user to derive the adjoint
differential equations. Moreover, the user has to know a priori the switching structure
of the constraints. This can be derived by means of homotopy techniques. For a
description of useful techniques in conjunction with multiple shooting for the numerical
solution of constrained optimal control problems the reader is referred to [3].

All in all, the user must have a deep insight into the physical and mathematical
nature of the optimization problem.

2.2. DIRECT SOLUTION OF THE OPTIMAL CONTROL PROBLEM

In direct approaches the optimal control problem is transfonned into a nonlinear
programming problem.

In a first approach, this can be done with a so-called direct shooting method
through a parameterization of the controls u(t). For this we choose u(t) from a finite
dimensional space of control functions and use explicit numerical integration to
satisfy the differential eqs. (1), see e.g. Williamson [27], Kraft [17], Horn [15],
Bock and Plitt [5], to cite only a few of the many papers.
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In a second approach, u(t) and x(t) are chosen from finite dimensional spaces
p

U E span {UI , ••• ,up} , u = :Laiui, ai E IR, (10)
i=l

q

x E span{Xl, .•. , Xq } , x = :L{3jXj, {3jEIR. (11)
j=l

Compared with the first approach this has the additional advantage that the
computationally expensive numerical integration of the differential eqs. (1) can be
avoided. In common approaches piecewise polynomial approximations are used (cf.
Renes [22], Kraft [17], Hargraves and Paris [13]). Approximations as finite sums
of the Chebyshev expansions of x(t) and u(t) are also possible but not easy to handle
in the presence of path constraints (see e.g. Vlassenbroek and van Dooren [26]).
The differential eqs. (1) and the path constraints (4) are only satisfied at discrete
points. The resulting nonlinear program is

Minimize cI>(y), Y= (ab"" ap,{31"'" {3q,tt), Ye IRP+
Q
+

1
, (12)

subject to a(Y) = 0, bey) ~ o. (13)

The differential equations, initial and end point conditions and path constraints
enter the constraint functions a and b of the nonlinear program.

The nonlinear programming problem is solved by using either a penalty
function method or methods of augmented or modified Lagrangian functions such
as sequential quadratic programming methods.

The advantage of the direct approach is that the user does not have to be
concerned with adjoint variables or switching structures.

One disadvantage of direct methods is that they produce less accurate solutions
than indirect methods: By solving numerically several difficult optimal control
problems from aeronautics, we found that in practice the minimum functional value
is obtained with relative low accuracy (Le. errors of about one percent). Increasing
the dimension of the finite dimensional space does not necessarily yield better
values for the extremely complicated problems arising from aerodynamics. However,
this "quantity" of one percent can be a crucial part of the payload in a space flight
mission (cf. Callies et al. [6], Chudej et al. [7]).

A second disadvantage is that the discretized optimal control problems have
sometimes several minima. Applying the direct methods to the discretized problem
they often end up in one of these "pseudominima". This solution, however, can be
quite a step away from the true solution satisfying all the necessary conditions from
variational calculus resulting, e.g., in a 20 percent worse functional value. Examples
of such problems are reported by Bock et al. [16] and by [24].

To overcome these disadvantages it is necessary to combine direct with indirect
methods. In the following, we present a special direct method used in conjunction
with multiple shooting.
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3. A direct method

The basic ideas of this direct collocation method were outlined by Renes [22],
Kraft [17], Hargraves and Paris [13]. Several additional practical features are added
such as selection of initial values, node selection, node refinement, accuracy check
and convergence improving features as, for example, scaling of variables, additional
constraints, special treatment of angles [24].

A discretization of the time interval

to = t1 < t2 < · · · < tN = t[ (14)

is chosen. The parameters Y of the nonlinear program are the values of control and
state variables at the grid points tj , j = 1, ... , N, and the final time t[:

Y =(u(t1), ••• , u(tN), x(t1), ••• ,x(tN), tN) E IRN
(l + n) + 1. (15)

The controls are chosen as piecewise linear interpolating functions between u(tj)
and u(tj + 1) for tj S: t S: tj + 1:

(16)

u

_.-.....

(17)

(19)

(18)

t
t.

J

Fig. 1. Approximation of u(t).

The states are chosen as continuously differentiable and piecewise cubic functions
between x(tj) and x(tj + 1)' Xapp (s):= I(x(s), u(S), S), S =tj' tj+l' for tj -5: t -5: tj + l'

j=I, ... ,N-l,

( )

k
3 . t- t·

Xapp (t) = L cl --;;!- ,
k=O J

c6 = x(tj)'

c{ = hjlj ,
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x f(x,u~ t)
i(t)

t

Fig. 2. Approximation of x(t) and implicit integration scheme.

c~ =-3x(tj ) - 2hj !j + 3X(tj+l) - hj !j+l'

d = 2x(tj) + hjij -],x(tj+l)+hj!j+l,

where

(20)

(21)

fj := !(x(tj ), u(tj ), tj ), hj := tj +1 - tj .

The states are piecewise cubic Hermite interpolating functions. Readers who are not
familiar with this term are referred to common textbooks of Numerical Analysis,
such as e.g. [23]. The constraints in the nonlinear programming problem are

• the path constraints of the optimal control problem at the grid points tj :

g(x(tj ) , u(tj ), tj ) ~ 0, j = 1, ... , N,

• the specified values of the state variables at initial and terminal time,

• and

f ( ( ) ()) . () 0 ~ tj + tj +1 . 1 N 1 (22 )xapp t ,uapp t ,t - xapp t = lor t = 2 ,J = ,···, -.
Further on, the index "app" for approximation will be suppressed. This way of
discretizing x(t) has the advantage that not only the number of parameters of the
nonlinear program is reduced (because x(tj ) , j = 1, ... ,N, are not parameters) but
also the number of constraints is reduced by this implicit integration scheme (because
the constraints x(tj ) =!(x(tj ) , u(tj ), tj ), j =1, ... ,N, are fulfilled by the chosen
approximation). Other ways of discretizing x(t) do not have this property. For the
time being, the nonlinear program is solved by using a method based on sequential
quadratic programming due to Gill et al. [11]. This direct collocation method has
been successfully applied to difficult constrained optimal control problems such as
the minimum accumulated heat descent trajectory of an Apollo capsule with height
constraint [24]. Convergence was achieved even in the case that no information was
given about the optimal trajectory. Only information of the given data was used.
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Approximations of the minimum functional value and of the state variables with a
relative error of one percent were achieved and were quite satisfactory. Approximations
of the optimal control variables, however, were· worse compared to the "exact"
solution (see figs. 4 and 8). Also the disadvantages of direct methods described
above have been observed.

4. The hybrid approach

To overcome the disadvantages of the direct method it would be desirable to
combine the good convergence properties of the direct method with the reliability
and accuracy of the multiple shooting method. But the switch between both methods
is not easy as it is necessary to set up the adjoint differential eqs. (7) and the optimal
control laws (9). Also a proper choice of the multiple shooting nodes, initial values
of the adjoint variables A(t) and the variables vet) and the switching structure is
needed in advance.

As for the combination of the methods, the grid points of the direct method
yield a good choice for the positions of the multiple shooting nodes. For example,
in fig. 6 the final distribution of the 25 grid points obtained by the node selection
and refinement described in [24] is marked by crosses on the time axis.

As an additional advantage, reliable estimates for the adjoint variables (that
do not explicitly appear in the direct fonnulation) can be obtained from the parameters
and the Lagrangian function of the nonlinear program.

We assume sufficient differentiability for all functions and (only for the
purpose of illustration) n =1, 1=1, m =O.

Evaluation of the approximations of u(t) and x(t) of the direct method from
section 3 at the center t i + 1/2 := (ti + t i + 1)/2 of each discretization interval yields

u(ti+l/2) = t (Ui + Ui+l), (23)

1 t· 1 - t-
X(ti+l/2) = 2(Xi +xi+d + 1+ 8 1(f(Xi,Ui,tj)- !(Xi+l,Ui+l,ti+d), (24)

· ( ) - 3(Xi+l - Xi) 1 (f( ) f( )) (25)
x ti+l/2 - 2(ti+l _ ti) -"4 Xi, Ui, ti + Xi+l, Ui+l, ti+l ,

i=l, ... ,N-l.

Here the notation

Ui := u(ti ), Xi:= X(ti)' i = 1, ... ,N, (26)

has been used, where Ui and Xi are the parameters of the nonlinear program. Furthennore
the relations

dU(ti+1/2 ) dU(ti- 1/2 )
-~-- - 0 - ----ax· - - ax· '

t t

(27)
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dX(ti+1/2 ) 1 t· 1 - t· d!(Xi' ui' ti ) (28)=_+ t+ t
dXi 2 8 ax

aX(ti-I/2 ) 1 ti - ti-l a!(Xi ,Ui, ti) (29)
aXi

::::--
ax2 8

di(ti+1/2 ) 3 1 a!(Xi,ui,ti ) (30)
aXi

=-
ax2(ti+1 - ti ) 4

di(ti- 1/2) =+ 3 1 a!(Xi ,Ui' ti ) (31)
aXi 2(ti - (i-I) 4 ax

are needed. The Lagrangian of the associated nonlinear program from section 3 is

N-l
L(Y,Jl) = cI>(xN,tN )- LJlj(!(X(tj+l/2),U(tj+l/2)tj+l/2)-i(ti+l/2))' (32)

j=1

with Jl = (Jll' ... , JlN -1) E IRN
-1.

A solution of the nonlinear program fulfills the necessary first order conditions
of Kuhn and Tucker. In detail, we find among others for i =2, ... , N - 1

(33)

Substitution of (27)-(31) into (33), the chain rule of differentiation, and some basic
calculations lead to

1 ( a!(X(ti-l/2), U(ti-l/2)' ti-l/2) a!(X(ti+l/2)' U(ti+l/2), ti+1/2))
-"2 Jli-l ax +Jli ax

For convenience, we now suppose an equidistant grid, i.e.

tf - to .
ti+l-ti=h= N-1' l=1, ... ,N-1.

(34)

(35)
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Introducing the abbreviations

h := !(Xi' Ui' ti)' h+l/2: = !(X{ti+l/2), U{ti+l/2), ti+l/2),

eq. (34) can be rewritten as

aL 3
ax. =- 2h (Jli - Jli-l)

l

lafi 1 (afi-1/ 2 afi+l/2 J
- 4ax (Jli-l +Jli) - 2'Jli-l --ax- +Jli--ax-

h ali+"8 a~ (Jli-l - Jli ).

By using Taylor's theorem

af~~12 =~ +O(h), af~~12 =~ +O(h),

we obtain an adjoint difference equation for Jli' valid for i =2, ... , N - 1,

(36)

(37)

(38)

(39)~~ = - ~ Jli -:i-l -~ (Jli +Jli-d ~ + O(h) =O.

By keeping t = t i fixed and letting h ~ 0 by increasing the number of grid points
N ~ 00, eq. (39) converges to the adjoint differential equation

· ( .) = _ (.) at(x (ti ), U( ti ), ti )
Jl t l Jl t l ax ·

So we use

A(ti+l/2) = G'(-Jli)' G = const. > 0, i = 2, ... ,N -1,

(40)

(41)

as an estimate for A(t) with a scaling factor G. For all optimal control problems of
Mayer type, G can be easily determined by using the additional end point condition
for A{tf ) from calculus of variations. Relation (41) was used in the examples of
section 5.

Obviously, an estimate for the multiplier function vet) appearing in (5)-(9)
in the presence of constraints g can also be obtained by this approach.

The examples show that the switching structure for the constraints on the
state variables will be approximated in a satisfactory way by a solution of the direct
method. However, the switching structure of the constraints on the control variables
will not be approximated as well due to the bad approximation of the control
variables. At this point, further refinements are required.

Nevertheless, this hybrid approach has been successfully applied to several
test examples and new real-life problems with unknown solutions as, for example,
the maximum range trajectory of a hangglider [4].
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s. Numerical examples

5.1. THE BRACHISTOCHRONE PROBLEM

As a first example and in order to illustrate the properties of the direct method
for estimating adjoint variables the well-known classical Brachistochrone prob~em

was chosen. Here, the numerical solution from the direct collocation method is
compared with the exact solution. As for the formulation of the problem the notation
of Bryson and Ho [1] is used, see section 2.7, problem 6 (the gravity acts in the
direction of the y-axis):

Minimize J[8] = tt,

subject to the differential equations

x(t) = ~2gy(t) cos 8(t), g = 9.81,

y(t) = ~2gy(t) sin8(t), 0 ~ t ~ tl ,

and the prescribed values at initial and terminal time

x(O) = 0, x(tf) = 1,

y(O) = 0, y(tl) free.

(42)

(43)

(44)

(45)

(46)

The control 8(t) is the angle of the tangent of the trajectory (x(t),.y(t)).
The necessary conditions, derived from calculus of variations, can be solved

analytically; and we obtain for the state and control variables of the optimal trajectory
· 0< <In - t - tt:

x(t) =l.Uot - sin rot), ro ={iii, (47)
1C

y(t)= ;sin2(~t), (48)

e(t) = t(1r- rot), (49)

and the adjoint variables

Ax(t)=-~#,

AyCt) = Ax cot( ~ t).

The final time and minimum functional value is

tf=#.

(50)

(51)

(52)
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Fig. 3. The (x(t), - y(t)) trajectory in the plane.

0.00
0.00 .10 .20 .30 .40 .50 t

Fig. 4. The optimal control 8 versus time.
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Fig. 5. The adjoint variable Ay versus time.

Figures 3 to 5 show the initial trajectory (- - -) of the direct method for 5 equidistant
grid points, the solution of the direct method (- · - · -) for 10 grid points and the
analytic solution (-). In the figures there is no visible difference between the
approximated and the exact state variables x and y. The minimum functional value
is achieved with an error of 7/1000 percent. Obviously, the singularity of Ay(t) at
t = 0 affects the quality of the approximation of 8(t) in the neighborhood of t = O.

It should be noted that due to the singularity of Ay(t) at t = 0, the problem
cannot be solved by multiple shooting when using this formulation. An additional
refinement as, e.g., a local finite Taylor series is therefore necessary.

5.2. THE APOLLO REENTRY PROBLEM

To illustrate the properties of the hybrid approach we solve another well
known but rather difficult problem of finding the minimum accumulated heat descent
trajectory of an Apollo capsule (cf. [23,24] and Pesch [21]).

The differential equations of this two dimensional model are for 0 S; t S; t/:

(53)

(54)

(55)
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· s vcosrr= 2m P(g)VCL(U)+ R(l+g)

q = CV3~P~) I

where the abbreviations

(56)

(57)

CD(U)=CDO+CDLCOSU, cDo=0.88, cDL=0.52,

p(;) = Po exp(-f3R;), Po = 2.3769 X 10-3 ,

1.. = 50000, go = 3.2172 X 10-4 , R = 209.0352,
m

1fJ = O. 235 ' C = 20, N = 4,

(58)

(59)

(60)

(61)

(62)

have been used. The state variables are the velocity v, the normalized height ~, the
range over ground " the flight path angle rand the accumulated heat q. The control
variable is the angle of attack u. The final time tf is free. The prescribed values at
initial and terminal time are

v(O) = 0.35,

;(0)=4/R,

'(0) =0,

r(O) = -5. 75 . 1r/180,

q(O) =0,

v(tl) = 0.0165,

;(tl) = 0.75530/R,

'(tl) = 51.6912,

r(t/) free,

q(t/) free.

(63)

The functional to be minimized is

The adjoint differential eqs. (7) from calculus of variations are

(64)

(65)
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i; = ~ fJRcv3~p~)Aq - 2~ fJRp(g)( V2AvCD(U) - VArCL (u»

-2A gosinr + cosr (~A -2A go + VA )
v (1+;)3 (1+;)2 R r r v(l+;) "

(66)

(67)

(68)

i q =0. (69)

Furthennore, we have the additional conditions

(70)

and the optimal control law

dB =...L (g)V(A dcdu) _ VA dCD(U») =o.au 2m P r au v au (71)

{krn}
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Fig. 6. The height of the capsule versus time.
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An initial trajectory for the iteration process is generated at nine equidistant
grid points from the given prescribed values of the state variables at initial and final
time. The direct collocation method converges in several refinement steps. Additional
grid points had to be added in order to obtain a 25 grid point solution.

By an automatic procedure the number and positions of multiple shoo~ing

nodes and the values of state and adjoint variables are obtained from the solution
of the direct method.

From these starting values the multiple shooting method (cf. [2,19,20,23])
converges to a very accurate solution.

The error in the achieved functional value and the final time of the solution
of the direct method compared with the multiple shooting solution was about one
percent.

Figures 6 to 8 show the height of the capsule, the adjoint variable of the
height and the control angle of attack, the initial (- - -) trajectory, the result of the
direct method (- · - · -) and the solution of the multiple shooting method (-). In
addition, fig. 6 also shows the initial and final distribution of the grid points of the
direct method marked by crosses.

6. Conclusions

We have demonstrated that a combination of direct and indirect methods is
a very promising way to obtain the numerical solution of nonlinear optimal control
problems.

The switch between both methods in the case of general nonlinear constraints
on the control and state variables is currently studied. First numerical results are
encouraging.

Nevertheless, the solution of a difficult real-life optimal control problem
cannot be obtained without any insight into the mathematical and physical nature
of the solution of the optimal control problem.
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