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Abstract - Zusammenfassung

Real-Time Optimization of a Hydroelectric Power Plant. An optimal control problem modelling a
hydroelectric power plant was developed and discussed by Hj. Wacker and his co-warkers in [IJ. In the
present paper, this problem is treated within a more general framework of "non-differentiable" opti­
il1~1 control problems. Necessary conditions of optimality are derived and it is proven that the restricted
dass ofcontrols considered in [IJ indeed contains the optimal contro!. Furthermore, a decoupling tech­
ni9~eijsestablishedthatallows the full problem to be split into several small subproblems. Based on
thep~\vi results, an efficient algorithm is developed. This algorithm allows the optimal control to be
computed for more general problems with greater accuracy and for a longer time period. Numerical
resultsare given both for the model described in [I J and far the more refined model presented in this
paper.

AIHS Subject Classificatiolls: 49-04, 49K15, 65KIO

Non-differentiable optimal contro!, singular control, hydroelectric power plant, real-time

Echtzeit-Optimierung eines Tagesspeicherkraftwerkes. Hj. Wacker und seine Mitarbeiter entwickelten und
untersuchten das Modell eines Tagesspeicherkraftwerkes [I]. Bei der Optimierung der Energieausbeute
beschränkten sie die Steuerung auf eine spezielle Funktionenklasse. Hier wird das Modell innerhalb
einer verallgemeinerten Problemstellung behandelt. Die Optimierungsprobleme weisen Nichtdifferen­
zie~barkeiten in den Modellfunktionen auf, für die verallgemeinerte notwendige Optimalitätsbedin­
gupgen hergeleitet werden. Es wird nachgewiesen, daß die in [IJ untersuchte Klasse die optimale
Steuerung enthält und es werden Bedingungen hergeleitet, unter denen das Steuerungsproblem in
Teilprobleme zerfällt. Darauf aufbauend wird ein effizienter Algorithmus beschrieben, der es erlaubt, in
Echtzeit optimale Steuerungen auch für sehr lange Zeiträume mit hoher Genauigkeit zu berechnen.
Numerische Ergebnisse werden für das Modell in [IJ und eine Verallgemeinerung dieses Modells
präsentiert.

1. The Modelling of the System

1.1 The General Model

The "day-storage" power plant model to be investigated is closely related to the
Schwarzach Werk that was originally described by Hj. Wacker and his group in
[IJ and[l2].
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Figure 1

The plant operates like this: The water reservoir of the power plant is filled from
the river Salzach using a pipeline P with an influx rate S. The rate S is constrained
by the capacity W ofthe pipeline and the water influx Z(t) to the pipeline. W depends
on the difference of the pressure of water between both ends of the pipeline and
therefore on the filling level y of the reservoir. Therefore, the actual influx of water
in the storage through the pipeline is given by

S(y,t) = min{Z(t), W(y)}. (1)

T = 24[h], (2)g = 9.81 [kgmjs2] ,

The function I(y) describes the relation between y and the contents of the storage.
The control u is the flow of water through all turbines at time t and the function
w(u,y) is the efficiency. Following [1], the maximization of the energy production
of the power plant over aperiod of one day, when the influx of water Z(t) is known,
can be described as the optimal contral problem

min - g rT

y(t)u(t)w(u(t), y(t) dt,
u.y(O) J0

subject to the dynamic equation

j8I(y)
y(t) = (S(y(t), t) - u(t))/-~­

oy
(3)

with boundary conditions

y(O) = y(T), T = 24[h] , (4)

and the restrictions

Ymin := 126[m] ~ y(t) ~ 149[m] =: Ymax,

o~ u(t) ~ 107[m3js].

(5)

(6)

1.2 The Three-Peak Model

In the so-called three-peak model the hitherto unspecified functions can be found
in [1]. The contents I of the reservoir is assumed to be a linear function of the filling
level y
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(7)

(8)

I(y) = Cf.(y - 126) [m3 J,

~I = Cf. = 1.48106[mZ].
oy 23

The linear funetion Irefleets the eylindrieal geometry of the storage. The energy
produetion depends on the water pressure and the water volume u whieh flows
through the downpipe to the power plant and is assumed to be proportional to the
potential energy with the eonstant of proportionality (i.e. the effieieney faetor)

w(u, y) = eonst.

Setting w(u, y) == 1 the objeetive funetion then beeomes

min IT (-y(t)u(t))dt.

The eapaeity W(y) of the pipeline is assumed to be linear

(
y 126)[m3

]W(y) = 80 1 - 23 s'

(9)

(10)

(11)

(12)

and the water influx Z(t) is a given periodie funetion with aperiod of one day and
the eonstraint 20::; Z ::; 40[m3/s]. Here, the influx is approximated by the step
funetion

{
40[m3/s], if tE [Tl' TzJ V [T3 , T4 J V [Ts, T6 ],

Z(t) =
20[m3/sJ, elsewhere

with (Tl' Tz, T3 , T4 , Ts, T6 ):= (8h, lOh, 13h, 15h, 18h,20h). Following [IJ, we shall
eall this model the three-peak model.

1.3 A Refined Three-Peak Model

In the present paper, a refinement of the three-peak model is suggested. The refined
model is nonlinear and deseribes some physieal effeets more realistieally than in
[1].

1. The influx of water is deseribed by a pieeewise eubie polynomial ZR(t) being a
eontinuously differentiable funetion with respeet to the time t.

20[m3/sJ, if tE [Oh, 7.75hJ,
20(2 + 2(2(8.25 t))3 - 3(2(8.25 t))z) [m3/sJ, iftE[7.75h,8.25hJ,

40[m3/sJ, if tE [8.25h, 9.75hJ,
20(2 + 2(2(t - 9.75))3 - 3(2(t - 9.75))Z) [m3/sJ, ift E [9.75h, 10.25hJ,

20[m3/sJ, if tE [1O.25h, 13.75hJ,
ete.

(13)

Comparing both models, note that ZR(t) is related to the original Z(t) by
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f'T fT
o ZR(t) dt = 0 Z(t) dt.

Every known influx can be sufficiently weIl approximated by piecewise cubic
polynomials.

2. The reservoir is assumed to have the geometry of a truncated cone

Figure 3

with p:= R/r ;;::: 1; in the numerical calculations the choice was p = 1.25. The
function IR(y) is a cubic polynomial satisfying IR(Ymax) = 1.48· 106 =: Imax and
IR(Ymin) = O. Therefore

where

(15)

v= Y - Ymin

. Ymax - Ymin

Y 126

23
(16)

For p = R/r = 1, we have IR(y) = I(y) and for p > 1, we may write IR(y) as

IR(y) = Im~x 1 ((1 + (p - l)Y ~;26Y-1)

and

(17)
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eIR Imax

ey 1 + P +
3 ( Y 126)2

23 1 + (p - 1) 23 p"2 1. (18)

The denominator of the dynamic equation (3) is eIR/ey. The zeros are of special
interest.

23
126 = --- where Y1.2 - 126< O.

p - 1
(19)

Due to the restrietions on y, this case cannot happen.

3. A modification of W(y), already suggested in [IJ, is taken into account

( (
V - 126)2) [m 3

]WR(y) = 80 1 - - 23 . S ..

2. Necessary Conditions for Singular Controls

2.1 Optimal Control Problems when the Dimension 01 the
State Equals the Dimension 01 the Control

(20)

In view of the problems of Sec. 1, we now assume that the control U and the state
variable y are of the same dimension. In this case we can expect that the system is
totally controllable if the constraints on the control u are not active. The first-order
necessary conditions are derived as folIows. Let us consider an optimal control
problem

J := min fb L(y(t), u(t), t) dt
u a

subject to a system of differential equations

}i(t) = g(y(t), u(t), t)

(21)

(22)

wherey=(y!, ... ,y"f,u = (u1,· .. ,u"f,L: IR" x IR" x IR->IRandg:IR" x IR" x IR->
IR". Land gare assumed to be a.e. continuously differentiable. With

(23)

the necessary first-order conditions for an optimal trajectory (y(t), u(t)) are (cf.
Hestenes [7J)

d

dt
a.e. in Ca, bJ (24)

and, if Fis nonlinear in u j , we have

-Fu, = -Lu, _),Tgu, = 0 a.e. in Ca, b]. (25)

If F is linear in U j and if U j is constrained by umin • j :s; Uj :s; umax.;' the minimum
principle yields
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{

umaX ' i '

U i = umin . i ,

singular,

if F
Ui

< 0,

if F
Ui

> 0,

if F
Ui

= 0.

(26)

If the Jacobian gu := (ogi/ou)7. j =! is regular, we obtain

), T = _ Lug:;! (27)

from (25) and (26) no matter whether F is nonlinear in u or both linear in u and
singular. In these two cases, the parameter }, can be eliminated from (24) which yields

with u: IR" x IR" x IR -> IR".

a.e. in Ca, b] (28)

Lemma 1. Let n = land g, L: IR x IR x IR -> IR be a.e. three times continuously
differentiable with gu # 0. /J (Lugl~!L = °Jor all (y, u) in a time interval where the
optimal control is not constrained, then the fimction u is independent oJ u

u = u(y, t) = 0. (29)

Note that (Lug:;!).. = °is satisfied if 9 and L are linear in u. The assumptions of
Lemma 1 are therefore fulfilled far the problems of Sec. 1.

Proof: With y = 9 we obtain from (28)

u = u(u, y, t) = (Lllgl~! )yg + (Lug:;!)c L y + (Lug:;! gy) = ° (30)
and

As a consequence u(u, y, t) does not depend on u.

2.2 First-Order Necessary Conditions

(31)

lIlI

The first-order conditions can be written as follows. Defining the Hamiltonian H
as H := L + }, T g, Eq. (24) now becomes the adjoint differential equations

i = 1, ... , n. (32)

The optimal control u has to satisfy the minimum principle. If H is linear in U i and
if U i is constrained, we have

if H
Ui

< 0,
if H

Ui
> 0,

ifHui==O.

(33)

On singular subarcs, we also have dHllJdt == 0.
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Application: For the models of the power plant considered in Sec. 1, the Hamil­
tonian is H = L + ), T g = yu + ),g with L(y, u, t) = - yu and y = g(y, u, t) =
(S(y, t) - u)/Iy(Y). The adjoint variable ), satisfies

H _ . _ •Sy(y, t)Iy(Y) - Iyy(y)(S(y, t) - u)
y - u ), (/y(y))2

On singular subares, we therefore find from Hu == 0, y = -lcfly(Y) and

d ).Iy - }.fyyy
0== dtHu = -y (/y)2

_ S - u (I )-1 ( • Syly - Iy/S - U») Iyy •S - u
----- y U-), , +-2)'--·

Iy (/y)- (/y) Iy

= (/yr 1
( -S - ySy).

In addition, on singular subares we have with (28)

d -1 1
u = dt (Lugu ) L y + Lug;; gy

d SyIV - (S u)Iyv
= dt (yly) + u + . (/y)2 . yly

= S + ySy == O.

(34)

(35)

(36)

(37)

(38)

(39)

(40)

•
In general, i.e. for n :;:: 1, Hu and u are related to each other, due to Eqs. (24), (27),
and (28), via

d -1 • T
= -d (Lugu ) - Lv - Je gvt ..

= u(u,y,t).

(41)

(42)

(43)

(44)

Application: In the models considered in Sec. 1, Land g are linear in u, and gu i= O.
Assuming that Z(t) - W(y(t)) has only isolated zeros along the optimal trajectory,
two cases have to be distinguished for the above mentioned necessary condition
(40) for a singular control.

1st case: S = ZU) holds and we have

u = ZU) + y" 0 i= 0

since 20 ~ Z(t) ~ 40. Hence, u has no zero when S = Z(t).

2nd case: S = W(y) holds and we have

(45)
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(J = W(y) + yWy(Y).

For the three-peak model we have

80 (80)
(J = (149 - y)23 + Y - 23 = 0<:> y = 74.5.

(46)

(47)

Due to the restriction 126 ::;; y ::;; 149, this filling level y is not feasible.

In the refined three-peak model we have

= 80(1 _ (y - 126)2) (-2)y - 126.80 = 0 (48)
(J 23 + Y 23 23

<:> Yl = 128.049... or Y2 = 39.950... (49)

Although Y1 is feasible with respect to the constraints, thisfilling level 128.049 is
not reached as we shall see later on. According to the classical theory, singular
subarcs cannot occur as long as all functions appearing in the problem are
differentiable. However, this is not true here along the curve y(t) = y*(t) defined by
W(y*(t)) = Z(t). Along this special trajectory the influx S switches between Z(t) and
W(y). As it will be shown in the following, the optimal filling level y indeed becomes

y(t) = y*(t) = W-1(Z(t)) (50)

within several subintervals. So we have to derive necessary conditions for the more
general case when Land g may be non-differentiable. EIl

2.3 More General Necessary Conditions

min J[y],
y

Theorem 1. Let rIo: IR -+ IR" be the optimal solution oJ the variational problem

J[y]:= rL(y,y,t)dt. (51)

(52)

The Junctions L: IR" x IR" x IR -+ IR and Lyare assumed to be continuously differenti­
able in a neighborhood oJ ('!Jo(t), rio(t), t), Jor all tE Ca, b], with one exception: aL/aYi
and aLy/aYi need not to exist Jor y(t) = '!Jo(t). But then at least the one sided limits
Jor h! 0 and h i 0 oJ aL('!Jo + hei' rio, t)/aYi and aL/rIo + heb rio, t)/aYi are assumed to
exist. Then, Jor i = 1, ... , n, the Jollowing two necessary conditions hold

lim(!!:- Lydr]°+ hei' rio, t) - Lv('!Jo + hei' rio, t)) ::;; 0,
11.1.0 dt ' ..

lim (!!:-. Lv (r]o + hei, rio, t) - Ly(r]o + hei' rio, t)) :?::: 0,
IIto dt ., .

where ei is the i-th canonical unit vector.

Note that if dLy(r], ri, t)/dt - Ly(r], li, t) is continuous, Eq. (52) is equivalent to the
well-known Euler-Lagrange equation.
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Praa/: Let n = 1. We use functions fl e, e > 0, with support on [0:, ßJ and defined by

{

u- o:)e, ifo: < t < 0: + e,

{

e, ifo:<t<o:+e,
8 2 , if 0: + 8 :s; t :s; ß - 8,

fl e= ß ·fß ß = fie= 0, otherwise, (53)
( - t)8, 1 - 8 < t < ,

8, if ß- 8 < t < ß.
0, otherwise.

ß - c /3

Figure 4

With suitable functions , between fl o and fl o + fleand ( between fio and ~o + fie and
because fie E {-e,O, +8} and fle:S; 8

2
, we have for all 8 ~ °

J[flo + fleJ J [floJ = J: Ly(C fio,t)fle dt + f.l+e L y(110' (, t)fie dt

+ jß Ly(llo, (, t)fie dt + 0(83
)

ß-e

= 8
2 (J: Ly(C fio, t) dt) + 8 (f+e Ly(flo, (, t) dt)

8(f:-e Ly(flo, (, t) dt) + 0(e
3

) (54)

= 8
2 (J: L}K fio, t) dt + Ly(llo(O:), ((0:), 0:) - Ly(flo(ß), ((ß), ß))
+ 0(e3

) (55)

~ 0. (56)

With 8 -+°we obtain, for all 0:, ßE Ca, bJ,

F(o:, ß):= J: Ly(flt, fio,t) dt + L};(flo, fio, Cf.) - Ly(flo, fio, ß) ~ 0, (57)

with fit U) = lime~o (floU) + fleU)). Now we proceed as folIows. Assurne that
dLy/dt Ly > °for t = tsE Ca, bJ, then choose Cf. = ß = tsand find F(t" tJ = 0, but
dFUs' tJ/dß < 0. Therefore FU" ts+ 6) < °for sufficiently small 6 > 0. Thus, the
first inequality of Theorem 1 follows from the inequality F(Cf., ß) ~ °by contradic­
tion. The second inequality is obtained by using 110 -fle as the competitive function.

The proof for n > 1 is straightforward by discussing each component of l1i
separatelY·1IiI
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If gu E ~n x n is regular, Theorem 1 can be used for the problem (21) and (22) of
Sec. 2.1 in all those intervals Ja" bs [ where the control is singular. This will be
explained by

(58)y = g(y, u, t).s.t.
u

min J[u],

Theorem 2. Let rIo, uo: ~ -+ ~n be the optimal solution of the optimal control problem

J [uJ:= f L(y, u, t) dt,

The functions L, Lu, g, and gu are assumed to be continuously differentiable except
with respect to y for y(t) = r,o(t) where only the one-sided limits are assumed to exist
and gu E ~n x n is assumed to be regular. Then, for i = 1, ... , n, the following two
necessary conditions hold on singular subarcs

lim oAuo, rIo + hei, t) ::::; 0 ::::; lim u;(llo, '10 + he;, t).
~o ~o

(59)

Proof: If gu is regular and if u is singular, it follows from y = g(y, u, t) that

u = G(y, y, t) = I = Gygu and

We find that Gy = g;;1 and Gy = _ g;;1 gy.

Applying Theorem 1 to L*(y, y, t) := L(y, G(y, y, t), t), we obtain

d * L: = ~ (C(L(y, Gy;, y, t), t)) _ cL(y, G!y, y, t), t)
dt

Ly
. dt oy oy

(60)

(61)

(62)

= u(u, y, t),

and Theorem 2 follows from Theorem 1.

(63)

11

If for all admissible u, we find y* with Ui(U, y, t,) > 0 for all y with Yi < y{' and
Ui(U,y, ts) < 0 for all y with y; > y{', for all i = 1, ... , n, then y* is the only candidate
for an optimal trajectory having a singular subarc. The associated singular control
will be denoted by u*. Consequently we can restrict u to the three values
u(t) E {Umin' UmaX' U*(t)}.

Application: In the problems considered in Sec. 1, S = min {Z(t), W(y)}, and from
(40) u(y) = S + ySy satisfies the conditions ofEq. (59) ofTheorem 2 for '10 = y* since

y < y* = S = Z(t) = u(y) = Z(t) > 0 (64)

and

y > y* = u(y) = W + y~v < 0,

if y > 74.5 in the three-peak model,

or if y > Y1 = 128.049 ... in the refined three-peak model.

A singular control can therefore exist only if y = y*.

(65)

•
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Eqs. (64) and (65) show that in the problems considered in Sec. 1 the inequality (59)
is a strict inequality. Therefore, inequality (59) remains valid under small problem
modifications.

2.4 Decoupling by Singular Subintervals

Decoupling Technique: Let the assumptions oJ Theorem 2 be valid with Eq. (59)
determining y*(t) Jor all t. Let (uoPt' YoPt) be the unique solution oJ the optimal control
problem

min fb L(y, U, t) dt,
U a

s.L y = g(y, u, t). (66)

Let uopt be singular (Ilopt = u*) in the intervals [tl ,(2] and [t 3 , t4], t2 < t3 , and let
(u l' Yd be the wlique solution of the optimal control problem

f
t 4

min L(y, u, t) dt,
U t,

s.L y = g(y, u, t) (67)

with the boundary conditions that u(t1) and U(t4) are singular.

Then by the Principle oJ Optimality, (uopt(t), YoPt(t)) = (u 1(t), Y1 (t)) Jor all t E [t l' t4].

Ir the optimal control is singular within several subintervals, certain subproblems
can be solved separately over smaller time intervals and can be matched together
resulting in an optimal solution for a Ionger time period. Of course, the intervals
where the optimal control is singular have to be known in advance. In the following,
we provide a strategy for finding candidates for singular subarcs and for demon­
strating the validity of this assumption. The decoupling technique will significantly
decrease the computing time as compared to the amount of computing time for the
full problem.

In order to find the optimum U 1 , we only have to know the model functions, e.g.,
the influx Z(t) to the hydroelectric reservoir mentioned in Sec. 1 for t E [t 1, t4], for
a short period in the future. For example, it is sufficient to know the influx ofwater
Z(t) or ZR(t), respectively, only about 5 hours in advance.

3. Application to the Hydroelectric Power Plant

3.1 Restrietion oJ the Class oJ Admissible Controls

For the optimal control problems (21), we find under the assumptions ofTheorem 2
that the optimal control u(t) can only have 3 values, u(t) = umin ' u(t) = Umax ' and
u(t) = u*(t) = G(y*(t), .lJ*(t), t). The control u is determined by all switching points
where u switches between two of these three values. We now show that the number
and the type of these switching points can be limited. We then optimize only with
respect to these few parameters.
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Lemma 2. Let t = tb be a so-called bang-bang point whel'e the contl'ol U switches
between u = tlmax and u = umin 01' vice vel'sa. Then

{

Umax
U=

umin

(68)

01'

{
Umin JOI' t E [tb - e,tb[ () *()

U = => Y tb ::;; V tb ,
Umax JOI' t E ]tb, tb+ e] •

I'espectively, JOI' a sufficiently small e > O.

(69)

Pl'ooJ: (Indirect) 1st case only: Since y(t) and y*(t) are continuous, we find

y(tb) < y*(tb) => y(t) < y*(t) for t E [tb - e, tb+ e] with a sufficiently small e > O.
(70)

As y and }, are continuous, Hu = y - },/Iy(Y) is also continuous with Hu(tb) = O.
From (44), we find

d
[u(Yntrb = dt -IyH,Jrttb = [ In,yHu - IyHuJrttb = -Iy(y(tb)) [HuJrtrb' (71)

On the other hand, we see from (64) that u(y) = Z(t) > 0 for y < y*. With Iy > 0 it
follows that Hu(t) < 0 for t E [tb - Ci, tbC with a sufficiently small Ci > O. Conclusively
H,,(t) > 0 for t E [tb - Ci, tbL which contradicts U = Umax (because of (33)). 11

Asa consequence, we have the result that after a switch from U = Umax to U = Umin ­

or vice versa-the next switching point cannot occur before y - y* has changed
its sign. This severely restricts the number of switching points as we will see from
Fig.5.

For a given Z(t), we calculate y* = W-I(Z(t)) and the associated singular control
u* from

u*(t) = S(y*,t) j'*Iy(Y*). (72)

In Fig. 5 the solid line refers to y*. The control u* may violate the restrictions for
u in some intervals, say [TI,I,tf,I]' [TI,2,tf ,2]' ... , [T1,m,tf,m]; the graph of y* is
shown by a thin solid line.

u = u*

t1,3 b71,3

... 1....... U = U max
I ,,"·1. ,
I 't ~"...........
I I~" ....

I I
I I
1 1
1 I

y*

Figure 5
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The contral can be singular only in the intervals [a, 'u], [tI. 1 , '12]' etc., in Fig. 5;
the graph of y* is shown there by a bold solid line.

We now assurne that the optimal contraI is singular at t = a and t = b. Then u might
be singular for a ::;; t < '1 with '1 the exit point of the first singular subarc which is
to be determined. Obviously '1 is bounded by '1 ::;; '1.1 where '1.1 denotes the last
possible exit point ofthe first singular subarc. In addition" 1 is bounded by '1.1 ::;; '1

where '1.1 is the first possible exit point of the first singular subarc. After this point,
u can switch from u* to Umax so that y can still hit the curve y*.

In the following, we will distinguish between two types of switching points. The
switching points where the control switches either to Umax or Umin are denoted by 'i
and the switching points where the control switches to u* are denoted by t i •

A possible optimal trajectory (dotted line) may hit the curve y* at the point
t 1 := t 1(,d where U switches from Umax to u*. This switching point t 1 is bounded by
tI . 1 ::;; t 1 ::;; tu' The point tu is defined by tu = tu('u), and '1,1 can be computed
by backward integration starting with y(tI ,d = y*(tI ,d and U = Umax until the
stopping condition y(t) = y*(t).

The optimal trajectory is therefore bounded in its first part by a tube between the
two dashed lines, starting at '1,1 and '1,1' respectively, and the bold solid line
segments. If u switches to Umin at t = '2' then, because of Lemma 1 the trajectory
must be in the next tube, i.e., between the two dashed lines starting at '1,2 and '1.2'

A bang-bang point, e.g., t = '3' where the solid line segments of y* are not met by
the dotted line of y, can therefore only be located in the crossection of the two tubes
(dotted areal.

The optimal control u can thus be described by the m switching points '1, '2' ... ,
'm only. Note that the switching points t i depend on 'i and they exist only if t i < 'i+1'

This is exactly what Bauer, Reisinger, and Wacker did in [1]. By the investigations
ofSec. 2, it is now shown that the authors of[l] considered the correct set ofpossible
control functions, although necessary conditions were not used in [1].

3.2 The State Constraint

Although the state constraint (5) of y never becomes active in the models considered,
the results can be extended to problems with a boundary arc due to this constraint.
This case can be treated by defining an additional constraint upon u,

(73)
if y = Ymin,

if y = Ymax,

u{::;; S(y,t),
~ S(y, t),

and one can show that u(t) becomes

u(t) = umin or u(t) = umax or u(t) = u*(t) = S(y*, t) - y*ly(y*) (74)

with
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(75)

Then we have to replace y* by .y* in the following algorithm.

4. Real Time Optimization Aigorithm

The algorithm can be described by the following steps. The interval [a, b] is the time
period considered.

Step 1: Compute the number m of intervals ['I,i,tI,J for i = 1, ... , m, where u*
violates the constraints (6). In addition, compute the type of the violation,
i.e., UBND,i = Umax or UBND,i = Umin (compare Fig. 10).
Set tI,o := a, 'l,m+1 := b.
I[ m = 0 then uopt := u* and stop.

Step 2: Compute the lower bound 'I, i of 'i for i = 1, ... , m by the backward
integration of the initial value problem (IVP)

S' = g(y, u, t), u = UBND,i' (76)

(77)

until the stopping condition y(t) = y*(t), This determines 'I,i := t.
Set the number of subproblems NoPT := m and the dimension of the i-th
subproblem ND1M,i := 1.

Step 3: For i = 1, ... , NOPT ' the minimization subproblem of the dimension
NDIM.i = 1 to determine '1' ... , 'm has to be solved

~~n V('I,i+1) = ~~n J:'~i:,' L(y(s), u(s), s) ds,

where v is determined by the forward integration of

v= - u(t)y(t), V(tI,i-d = 0, (78)

Y = g(y,u,t), y(tI ,i-1) = y*(tI ,i-1)' (79)

with
if tI ,i-1 :s; t < 'i'

if 'i :s; t < tier;),

if tier;) :s; t :s; 'l,i+1 ,

(80)

where tier;) is determined as follows:
Find the first zero ti of y(t) = y*(t) satisfying ti ?: tI,i'
I[ ti > 'I,H1 or ifno zero exists then let ti := 'l,i+1 else let ti := ti'

Step 4: Convergence check 1 by comparing the subproblems i and i + 1
for i = 1, ... , NOPT - 1:
I[ t)'j) > 'j+1 withj(i) := 2:1=1 NDIM,k
then combine the two subproblems i and i + 1 to a new subproblem of
dimension NDIM,i + ND1M,i+1'
Convergence check 2 for bang-bang points in each subproblem
for i = 1, ... , NoPT :
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If y(,d violates Lemma 2for a k = l(i) + 2, ... ,j(i) with l(i) := Lt::l NDf.',f,k

then decouple the subproblem i into two new subproblems of dimensions
k - l(i) - 1 andj(i) - k + 1.
If no subproblem has been modified then uopt is determined by '1' ... , Tm'

stop, else adjust NoPT and ND1M.i and go to Step 5.

Step 5: Solve the new generated minimization subproblems

where v is determined by the forward integration of

(81)

Li = - u(t)y(t) ,

Y= g(y,u,t),

v(tI.l(i» = 0,

y(tI.I(i» = y*(tI.I(i» ,

(82)

(83)

with u=

u*, if tI.I(i) :s; t < '1(i)+1 ,

uBl'W.l(i)+l' if 'l(i)+l :s; t < 'l(i)+Z'
(84)

UBND.j(i) ,
u*,

if 'j(i) :s; t < tj(i)( 'j(i»

if tj(i)('j(i» :s; t :s; 'l.j(i)+l ,

o

where tj(i)('j(i» is determined as follows withj = j(i):
Find the first zero Ej of y(t) = y*(t) satisfying Ej ~ tI .j.
If Ej > 'l.j+l or if no zero exists then let tj := 'I.j+l else let tj := Ej.
Go back to Step 4.

= 143.25

= 137.5
-----------~--~

Figure 6

24[h]

The qualitative behaviour of the solution of Step 3 is shown in Fig. 6 for the
three-peak model. Here y* is a piecewise constant function and takes the values
143.25 and 137.5 (bold lines). There, the control u* does not violate its bounds in
the interior of each piecewise constant arc of y*. However, at the six discontinuities
of y* the singular control takes the values u*(TZi-d = +00, u*(TzJ = -00, i = 1,2,
3 (Dirac function). Here, the 6 intervals where u* violates its bounds are reduced to
points: ['I.i' tI .;] = [1;, 1;J, i = 1, ... ,6 (for a continuous influx ZU) this case cannot
happen). Therefore, we have to solve 6 one dimensional optimization problems in
Step 3 to determine a first estimate of Ti' i = 1, ... , 6. The solutions behave as the
thin solid curves.



186 M. Kieh1 and O. von Stryk

These six curves show two intersections at r 3b and r Sb in the dotted areas. This
indicates that there might exist two bang-bang points.

In Step 4 of the algorithm, the subproblems 2 and 3, and 4 and 5, respectively, are
merged together. Thus, N oPT := 4 and ND/M.1 = N D1M.4 = 1, ND/M.2 = N DIAI.3 = 2.
In Step 5, the newly generated subproblems 2 and 3 are solved to obtain the optimal
control (cf. Fig. 7).

Some implementation details of the Real-Time-Optimization algorithm, RTOPT,
are

1. The numerical integration of the IVPs can be performed by any appropriate
method, e.g., the extrapolation code DIFSYS based on Bulirsch, Stoer [2]. For
the IVPs with stopping conditions, an appropriate method with root finding
must be used, e.g., the multistep and variable order method LSODAR due to
Hindmarsh [8J and Petzold [9].

2. A high relative accuracy of the numerical integration, for example 10-12
, is

required to determine the roots t;(r;) sufficiently accurately.
3. For the numerical integration ofthe IVPs, stopping points have to be considered

in order to avoid order reduction and inefficiency of the integration methods.
These stopping points result from a piecewise definition of the model functions,
e.g., the influx of water Z(t).

4. The SQP-method NPSOL due to Gilt, Murray, Saunders, Wright [5J, Version
from NAG library Mark 14, is used with finite difference gradients for the
minimization with simple bounds on the variables. The relative precision in the
objective value is required to be 10-8

. Round-off, truncation, and integration
error have to be considered when calculating suitable steplengths for finite
difference gradients [4].

5. Initial estimates of the r i are chosen within the interval JrJ,;' r l .;[.

5. Numerical Results

All calculations were performed on a CDC Cyber 995 in single precision (48 bit
mantissa). The reported computing times are about 3 times faster than on a 80486
PC with 33 Mhz in double precision.

The influx of water Z(t) is periodic function with aperiod of 24h and so is the
solution. For convenience, algorithm RTOPT is therefore applied to the time
interval [2h, 26hJ instead of [Oh, 24hJ to have all the switching points r i and ti in
the considered interval (cf. Table 1).

5.1 The Three-Peak Model

For this problem, the optimal solution can also be obtained analytically. Here we
used the symbolic computation system MAPLE [3]. The exact results are shown
in Table 1. The optimal energy production is 821.2900935 [MWh].
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Table 1. Solution data of the three-peak model
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i I 2 3 4 5 6

r i 6.859089127 9.89112946 12.41574871 14.89112946 17.41574871 19.78947289

y(ri) 143.2500000 137.5000000 140.4440989 137.5000oo~[ 140.4440989 137.5000000

Ci 8.052248882 13.02670845 18.02670845 24.72634283

1; 8.000000000 10.0000000 13.00000000 15.0000000 18.00000000 20.00000000

y(1;) 137.6968476 137.7410720 137.6003740 137.7410720 137.6003740 137.9616056

In [1J, two different methods have been used resulting in energy production values
of 821.09 [MWhJ and 821.26 [MWh]. The first method of [lJ, has limited accuracy
and the second method was reported to need too much computing time.

When applying algorithm RTOPT, the energy production obtained is 821.284
[MWhJ which is very dose to the exact value. The computing time is 8.3 seconds
which is negligible with respect to the time interval of 24 hours. The computed
switching points r i and the roots ti(rd are accurate up to 5 or 6 digits. In Figs. 7
and 8, the solid lines refer to the optimal filling level and the optimal control,
respectively. The dashed lines refer to y* and te associated singular contro! u*, both
as step functions.

In a second simulation, RTOPT is applied to the three-peak model with the smooth
influx ZR(t). The obtained energy production is 822.228 [MWhJ and the computing
time increases to 41 seconds.

147.00 y[m]
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2.00 4.00 6.00 6.00 10.00 12.00 14.00 16.00 18.0020.0022.0024.0026.00

Figure 7. Optimal filling level of the three-peak model
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Figure 8. Optimal control of the three-peak model

5.2 The Refined Three-Peak Model

When applied to the refined model, RTOPT converges after 51 seconds with an
energy production of 847.721 [MWh] and the data shown in Table 2.

In Figs. 9 and 10, the solid lines refer to the optimal filling level and the optimal
contral, respectively. The dashed lines refer to y* and the associated singular control
u*.
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Figure 9. Optimal filling level of the refined three-peak model

Remark: The results of the two hydroelectric power plant problems show, that it
is advantageous to use the whoie water influx, i.e., y(t) .s:; y*(t), instead of increasing
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Figure 10. Optimal contral of the refined three-peak model

Table 2. Solution data of the refined model

i 1 2 3 4 5 6

Ti 7.3341236 9.6099982 12.440562 14.608938 17.440201 19.717736

yeTi) 145.91858 142.26346 145.46530 142.26346 145.46750 142.26346

(i 8.2297217 - 13.226839 18.229337 23.113114

TI. i 7.3319247 8.2115025 12.331925 13.211503 17.331925 18.211502

ll.i 7.8086720 9.7719729 12.808672 14.771973 17.808672 19.771973

the filling level to a value greater than y*(t). As a good approximation, we can
therefore use 'i = 'I.i' if u switches to UmaX' and 'i = 'l.i' if u switches to Umin • This
suboptimal trajectory then corresponds to the lower bound of the tubes considered
in Fig. 5 of Sec. 3.1. For the three-peak model, this suböptimal control yields an
energy production of 820.819 [MWh] which is dose to the optimal value. The
difference may be larger for other model functions with different I(y) and W(y).

6. Conclusions

The main difficulties in the solution of the hydroelectric power plant models
presented in this paper are caused by model functions that are not differentiable
along the optimal trajectory.
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[6]
[7]

[8]

[9]

[10]

[lI]

An algorithm has been developed to compute the optimal flow of water through
the turbines and the optimal fiHing level ofthe storage. By dividing the fuH problem
into severallower dimensional subproblems, it is possible to compute the optimal
solution with high accuracy in real time. Moreover, it is possible to compute the
optimal solution for a long time period, as, e.g., one day or one year, knowing the
influx of water only a few hours in advance.

The algorithm is also applicable to more general characteristic functions of this
hydroelectric power plant model.

A further refinement of the hydroelectric power plant has to take into account
the price of electricity or the demand on electricity depending on the day time.
We therefore have to modify the functional by a time dependent cost function
c(t)

min - f T c(t)y(t)u(t) dt.
u 0

The strategy developed in this paper is also applicable in this case.
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