Next: About this document
Up: No Title
Previous: Conclusions
References
- 1
- Bock, H.G.; K.J. Plitt.
A multiple shooting algorithm
for direct solution of optimal
control problems.
Proc. of the IFAC 9th World Congress, Budapest, Hungary,
July 2-6 (1984) 242-247.
- 2
- Breakwell, J.V.
The optimization of trajectories.
SIAM J. Appl. Math. 7 (1959) 215-247.
- 3
- Bryson, A.E.; W.F. Denham; S.E. Dreyfus.
Optimal programming problems with inequality constraints.
I: Necessary conditions
for extremal solutions.
AIAA J. 1, 11 (1963) 2544-2550.
- 4
- Bryson, A.E.; Y.-C. Ho.
Applied Optimal Control.
Rev. Printing. (Hemisphere Publishing Corporation,
New York, 1975).
- 5
- Bulirsch, R.; F. Montrone; H.J. Pesch.
Abort landing in the presence of a windshear as a
minimax optimal control problem,
Part 1: Necessary conditions.
J. Optim. Theory Appl. 70, 1 (1991) 1-23.
- 6
-
Bulirsch, R.; E. Nerz; H.J. Pesch; O. von Stryk.
Combining direct and indirect methods in optimal control: Range
maximization of a hang glider.
In: R. Bulirsch, A. Miele, J. Stoer, K.H. Well (eds.):
Optimal Control and Variational Calculus, Oberwolfach, 1991,
International Series of Numerical Mathematics
(Birkhäuser, Basel) this issue.
- 7
- Chudej, K.
Optimal ascent of a hypersonic space vehicle.
In: R. Bulirsch, A. Miele, J. Stoer, K.H. Well (eds.):
Optimal Control and Variational Calculus, Oberwolfach, 1991,
International Series of Numerical Mathematics
(Birkhäuser, Basel) this issue.
- 8
- Enright, P.J.; B.A. Conway.
Discrete approximations to optimal trajectories using
direct transcription and nonlinear programming.
AIAA Paper 90-2963-CP (1990).
- 9
- Fletcher, R.
Practical methods of optimization.
(2nd ed., J. Wiley & Sons,
Chichester/New York/Brisbane/Toronto/Singapore, 1987).
- 10
- Gill, P.E.; W. Murray; M.A. Saunders; M.H. Wright.
User's guide for NPSOL (Version 4.0).
Report SOL 86-2. Department of Operations Research,
Stanford University, California, USA (1986).
- 11
- Hargraves, C.R.; S.W. Paris.
Direct trajectory optimization using nonlinear
programming and collocation.
AIAA J. Guidance 10, 4 (1987) 338-342.
- 12
- Hestenes, M.R.
Calculus of variations and optimal control theory.
(J. Wiley & Sons, New York, London, Sydney, 1966).
- 13
- Jacobson, D.H.; M.M. Lele; J.L. Speyer.
New necessary conditions of optimality for control problems
with state-variable inequality constraints.
Journal of Mathematical Analysis and Applications 35
(1971) 255-284.
- 14
- Kraft, D.
On converting optimal control problems
into nonlinear programming codes.
In: K. Schittkowski (ed.):
Computational Mathematical Programming,
NATO ASI Series 15 (Springer, 1985) 261-280.
- 15
- Maurer, H.
Optimale Steuerprozesse mit Zustandsbeschränkungen.
Habilitationsschrift,
University of Würzburg, Würzburg, Germany (1976).
- 16
- Stoer, J.; R. Bulirsch.
Introduction to Numerical Analysis.
2nd rev. ed. (Springer Verlag, 1983).
- 17
- von Stryk, O.
Ein direktes Verfahren zur Bahnoptimierung von Luft- und
Raumfahrzeugen unter Berücksichtigung von Beschränkungen.
(a) Diploma Thesis, Department of Mathematics, Munich University of Technology
(May 1989).
(b) Lecture at the Institute for Flight Systems Dynamics,
German Aerospace Research Corporation (DLR), Oberpfaffenhofen,
Germany (June 16th, 1989).
(c) ZAMM 71, 6 (1991) T705-T706.
- 18
- von Stryk, O.; R. Bulirsch.
Direct and indirect methods for trajectory optimization.
Annals of Operations Research 37 (1992) 357-373.
Author's address
Dipl. Math. Oskar von Stryk,
Mathematisches Institut,
Technische Universität München,
P.O.Box 20 24 20,
D-W-8000 München 2,
Germany
stryk@mathematik.tu-muenchen.de
Oskar von Stryk
Fri Apr 5 21:38:03 MET DST 1996