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Abstract. By an appropriate discretization of control and state variables, a

constrained optimal control problem is transformed into a finite dimensional

nonlinear program which can be solved by standard SQP-methods [10]. Con-

vergence properties of the discretization are derived. From a solution of this

method known as direct collocation, these properties are used to obtain reliable

estimates of adjoint variables. In the presence of active state constraints, these

estimates can be significantly improved by including the switching structure of

the state constraint into the optimization procedure. Two numerical examples

are presented.

1 Statement of problems

Systems governed by ordinary differential equations arise in many applications as,

e. g., in astronautics, aeronautics, robotics, and economics. The task of optimizing

these systems leads to the optimal control problems investigated in this paper.

The aim is to find a control vector u(t) and the final time tf that minimize the functional

J [u, tf ] = Φ(x(tf ), tf) (1)

subject to a system of n nonlinear differential equations

ẋi(t) = fi(x(t), u(t), t), i = 1, . . . , n, 0 ≤ t ≤ tf , (2)

boundary conditions

ri(x(0), x(tf ), tf) = 0, i = 1, . . . , k ≤ 2n, (3)

and m inequality constraints

gi(x(t), u(t), t) ≥ 0, i = 1, . . . , m, 0 ≤ t ≤ tf . (4)

Here, the l vector of control variables is denoted by u(t) = (u1(t), . . . , ul(t))
T and the

n vector of state variables is denoted by x(t) = (x1(t), . . . , xn(t))T . The functions

Φ : IRn+1 → IR, f : IRn+l+1 → IRn, r : IR2n+1 → IRk, and g : IRn+l+1 → IRm are

assumed to be continuously differentiable. The controls ui : [0, tf ] → IR, i = 1, . . . , l,

are assumed to be bounded and measureable and tf may be fixed or free.
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2 Discretization

This section briefly recalls the discretization scheme as described in more detail in [18].

Some of the basic ideas of this discretization scheme have been formerly outlined by

Kraft [14] and Hargraves and Paris [11].

A discretization of the time interval

0 = t1 < t2 < . . . < tN = tf (5)

is chosen. The parameters Y of the nonlinear program are the values of control and

state variables at the grid points tj, j = 1, . . . , N, and the final time tf

Y = (u(t1), . . . , u(tN), x(t1), . . . , x(tN ), tN) ∈ IRN(l+n)+1. (6)

The controls are chosen as piecewise linear interpolating functions between u(tj) and

u(tj+1) for tj ≤ t < tj+1

uapp(t) = u(tj) +
t− tj

tj+1 − tj
(u(tj+1)− u(tj)). (7)

The states are chosen as continuously differentiable functions and piecewise defined

as cubic polynomials between x(tj) and x(tj+1) with ẋapp(s) := f(x(s), u(s), s) at

s = tj, tj+1,

xapp(t) =
3∑

k=0

cjk
(t− tj

hj

)k
, tj ≤ t < tj+1, j = 1, . . . , N − 1, (8)

cj0 = x(tj), (9)

cj1 = hjfj, (10)

cj2 = −3x(tj)− 2hjfj + 3x(tj+1)− hjfj+1, (11)

cj3 = 2x(tj) + hjfj − 2x(tj+1) + hjfj+1, (12)

where fj := f(x(tj), u(tj), tj), hj := tj+1 − tj.

The approximating functions of the states have to satisfy the differential equations (2)

at the grid points tj, j = 1, . . . , N , and at the centers tc,j := tj+1/2 := (tj + tj+1)/2,

j = 1, . . . , N − 1, of the discretization intervals. This scheme is also known as cubic

collocation at Lobatto points. The chosen approximation (8) – (12) of x(t) already

fulfills these constraints at tj. Therefore, the only remaining constraints in the nonlinear

programming problem are

• the collocation constraints at tc,j

f(xapp(tc,j), uapp(tc,j), tc,j)− ẋapp(tc,j) = 0, j = 1, . . . , N − 1, (13)

• the inequality constraints at the grid points tj

g(xapp(tj), uapp(tj), tj) ≥ 0, j = 1, . . . , N, (14)
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• and the initial and end point constraints at t1 and tN

r(xapp(t1), xapp(tN), tN) = 0. (15)

In the following, the index “app” for approximation will be suppressed.

By this scheme the number of four free parameters for each cubic polynomial is reduced

to two and the number of three collocation constraints per subinterval is reduced to one.

Compared with other collocation schemes we have a reduced number of constraints to

be fulfilled and a reduced number of free parameters to be determined by the numerical

procedure. This results in a better performance of an implementation of this method

in terms of convergence, reliability, and efficiency compared with other schemes.

3 Convergence properties of the discretization

In the sequel, we assume that, for example, the controls ui, i = 1, . . . , l, appear nonlin-

early in f , the optimal control is continuous and the final time tf is fixed. Furthermore,

we assume that the number of inequality constraints m is 1 and that the constraint

g = g1 is active within an interval [tentry, texit] along the optimal trajectory, where

0 < tentry < texit < tf .

3.1 Necessary first order optimality conditions of the continuous problem

There exist an n-vector function of adjoint or costate variables λ(t) = (λ1(t), . . . , λn(t))T

and a multiplier function η(t). With the Hamiltonian

H(x, u, t, λ, η) =
n∑

k=1

λkfk(x, u, t) + η(t)g(x, u, t), (16)

the necessary first order conditions of optimality result in a multi-point boundary value

problem

ẋi(t) =
∂H

∂λi
= fi(x, u, t), (17)

λ̇i(t) =−∂H
∂xi

= −
n∑

k=1

λk(t)
∂fk(x, u, t)

∂xi
− η(t)

∂g(x, u, t)

∂xi
, i = 1, . . . , n, (18)

0 =
∂H

∂uj
=

n∑

k=1

λk(t)
∂fk(x, u, t)

∂uj
+ η(t)

∂g(x, u, t)

∂uj
, j = 1, . . . , l, (19)

g(x, u, t) > 0 and η(t) = 0, or g(x, u, t) = 0 and η(t) ≤ 0. (20)

The original boundary constraints (3) and additional constraints on λ(t) at 0, tentry,

texit, and tf also have to be fulfilled. In general, at junction points tentry, texit,

the adjoint variables may have discontinuities. For more details cf. Bryson, Ho [4]

and Hestenes [12] and also Jacobson, Lele, Speyer [13], Maurer [15], and the results of

Maurer cited in Bulirsch, Montrone, Pesch [5] for the necessary conditions of optimality
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in the constrained case.

In the sequel, we shall see that the necessary first order optimality conditions of the

continuous problem are reflected in the necessary first order optimality conditions of

the discretized problem.

3.2 Necessary first order optimality conditions of the discretized problem

For the sake of simplicity, we now assume that n = 1 and l = 1. In this section, we

will use the notations

ui := u(ti), xi := x(ti), i = 1, . . . , N, (21)

and

fi := f(xi, ui, ti), fi+1/2 := f(x(ti+1/2), u(ti+1/2), ti+1/2). (22)

The Lagrangian of the nonlinear program of the discretized problem from Sec. 2 can

then be written as

L(Y, µ, σ, ν) = Φ(xN , tN )

−
N−1∑

j=1

µj (f(x(tc,j), u(tc,j), tc,j)− ẋ(tc,j))

−
N∑

j=1

σjg(xj, uj, tj)−
k∑

j=1

νjrj(x(t1), x(tN), tN ) (23)

with µ = (µ1, . . . , µN−1)T ∈ IRN−1, σ = (σ1, . . . , σN)T ∈ IRN and ν = (ν1, . . . , νk)
T ∈

IRk. A solution of the nonlinear program fulfills the necessary first order optimality

conditions of Karush, Kuhn, and Tucker, cf., e. g., [9]. Among others, these are

∂L

∂ui
= 0,

∂L

∂xi
= 0,

∂L

∂µj
= 0, i = 1, . . . , N, j = 1, . . . , N − 1. (24)

g(xi, ui, ti) > 0 and σi = 0, or g(xi, ui, ti) = 0 and σi ≤ 0. (25)

As the “fineness” of the grid, we define

h := max{hj = tj+1 − tj : j = 1, . . . , N − 1}. (26)

In detail, we find for i = 2, . . . , N ,

0 =
∂L

∂ui
= −µi−1

(
∂f(x(ti−1/2), u(ti−1/2), ti−1/2)

∂ui
− ∂ẋ(ti−1/2)

∂ui

)

−µi
(
∂f(x(ti+1/2), u(ti+1/2), ti+1/2)

∂ui
− ∂ẋ(ti+1/2)

∂ui

)

−σi
∂g(x(ti), u(ti), ti)

∂ui
(27)
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Using the basic relations (23) – (31) of [18] and the notation from (21), (22), we obtain

after some calculations and by using the chain rule of differentiation

∂L

∂ui
= −1

2

(
∂fi−1/2

∂u
µi−1 +

∂fi+1/2

∂u
µi

)
− 1

4

∂fi
∂u

(µi + µi−1)

+
1

8

∂fi
∂u

(
hi−1µi−1

∂fi−1/2

∂x
− hiµi

∂fi+1/2

∂x

)
− σi

∂g(x(ti), u(ti), ti)

∂u
. (28)

Letting h→ 0 and keeping t = ti fixed, we have

∂L

∂ui
= −1

2

(
∂fi
∂u

µi +
∂fi
∂u

µi

)
− 1

4

∂fi
∂u

(µi + µi)− σi
∂g(x(ti), u(ti), ti)

∂u
(29)

and finally
3

2
µi
∂f(x(ti), u(ti), ti)

∂u
+ σi

∂g(x(ti), u(ti), ti)

∂u
= 0. (30)

This equation is equivalent to the condition (19).

On the other hand, for i = 2, . . . , N − 1,

0 =
∂L

∂xi
= −µi−1

(
∂f(x(ti−1/2), u(ti−1/2), ti−1/2)

∂xi
− ∂ẋ(ti−1/2)

∂xi

)

−µi
(
∂f(x(ti+1/2), u(ti+1/2), ti+1/2)

∂xi
− ∂ẋ(ti+1/2)

∂xi

)

−σi
∂g(x(ti), u(ti), ti)

∂xi
. (31)

Using again the basic relations (23) – (31) of [18] and the notation from (21), (22), we

obtain after some calculations and by using the chain rule of differentiation

∂L

∂xi
= −3

2

(
µi
hi
− µi−1

hi−1

)

−1

4

∂fi
∂x

(µi−1 + µi)−
1

2

(
µi−1

∂fi−1/2

∂x
+ µi

∂fi+1/2

∂x

)

+
1

8

∂fi
∂x

(hi−1µi−1 − hiµi)− σi
∂g(x(ti), u(ti), ti)

∂x
. (32)

For convenience, we now suppose an equidistant grid, i.e.

h = hi = ti+1 − ti =
tf − t0
N − 1

, i = 1, . . . , N − 1. (33)

Now letting h→ 0 and keeping t = ti fixed, we have (cf. [18])

3

2
µ̇i +

3

2
µi
∂f(x(ti), u(ti), ti)

∂x
+ σi

∂g(x(ti), u(ti), ti)

∂x
= 0. (34)

This equation is equivalent to the adjoint differential equation (18).

Similar results hold for a non-equidistant grid under additional conditions and for

n > 1. They can also be extended to more general problems.
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4 Estimates of adjoint variables

It has been shown in the previous section that the necessary conditions of optimality

of the discretized problem reflect the necessary conditions of the original continuous

problem. More precisely, it has been shown that Eq. (32) and Eq. (28), resp., are

discretized versions of the adjoint differential equation (18) and the condition (19),

respectively.

Therefore, we obtain an estimate of λ(t) from the multipliers of the discretized prob-

lem by

λ(ti+1/2) = −3

2
ρi µi, i = 1, . . . , N − 1, (35)

where ρi is a scaling factor depending on the discretization. In addition, an estimate

of η(ti) can be obtained from σi.

Another approach for estimating adjoint variables in combination with a direct collo-

cation method has been used by Enright and Conway [8]. They used the multipliers νj
from Eq. (23) of the boundary conditions in the discretized problem in order to esti-

mate λ(tf ). This estimate is then used as an initial value for the backward integration

of the adjoint differential equations (18). It is a well-known matter of fact that this

backward integration is crucial for highly nonlinear problems. Also, state constraints

were not considered.

A further approach for estimating adjoint variables is based on an interpretation of the

adjoint variables as sensitivities connected to the gradient of the cost function

λ(t) =
∂Φ

∂x
(t) at u = uoptimal (36)

where x satisfies the differential equations (2). This relation can be found, e. g., in

Breakwell [2] or in Bryson, Ho [4]. In a discretized version as, e. g.,

λ(t) =
Φ̃(x(t) + δ)− Φ̃(x(t)− δ)

2 δ
at u = ũoptimal, (37)

it can be used in combination with a direct shooting method as, e. g., [1], with a

suitable steplength δ for the difference quotient. Here, the superscript ˜ denotes that

the variable or value has been obtained numerically, e. g., by a direct shooting method.

For more details, cf., e. g., Eq. (29) in [1].

The guess of adjoint variables by direct methods is usually affected by several sources

of inaccuracies and troubles. First, the suboptimal control ũoptimal calculated by a

direct method is often inaccurate and can differ significantly from the optimal control.

Second, the accuracy of the calculated objective Φ̃ is often not better than one percent.

In addition, the case of nearly active or inactive state variable inequality constraints

has not yet been included in a reliable manner in previous attempts.
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In contrast to the former approaches, the quality of the estimated adjoints does neither

depend crucially on a highly accurate computation of the cost function or the calcu-

lated suboptimal control nor the appearance of active state constraints following our

approach. As it is shown from the examples and the reported numerical results in this

paper and in [6], [17], and [18], the new way of estimating adjoint variables herein pro-

posed is very reliable and accurate even for complicated and highly nonlinear problems

and problems including state constraints. Furthermore, convergence properties of the

discretization scheme have been derived.

5 Examples and numerical results

The results reported in this section have been obtained by using the implementation

DIRCOL (cf. [17]) of the direct collocation method mentioned in the previous sections.

The use of grid refinement techniques yields a sequence of related nonlinear programs

with increasing dimensions. In each macro iteration step, one nonlinear program has

to be solved by the Sequential Quadratic Programming method NPSOL due to Gill,

Murray, Saunders, and Wright [10]. The reported estimates of adjoint variables are

direct outputs of DIRCOL.

5.1 Optimal ascent of the lower stage of a Sänger-type vehicle

This problem describes the lifting of an airbreathing lower stage of a two-stage-to-

orbit Sänger-type launch vehicle. We focus on the Ramjet-powered second part of the

trajectory. The four state variables are the velocity v, the flight path angle γ, the

altitude h, and the mass m. The three control variables are the lift coefficient cL, the

thrust angle ε and the throttle setting δ, δ ∈ [0, 1]. The equations of motion are

v̇ =
T (v, h; δ)

m
cos ε− D(v, h; cL)

m
− g(h) sin γ, (38)

γ̇ =
1

v

(
T (v, h; δ)

m
sin ε +

L(v, h; cL)

m
−
(
g(h)− v2

r0 + h

)
cos γ

)
, (39)

ḣ = v sin γ, (40)

ṁ = b(v, h) δ, b(v, h) = maximum mass flow. (41)

The considered time interval is [0, tf ] and tf is free. The following formulae are used

for the thrust, the lift and the drag forces

T (v, h; δ) = Tm(v, h) δ, Tm(v, h) = maximum thrust,

L(v, h; cL) = q(v, h)S cL,

D(v, h; cL) = q(v, h)S cD(ma(v, h), cL),

where q(v, h) =
v2

2
ρ0 exp(−βh), g(h) = g0

(
r0

r0 + h

)2

.
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The lift and drag model has a quadratic polar

cD(ma(v, h), cL) = cD0(ma(v, h)) + k(ma(v, h)) c2
L, a(h) = speed of sound,

ma(v, h) =
v

a(h)
, k(ma) = a characteristic function of the vehicle.

The quantities S, g0, r0, and ρ0 are constants. For more details of the problem and

for a three dimensional formulation cf. Chudej [7]. The boundary conditions are

h(0) = 20 km, h(tf) = 30 km,

v(0) = 925 m/s, v(tf) = 1700 m/s,

γ(0) = 0.05, γ(tf) = 0.04,

m(0) = 332400 kg.

(42)

The objective is to maximize the final mass, i. e.,

J [cL, ε, δ, tf ] = −m(tf ) → min! (43)

Here, the direct collocation method was applied on a rather bad initial estimate of

the optimal trajectory. For the states, the boundary values have been interpolated

linearly and the controls have been set to zero. The direct collocation method DIRCOL

converges in two macro iteration steps to a solution with 21 grid points. From this

solution, the optimal states and the adjoint variables have been estimated. Based

on this estimate, the multiple shooting method was applied to solve the boundary

value problem arising from the optimality conditions (see [7]). The final solutions are

m(tf ) = 321243. kg and tf = 179.75 s. For these values, the solution of the direct

collocation method was accurate to four digits.

In Figs. 1 to 6, the solution of the direct collocation method is shown by a dashed

line and the highly accurate solution of the multiple shooting method is shown by a

solid line. In the figures, there is no visible difference between the suboptimal and

the optimal state variables. Also, the estimated adjoint variables and the suboptimal

controls of the direct collocation method show a pretty good conformity with the highly

accurate ones. The approximation quality can furthermore be improved by increasing

the number of grid points to more than 21. The optimal throttle setting δ equals one

within the whole time interval as it is found by both methods.

Fig. 1: The altitude h[10km]. Fig. 2: The flight path angle γ[1].
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Fig. 3: The adjoint variable λh. Fig. 4: The adjoint variable λγ .

Fig. 5: The lift coefficient cL. Fig. 6: The thrust angle ε[1].

5.2 A problem with a second order state variable inequality constraint

This well-known problem is due to Bryson, Denham, and Dreyfus [3]. After a trans-

formation, the differential equations and boundary conditions are

ẋ = v, x(0) = 0, x(1) = 0,

v̇ = u, v(0) = 1, v(1) = −1,

ẇ = u2/2, w(0) = 0, w(1) is free.

(44)

The objective is

J [u] = w(1) → min! (45)

The state constraint to be taken into account is of order 2 here

g(x) = l − x(t) ≥ 0,
∂

∂u

(
d

dt
g

)
≡ 0,

∂

∂u

(
d2

dt2
g

)
6≡ 0. (46)

Explicit formulae of the solution depending on the value of l can be given, cf. [3], [4].

For l = 1/9, there exists an interior boundary arc [tentry, texit] = [tI, tII] = [3l, 1− 3l]

where the state constraint is active. The minimum objective value is w(1) = 4/(9l) = 4.
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With the Hamiltonian H = λxv+λvu+λwu
2/2+η(l−x) the minimum principle yields

for the adjoint variables

λx(t) =





2/(9l2), 0 ≤ t < tI,

0, tI ≤ t < tII,

−2/(9l2), tII ≤ t ≤ 1,

λv(t) =





2 (1− t/(3l)) /(3l), 0 ≤ t < tI,

0, tI ≤ t < tII,

2 (1− (1− t)/(3l)) /(3l), tII ≤ t ≤ 1,
(47)

and λw ≡ 1. The adjoint variable λx suffers discontinuities when entering or leaving

the state constraint. A first solution is obtained by using DIRCOL with an equidistant

grid of N = 11 grid points resulting in a minimum objective value of w(1) = 3.99338.

In Figs. 7 to 10 these first suboptimal solutions are shown by dashed lines and the exact

solutions are shown by solid lines. In addition, the grid points of the discretization are

marked.

Fig. 7: The state variable x. Fig. 8: The control variable u.

Fig. 9: The adjoint variable λx. Fig. 10: The adjoint variable λv.

The solution is now refined by using a “three-stage” collocation approach that includes

the switching structure of the state constraint, i. e. the switching points tI and tII are

included as two additional parameters with two additional equality conditions in the

optimization procedure
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g(x)





≥ 0, 0 ≤ t < tI,

= 0, tI ≤ t < tII,

≥ 0, tII ≤ t ≤ 1,

x(tI − 0) = l, x(tII + 0) = l. (48)

The method DIRCOL is now applied to the reformulated problem with a separate grid

of 4 grid points in each of the three stages [0, tI], [tI, tII], and [tII, 1]. This results in

a minimum objective value of w(1) = 3.99992 and a more accurately satisfied state

constraint. In Figs. 11 to 14 the refined solutions are shown. In addition, two dotted

vertical lines show the entry and exit points of the state constraint that are computed

with an error of one percent. The quality of the estimated adjoint variables and also of

the control variable has been significantly improved while the dimension of the resulting

nonlinear program has not been increased.

Fig. 11: The state variable x. Fig. 12: The control variable u.

Fig. 13: The adjoint variable λx. Fig. 14: The adjoint variable λv.

6 Conclusions

A way of estimating adjoint variables of optimal control problems by a direct col-

location method has been described. The method seems to be superior to previous
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approaches for estimating adjoint variables in terms of reliability and the ability to

include discontinuities in adjoints at the junction points of state constraint subarcs.

Furthermore, the estimates of the adjoint variables and the suboptimal controls have

been improved by including the switching structure of active state constraints in the

optimization procedure.
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Basel) this issue.

[7] Chudej, K. Optimal ascent of a hypersonic space vehicle. In: R. Bulirsch, A. Miele,

J. Stoer, K.H. Well (eds.): Optimal Control and Variational Calculus, Oberwol-

fach, 1991, International Series of Numerical Mathematics (Birkhäuser, Basel) this
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