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Abstract

Autonomous robots got increasingly refined in the last decade, being able to plan their paths, having built-in
obstacle avoidance or moving completely on their own. However, before an autonomous legged robot can
perform high-level path and foothold planning, a representation of the environment is needed. In this thesis,
a robust and efficient Mapping system is proposed to retrieve a consistent map representation using an
RGBD-Camera Setup, which mainly will be used in the L3 Terrain Model Generator. The resulting elevation
map uses a probabilistic approach to better cope with sensor noise. Each grid cell stores the height, the
variance, the color, the estimated surface normal and the traversable area score. In this thesis, a new approach
is proposed to estimate the surface normals, especially focusing on increasing the efficiency of the system.
A consistent map representation is especially challenging to achieve in a dynamic environment, as objects
get detected, but do not get cleared as they move away. The proposed mapping approach considers dynamic
objects using a ray-tracing based method to clear passed dynamic objects from the map.
The dense data produced by an RGBD-Camera makes real-time processing on the limited hardware of mobile
robots difficult. In order to achieve an efficient mapping approach, this thesis uses massive parallelization.
The main goal of the approach is an efficient and robust mapping system, which works highly paralleled on
both the central processing unit (CPU) and the graphics processing unit (GPU).
The proposed approach is tested on both ground truth datasets and real-world experiments. The efficiency
is verified using an Nvidia Jetson AGX Xavier to measure the computation time on both CPU and GPU.
The evaluation shows using a GPU can significantly increase the efficiency of the system. Additionally, the
evaluation shows that the probabilistic mapping approach proposed in this thesis is more robust against sensor
noise than the previously used approach in the L3 Terrain Model Generator. Furthermore, the proposed surface
normal estimation approach shows to be significantly more efficient than the previously used in the L3 Terrain
Model Generator.

II



Zusammenfassung

Autonome Roboter wurden in den letzten zehn Jahren immer weiterentwickelt. Sie sind in der Lage ihre
eigenen Pfade zu planen, Hindernisse zu vermeiden oder sich völlig selbstständig zu bewegen. Bevor jedoch
ein autonomer Laufroboter solche Aufgaben durchführen kann, ist eine Darstellung der Umgebung erforderlich.
In dieser Arbeit wird ein robustes und effizientes Kartierungssystem vorgeschlagen, um eine konsistente
Kartendarstellung unter Verwendung eines RGBD-Kamera-Setups zu erhalten. Die resultierende Höhenkarte
verwendet einen probabilistischen Ansatz, um das Sensorrauschen besser zu bewältigen. Jede Gitterzelle
speichert die Höhe, die Varianz, die Farbe, die geschätzte Oberflächennormale und die die Bewertung der
Passierbarkeit. In dieser Arbeit wird ein neuer Ansatz zur Schätzung der Oberflächennormalen vorgestellt, der
sich insbesondere auf die Steigerung der Effizienz des Systems konzentriert.
Zusätzlich werden dynamische Objekte in dem Kartierungsansatz berücksichtigt. Durch die Verwendung einer
auf Raytracing basierenden Methode zum Löschen vergangener, dynamischer Objekte wird eine konsistentere
Kartierung in dynamischen Umgebungen erreicht.
Die enorme Datenmenge, die von einer RGBD-Kamera erzeugt wird, erschwert die Echtzeitverarbeitung auf der
begrenzten Hardware eines mobilen Roboters. Um einen effizienten Mapping-Ansatz zu erreichen, verwendet
diese Arbeit massive Parallelisierung. Hauptziel der Arbeit ist ein effizientes und robustes Mapping-System zu
entwickeln, das sowohl auf der CPU als auch auf der GPU hochparallelisiert arbeitet.
Der vorgestellte Ansatz wird sowohl auf Basisdaten als auch in realen Experimenten getestet. Die Effizienz wird
verifiziert, indem die verwendete Berechnungszeit auf CPU und GPU eines Nvidia Jetson AGX Xavier gemessen
wird. Die Evaluierung zeigt, dass die Verwendung einer GPU die Effizienz des Systems erheblich steigern kann.
Darüber hinaus hat die Auswertung gezeigt, dass der in dieser Arbeit vorgeschlagene probabilistische Mapping-
Ansatz robuster gegenüber Sensorrauschen ist als der zuvor in der L3 Terrain Model Generator verwendete
Ansatz. Darüber hinaus erwies sich der vorgeschlagene Ansatz zur Schätzung der Oberflächennormalen als
wesentlich effizienter als der zuvor in der L3 Terrain Model Generator verwendete.
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1. Introduction

Autonomous mobile robots need to overcome many different hurdles before they can navigate safely through
any sort of terrain. Safe and reliable (loco)motion of mobile robots requires feasible motion plans, which
in turn rely on an accurate environment representation. With sensors like laser scanners or cameras, the
surrounding can be observed and captured. However, all the data from these sensors need to be processed and
transferred into an efficient data representation for the robot to use. Especially in Simultaneous localization
and Mapping (SLAM) the map representation is either a set of features or a point cloud, which are not very
suitable for motion planning due to sparsity [25]. A dense map of the environment can be conducted using
RGBD-Cameras but the processing of such dense data is often too computational intensive for the given
hardware on mobile robots [26].

Motivation for this work is the rapid advance of capturing sensors over the last few years. However, processing
data becomes more challenging, as the sensors become capable of producing even denser data. Due to the
power and space constraints of mobile robots, there is often not enough computational power to perform all the
processing in real-time using the robot’s equipped computers [26]. To address this problem, cloud computing
can be used. However, that is not feasible in communication constrained scenarios. These limitations anticipate
an efficient and robust mapping framework that can work in real-time using the limited hardware on mobile
robots.
3D LIDARs are commonly known for their long-range, large field of view (FOV), and highly accurate distance
measurements. In contrast, RGBD-Cameras are usually used for near-field sensing up to 5m with a limited
FOV [31], but can provide highly dense 3D data as depth images [6]. With exception of Time-of-flight cameras,
the depth image quality highly depends on the light conditions and the available surface texture. The use
of such RGBD-Cameras challenges the handling of the relatively large sensor noise imposed by the stereo
matching problem they have to solve.
As mobile robots also have use cases in a dynamic environment, for example in factory halls, with other
vehicles, robots or humans moving around, the mapping approach needs to be adapted to tackle the challenges
presented. The main challenge is that dynamic objects get captured into the map well, but never get cleared
off again. This leaves back artifacts in the map representation, which lead to wrong information for other
applications, for example obstacle avoidance or path planning.

Goal of this thesis is to provide an efficient and robust mapping framework, suitable for the challenging
characteristics of RGBD-Cameras. The relative low cost of such cameras encourages using multiple sensors for
a higher combined FOV, which requires very efficient mapping techniques to handle the vast amount of input
data. In order to make the algorithms more computational efficient different techniques are used to highly
parallelize the computation steps, which are efficiently processed by the graphics processing units (GPUs)
using the CUDA environment from Nvidia [8]. For a meaningful use of the GPU, the code needs to be highly
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parallelized to take full advantage of the high amount of cores given on a GPU. In addition, the challenges of
dynamic environments are tackled, more specifically an approach using ray-tracing is proposed to clear off
passed dynamic objects in the map.
The framework should be centered around the Terrain Generator Framework from the Legged Locomotion
Library (L3). Additionally, the elevation map is built on the universal grid_map framework [15], providing
an efficient data storing method. The new elevation map method should use a probabilistic approach to
cope with sensor noise and uncertainty in the localization, based on the approaches from Fankhauser et
al. [13] and Pan et al. [25]. The surface normals shall be computed using the approach from Fan et al.
[12]. In order to process the data from the RGBD-Cameras, the Point Cloud Library (PCL) [29] can be used
as a backend, as it provides 2D/3D image and point cloud processing. The main contributions of this thesis are:

• Adding a probabilistic elevation map representation to the L3 Terrain Model Generator.

• Providing a highly parallelizable approach to generate an elevation map from RGBD sensor data while
maintaining the option to use either the central processing unit (CPU) or the graphics processing unit
(GPU).

• Provide a ray-tracing based method to clear of passed dynamic objects from the map.

• Providing efficient and parallelizable methods to sufficiently retrieve the surface normal estimation on
the CPU or GPU.

In order to evaluate the framework, the provided functions from the grid_map library [15] are used to generate
ground truth map data. Additionally, a RealSense D455 and a RealSense T265 are used to provide real data
for testing the framework.

The rest of the thesis is structured as follows. Chapter 2 explains the mathematical foundations and concepts
used in this work, chapter 3 summarizes the literature already published in this academic field. In chapter 4,
the basic concepts and methods that were developed and examined in this thesis are presented, while their
concrete implementation is explained in chapter 5. An evaluation is presented in chapter 6 using ground
truth data. Furthermore, a mock-up is created using the above mentioned RealSense cameras and an Nvidia
Jetson AGX Xavier board to evaluate the system on real data, but without a real robot system. In the end, a
conclusion and an outlook for future work are given in chapter 7.
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2. Foundations

The following chapter gives an overlook and introduction to the mathematical formulations and concepts later
used in the thesis.

2.1. Mahalanobis Distance

In order to determine the distance between objects, most commonly the Euclidean distance and the Ma-
halanobis distance is used, which both can be computed in the original variable space and in the principal
component space [11]. In this thesis, the Mahalanobis distance is used for the detection of outliers.
As presented from De Maesschalck et al. [11], the Mahalanobis distance in the original space can be calculated
as

MDo
i = (xi − ̄x)C−1

x (xi − ̄x)T ,

where Cx is the variance-covariance matrix, which is computed as

Cx = 1(n − 1)(Xc)T(Xc).

X is the data matrix containing n objects in the rows measured for p variables, Xc is the column-centred data
matrix (X − X̄) [11].
If all principal components are used, the Mahalanobis distance is equal in the original space as well as in the
normalized or unnormalized principal component space [11].

2.2. Kalman Filters

The Kalman filter algorithm uses observed measurements over time to calculate estimates of some unknown
variables [16]. These filters have a simple form and require only small computational power, which makes
them suitable for various applications [16]. For example in this thesis the Kalman filter is used to update the
height and variance in the probabilistic elevation map.
Being based on linear dynamical systems in state space formate, the Kalman filters estimates new states based
on the previous states [16]. As stated from Govaers [16], the evolution of the state from time k − 1 to time k
is defined by the process model as

xk = Fxk−1 + Buk−1 +wk−1,
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where F is the state transition matrix and B is the control-input matrix. xk−1 is the previous state vector, uk−1
is the control vector and wk−1 ∼ 𝒩 (0,Q) is the process noise vector that is assumed to be zero-mean Gaussian
with the covariance Q [16]. Additionally, the measurement model describing the relationship between the
state and the measurement at the current time step k is defined from Govaers [16] as

zk = Hxk + vk

where H is the measurement matrix and vk ∼ 𝒩 (0,R) is the measurement noise vector that is assumed to be
zero-mean Gaussian with the covariance R [16]. Given the initial state estimate x0, a series of measurements,
z1, z2, ..., zk, and the system information described by F, B, H, Q and R the Kalman filter can provide an
estimation of xk at time step k [16].
The Algorithm can be divided into a prediction stage and an update stage [16]. In the prediction step an
estimation for the state x̂−k and error covariance P−k is predicted as follows [16]

̂x−k = Fx̂+k−1 + Buk−1,

P−k = Fx̂+k−1F
T +Q.

After that prediction, the measurement residual ỹk and the Kalman gain Kk can be computed through [16]

ỹk = zk −H ̂x−k ,

Kk = P−kH
T(R +HP−kH

T)−1.

Finally the updated state estimate x̂+k and the updated error covariance P+k can be computed with [16]

̂x+k = ̂x−k + Kkỹk,
P+k = (I − KkH)P−k .
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3. Related Work

The idea of an internal map representation has already been widely researched in many different approaches
in the past, for example in [13], [15], [25], [31]. Simultaneous mapping and Localisation (SLAM) is a highly
researched topic among the robotics community, which combines the self-localisation of the robot with the
map generation. There, both the localization and the map are updated and corrected from each other. Even
though this thesis assumes that the robot has a functional self-localization, a possible integration into a SLAM
project should not be overlooked.

This chapter is structured as follows. In the first section, an overview of different already existing open-
source libraries commonly used for mapping is given. In the next section different mapping approaches are
discussed, after which the topic of surface normal estimation is presented. Following, an overview over the
topic of RGBD SLAM is presented and finally a comparison between LIDAR and RGBD-Camera sensors is
given.

3.1. Existing Libraries

In order to implement the mapping, the sensor data needs to be processed, transformed and represented by
an efficient data representation. To achieve the goal, this thesis uses different open-source libraries. This
section gives a short explanation of suitable libraries and why they are or not used in this thesis. Namely
Open3D [37], Point Cloud Library (PCL) [29], OpenCV [3], Voxblox [23] and grid_map [15] are presented.

Open3D [37] is a open-source library, with both algorithms in C++ and Python dealing with 3D data. The
main three provided data structures are point clouds, meshes and RGB-D images. In addition also processing
algorithms for I/O, sampling, data conversion and visualization are provided. Open3D has less dependencies
than other big libraries, for example the Point Cloud Library. The few existing dependencies are all distributed
as a part of Open3D, thus they can be compiled from source, which is especially useful on operating systems
with no package manager, like Windows. In order to keep the library as simple as possible, new algorithms
are only added if they solve a problem of broad interest and their implementation demonstrates significantly
stronger results on a well-known benchmark.
For this thesis, mainly the representation of RGB-D images and the transformation of these into 3D points is
of interest. However seeing that the Point Cloud Library [29] is already fully integrated into the L3 library,
Open3D is not used in this thesis. This is because it shows no clear strength in the needed topics over the
Point Cloud Library justifying the addition of an otherwise not useful additional library.
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Point Cloud Library [29] is an open-source C++ library for 2D/3D image and point cloud processing, con-
taining algorithms for segmentation, registration, model fitting, surface reconstruction, filtering and feature
estimation. The Point Cloud Library, or short PCL, is fully integrated into the Robot Operating System (ROS)
and is designed to handle point clouds efficiently. For good performance PCL provides support for Intels
Threading Building Blocks (TBB) for multi-core parallelization. In addition the Fast Library for Approximate
Nearest Neighbors (FLANN) provides the fast k-nearest neighbor search and all passed data in PCL is handled
using Boost shared pointers.
In this thesis, PCL is mainly used for it’s data representation of point clouds. As the L3 pipelines already work
with PCL it is also chosen over the newer Open3D [37] library.

OpenCV [4], [24] is an open source computer vision library, written in C and C++ and having interfaces for
Python, C++, Python, Java and MATLAB. Currently the library has over 2500+ algorithms, solving all sorts of
problems in both computer vision and machine learning. These algorithms serve a wide range of applications,
for example producing 3D point clouds from stereo cameras, tracing of moving objects and stitching images
together. Main goals while devolving OpenCV were advancing the vision research by providing open and
optimized code for basic vision infrastructure, providing a common infrastructure that developers could build
on and advancing vision-based commercial application by making the optimized code available for free. Today
OpenCV can be used one multiple different operating systems, including Windows, Linux, Android and Mac
OS.
In this thesis, OpenCV is used for its data representation of depth and color images, as well as for its image
processing algorithms. Additionally, the framework is used in the Three-Filters-To-Normals framework [12],
which is later used to estimate surface normals in this thesis (see section 4.1). OpenCV is already used in the
L3 Terrain Model Generator and therefore does not add any extra bindings to the library.

grid_map [15] is an universal open-source grid map library, especially designed to use as a mapping frame-
work for mobile robotics. To provide the capability for different types of maps, grid_map uses multi-layered
maps, where every layer can be used for a different data representation, such as the elevation map, occupancy
of the grid cell or surface normals. In order to provide a wide range of data processing algorithms, the data
storage is based on the linear algebra library Eigen [17]. In addition, other features, such as computationally
efficient repositioning of the map boundaries and compatibility with existing Robot Operating System (ROS)
[27] map message types are provided.
grid_map is already integrated into the L3 Terrain Model Generator. In this work the library is used in order to
create and update a computationally efficient map representation, especially of the 2.5D elevation map with
traversable area annotation. In addition, the thesis is based on the robot-centric elevation mapping framework
form Fankhauser et al. [13], as further explained in 3.2.

Voxblox [23] is an open-source C++ mapping library, using Truncated Signed Distance Fields (TSDFs) in
order to give a good environment representation for planning applications. In comparison with traditional
TSDFs, the voxel size in Voxblox is increased not only to cope with the demand of real-time processing, but
also because a small voxel size is not required in most planning applications. Furthermore, it implements an
algorithm to construct Euclidean Signed Distance Fields (ESDFs) straight from TSDFs. Using the library, the
addition of new voxels, layers and integrators is made easy. The integrators are single-threaded and run on a
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CPU for prototyping, but they can easily be parallelized. The library on it is own has minimum requirements,
however ROS bindings are provided for easier import and visualization of data. Real-time performance and
reconstruction accuracy of the system is tested on both stereo and RGB-D imagery datasets.
Just like grid_map the Voxblox library is already integrated into L3. It is not used in this thesis, but it can be
used in a future work in order to have a better representation of the map for obstacle avoidance, especially for
trajectory generation.

The Benefits and Challenges of the above introduced open-source libraries are further illustrated in table
3.1, especially considering their use case for the proposed mapping approach with its main application in the
L3 Terrain Model Generator.

Open
Source
Library

Short description Benefits for this the-
sis

Challenges for this
thesis

Used in
this thesis

Open3D
[37]

Library for 3D data
processing, conver-
sion and visualisation

Data representations
for RGBD-Camera im-
ages, conversion of
RGBD-Camera images
into 3D point clouds

No clear advantage
of already used li-
braries in the L3 Ter-
rain Model Generator

No

PCL [29] C++ library for point
cloud processing

Fully integrated into
the L3 Terrain Model
Generator, data rep-
resentation of point
clouds

- Yes

OpenCV
[4], [24]

Library for computer
vision, machine learn-
ing

Data representation
for images, image fil-
tering tools

- Yes

grid_map
[15]

Mapping framework
for mobile robots

Data representation
for grid-based eleva-
tion map, fully inte-
grated into L3 Terrain
Model Generator

Only CPU implemen-
tation

Yes

Voxblox
[23]

Mapping library for
planning applications

TSDF and ESDF map
representation

Only CPU implemen-
tation

No

Table 3.1.: Comparison between the available open-source libraries considered for the proposed mapping
approach.
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3.2. Mapping

Many approaches use a 2.5D grid-based elevation map to represent the terrain, with each cell corresponding
to 2D coordinates and storing the terrain height [13]. Clearly, this map representation has some limitations
compared to a full 3D map representation. However, the elevation map allows far more efficient data access
and processing due to its efficient structure and simple scalability, hence, making it more suitable for real-time
mapping approaches [13].

The sensor data need to be fused into an efficient map representation in order to provide the useful information
for further processing. The fusion step needs to be computational efficient in order to be as fast as possible.
The mapping approach of this thesis is built on three main approaches:

• Elevation Map from Fankhauser et al. [13]

• GPU accelerated approach from Pan et al. [26]

• Local Dense Mapper from GEM proposed by Pan et al. [25]

Elevation Map [13] is a mapping approach for mobile legged robots with uncertain localization. In order
to cope with uncertainty, a probabilistic terrain mapping approach is used. In addition, a robot-centric
map representation is used instead of the classic world-centric representation, to further cope with the pose
estimate drift probabilistically. In the robot-centric elevation map, currently by the sensor observed parts have
the highest accuracy. Currently not observed terrain however accumulate more and more uncertainty over
time due to the robots motion. The map is built on the grid_map library [15].
The system is partitioned into a map update and a map fusion step. In the update step the data are collected
from the sensors and the map gets updated from the range sensor measurements as well as from the robot
motion. Therefore, the uncertainty of the robot’s motion is propagated to the map data. These two update
methods provide a real-time elevation map. The size of the map is limited to the local environment to keep
the computational cost low, as they are proportional to the map size. When the map is requested by other
applications for further processing, the map fusion part is triggered. For each cell the surrounding data are
considered in order to retrieve a consistent map representation with lower and upper confidence estimations.
To adapt the map fast to dynamic environments, the map update process is extended with two parts. The
first part adds a constant noise value, improving the map adaptation when the real terrain is lowered. The
second part is a visibility check based on ray-tracing. As this step is very computationally expensive, it is only
performed at a much lower rate.

The GPU Accelerated Approach from [26] is based on Elevation Map [13] and the work is extended by using
a GPU to accelerate the system and adding a structure-based drivable area detection. With these additions,
the system can create a dense map representing drivable region in real-time.
In a robot-centric elevation map, each step of the robot results in a movement of the map, which causes data
at the edge of the map to be cleared and thus changes the position of the data in the map. However, mutual
positional relationships between the data never change. Based on this, not the position of existing data is
updated, but rather the positional shift values are updated according to the robot movement. These values
can then be used to query data from all locations.
To update the map, the height of measuring points are considered as a Gaussian probability distribution
retrieving the mean from the height of the measured point and the variance through the range sensor noise
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model. Furthermore, the map needs to be updated every time the robot moves. Localization errors require an
update of the variance of valid data. The estimated height and variance of the corresponding cell is updated
using a Kalman filtering.
For calculating of drivable area, only easily calculated variables like surface normal and neighbor height
deviation are used, because of the computational limits on mobile robots. A grid score is introduced for each
cell of the grid denoting the probability of traversability. The grid score combines the evaluated scores of both
the slop and the roughness of the terrain.
To cope with dynamic objects ray-tracing is used due to the principal that an area can only be observed with
no other obstacles between the sensor and the area. So for every new sensor measurement it is checked
whether another cell in the grid is blocking the light path. If that is the case, it is cleared. To reduce the
computational effort only cells with a bad traversability need to be checked, as they are marked as a potential
object.
The experimental results of Pan et al. [26] show that due to the adoption of the GPU, their approach produces
competitive results in real-time, the results being significantly better than those of Elevation Map [13].

GEM [25] is the newest approach and combines SLAM with local consistent mapping. Therefore, the global
map consists of local submaps, while the trajectory estimation is corrected through loop closing, the local
maps are kept unchanged except for their relative poses. Being implemented for CPU or GPU coordinates
processing, has the advantage of real-time mapping and in-time handling of dynamic obstacles. Especially
interesting for this thesis is the local dense mapper building the dense robo-centric elevation map from the
GEM system, which is implemented on the GPU while the global map and its corrections is handled by the
CPU.
The local dense mapper consists out of three parts, namely the construction of the dense map, a traversable
region detection and the dynamic object processing. Just like the earlier proposed approach from Pan et
al. [26], GEM uses a selective updating mechanism and a GPU implementation in order to ensure real-time
performance. To use the parallelization possibilities on the GPU, all steps of the map building are done in
parallel. Firstly, the sensor measurements are transformed to the map frame, while also calculating their
variance. Secondly, multiple measurements lying in the same grid get fused, checking the highest measurement
against the most recently captured height in the grid. If a much higher elevation is measured the grid gets
reinitialized else the new measurements get fused with the existing data of the grid. Thirdly, the traversability
annotation is computed using both normal vectors to reflect the slope of the terrain and the height deviation
to reflect the roughness of the terrain. Based on these two factors a traversability value is calculated. If this
value is over a certain threshold that is based on the robots capabilities, the grid gets marked as traversable.
Finally, dynamic objects get processed by applying ray-tracing but only evaluating grids that got marked as
not traversable along the ray in order to keep the computational load lower.
The global mapper also consists of three parts: submap building, map deformation and submap maintenance,
integrating the local map into an existing submap or creating a new submap. To avoid ever growing complexity
whenever a completed submap has a large overlap with existing submaps, the new submap gets integrated
into the other submaps. Using the corrected trajectory provided from SLAM, only the frames of the submaps
are transformed to eliminate drift.

3.3. Surface Normal Estimation

Surface normal estimation is a well-studied field due to its theoretical appeal and its many practical applications
[19]. One of the first approaches in the field of surface normal estimation from unorganized points was
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presented by Hoppe et al. [18]. If the data is retrieved from a range image, assumptions about the estimated
surface can be made because every data point is visible from the camera position so the surface orientation
can be inferred from the viewing direction [18].
In general, Surface Normal Estimators (SNE) can be categorized into geometry-based and machine/deep
learning-based approaches. Additionally, they can be classified by whether they use unstructured range data
like an unorganized 3D point cloud or structured range date like a depth/disparity image or a organized 3D
point cloud [12]. Using unstructured range data normally requires the generation of an undirected graph, for
example a k-neares neighbor graph, which is computationally expensive to generate [12].

Geometric Approaches typically uses statistical analysis or optimization techniques in order to fit planar or
curved surfaces to a local set of points [12]. According to Jordan et al. [19], the main methods that can be
classified as optimization-based are PlanSVD, PlanePCA, VectorSDV and QuadSVD, where SVD stands for
Singular Value Decomposition and PCA stands for Principal Component Analysis.
Jordan et al. [19] define the matrix of input points as P = [p1, ..., pn]T , neighbor matrix for each point as
Qi = [qi,1, ..., qi,n] and the augmented neighbor matrix Qi

+, which holds additionally the reference point
pi = [pi,x , pi,y, pi,z]. The main methods to retrieve the normal ni = [ni,x , ni,y, ni,z] can now be described as
follows.
Minimizing the fitting error of the local plane in the neighborhood of the reference point, the objective function
of PlaneSVD resolves to [19]

JPlaneSVD(bi) = ||[Q+
i 1k+1]bi||2, (3.1)

where bi = [nTi d]T .
Instead, PlanePCA computes the direction of the minimum variance in the neighborhood. If the points formed
a perfect plane than this direction would be the normal to the plane, resulting in the objective function as
[19]

JPlanePCA(ni) = ||[Q+
i − ̄Q+

i ]ni||2. (3.2)

The current SNE of the L3 library uses the PlanePCA implementation form the Point Cloud Library [29] to
compute the normals of the input point cloud.
VectorSDV seeks the vector that maximizes the angle between itself and the vectors from the neighboring
points to the reference point, which forces the estimated plane to go through the given reference point [19].
The object function is [19]

JVectorSVD(ni) = || [
(qi1−pi)T

(qi2−pi)T
⋮

(qik−pi)T
]ni||2 (3.3)

Finally, assuming that the surface is composed of small quadratic patches, QuadSVD computes the final normal
by evaluating the gradient of the surface at the reference point. The objective function can be written as [19]

JQuadSVD(ci) = ||Rici||2, (3.4)

where ci denotes the vector of the coefficients for the surface

Si(x, y, z) = c1x
2 + c2y

2 + c3z
2 + c4xy + c5xz + c6yz + c7x + c8y + c9z + c10. (3.5)

The rows of Ri each contain the linear and quadratic terms corresponding to a point in Q+
i [19].

The result of the comparison between these methods of Jordan et al. [19] shows that anchoring to the
neighborhood mean has increased accuracy and is more robust against noise. Jordan et al. [19] conclude
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that the use of PlanePCA with added vector normalization outperformed the other methods. Furthermore
vector normalization significantly improves the numerical stability and accuracy of the total least squares
(TLS) minimization [19].

Two other approaches to compute surface normals using linear least squares are presented by Badino
et al. [1]. In order to minimize the computational effort, the traditional least square loss function was
reformulated, such that a box-filtering method could be applied. Furthermore, experimental results showed
that without a proper normalization, the traditional least squares does not perform accurately and is not robust
against noise [1]. In order to address this problem, an appropriate scaling of the data matrix is necessary [1].
The unconstrained least squares and fast approximate least squares approach proposed by Badino et al. [1]
shows the same accuracy as the normalized least squares, while being up to 17 times faster in their experiments.

Deep/Machine Learning Approaches got more and more attention from researchers due to the rapid advance
in machine/deep learning. Many researchers resorted to deep convolution neural networks (DCNNs) in the
last few years [12]. Especially when using RGBD data, the main problems are missing pixels due to glossy or
transparent objects or the sensor noise along object edges, thus the quality of the normals can suffer from the
corruption in depth [35].
Many approaches use either RGB data or depth data in order to construct the surface normals [35]. However,
using only an RGB input it is difficult to extract the exact geometric information, especially struggling with
insufficient or high lighting areas [35]. Using only the depth brings its own challenges, often the noise in
depth will undermine the depth based normal estimations performance, also large holes in the depth can not
be handled [35].
Zeng et al. [35] propose an approach using both the RGB and the depth informations provided by a RGB-D
camera, therefore introducing a hierarchical structure to fuse data from RGB and depth. This results in a
normal map with fine details due to use of RGB informations to fill the missing pixels in the depth [35].
Additionally, sharp edges get enhanced by merging the depth clue into the RGB results to enhance sharp edges
and correct erroneous estimation [35].

Three-Filters-To-Normal (3F2N) is a novel approach proposed by Fan et al. [12], which is designed for
structured range sensor data. 3F2N can compute surface normals using only three filters: namely a horizontal
image gradient filter, a vertical image gradient filter and a mean/median filter [12].
In order to evaluate the approach, it was tested along with earlier approaches, for example PlaneSVD [19]
and FALS [1] on three own datasets, in addition to the DIODE [33] and ScanNet [10] dataset. Furthermore,
to measure the trade-off between accuracy and speed, a new metric

𝜋 = eAt (3.6)

is introduced [12]. A low 𝜋 score inducts a fast and precise surface normal estimator, with eA being the average
angular error and t the processing time [12]. Results also show, that when using the mean filter the system is
faster in comparison to using the median filter [12]. Even though the median filter is more accurate, it is
only advised to be used when high accuracy is required, because the mean filter still achieves a lower 𝜋 Score
[12]. In addition, results show that both filter approaches are more accurate than the previously mentioned
FALS [1] and when using the mean filter also less processing time is needed [12]. This approach is especially
interesting for this thesis due to its already given implementation for a GPU using the CUDA Framework.
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3.4. RGBD-SLAM

In yet unknown terrain, a mobile robot does not only need to map its surrounding, but also needs self-
localization in the surrounding. Simultaneous Localization and mapping (SLAM) was first proposed in the
1980s and tackles this exact problem [36]. With more and more emerging applications like mobile robot
navigation or autonomous driving, SLAM has become a highly researched topic in the last ten years, with many
approaches, especially differing due to the sensors used. Today most SLAM approaches use either LIDAR,
RGBD-Cameras or a combination of both. This section particularly takes a look at different RGBD-SLAM
approaches.

Visual SLAM traditionally used monocular or stereo cameras as input sensor using complex algorithms,
which are easy to fail, in order to create a 3D map reconstruction [36]. However, in the last few years with
the emerge of the RGBD-Camera the visual SLAM approach changed, as now depth information is provided
the sensor and do not need to be computed with complex algorithms [36].
The main three parts of RGBD-Slam are camera tracking, mapping and loop detection [36]. After years of
research, the pipeline of visual SLAM (vSLAM) is nowadays basically fixed [36]. In most modern vSLAM
systems, the tasks of local mapping and tracking are completed in separated threads, because they are designed
using the concept PTAM [20] [36]. PTAM splits the tracking and mapping into two separate tasks, which
can then be processed in two parallel threads [20]. The multi-thread vSLAM systems can be divided into
frontend and backend [36]. The frontend, which is also called RGBD Odometry, provides real-time camera
poses, while the backend updates and optimizes the map [36].
Historically, direct or indirect methods have been used for camera tracking. Nowadays, a combination of both
is used [36]. While the indirect method minimizes the geometric error over a set of matching artificial features
in two frames, the direct method tries to estimate the camera motion based on minimizing the photometric
error over corresponding pixels [36]. In order to combine the advantages of the two different methods, the
hybrid approaches minimize a combination of the two errors to align two frames [36].

BAD SLAM from Schops et al. [30] stands out, because mainly point-based or volumetric methods are used
for mapping in SLAM [36], however BAD SLAM uses surfels instead. The main advantage of the surfels is
their ability to represent thinner surfaces, while the minimal surface thickness is limited to the voxel size in
grid-based representations [30]. These surfels are later only optimized along their normal direction, using
only measurements with similar normals to the current surfel [30]. Before the algorithm runs, the images
provided by the RGBD-Camera get preprocessed with a bilateral filter to smooth out the depth image and
remove outlier depth measurements [30].

3.5. LIDAR and RGBD-Camera

The last section of the chapter gives an overview and a comparison between 3D LIDAR and RGBD-Camera.
The benefits and challenges can be seen in table 3.2.

Modern 3D LIDAR and RGBD-Camera systems do not differ much in their output, most of them provide a
point cloud. However, the output point clouds may vary due to RGBD-Cameras providing color information
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Topic 3D LIDAR RGBD-Camera

Output Point cloud Point cloud

Intensity RGB-/Depth-Image

Benefits uses less computational power for map-
ping [21]

more robust to vibration (no moving
parts) [6]

large field of view [6] rich in texture -> better classification
[6]

dense and more complete informations
[6]

Challanges Sparse representation of scene flow [6] small effective depth range [31]

No colored points [6] Limited field of view [6]

Real-Time challenging for mapping [6]

Cost 3000-12000 € [28] 200-300 € [28]

Table 3.2.: Comparison between LIDAR and RGBD-Camera.

for every point where the LIDAR can only provide the intensity.
Bigger differences between 3D LIDAR and RGBD-Cameras are notable in the field of view, the maximum
range, the density and the prices. RGBD-Camera have a clear advantage regarding the prize, costing only a
fraction of the price of a typical LIDAR system [6].
Additionally, the scene understanding is made both easier and more robust due to the greater amount of
information provided by the camera [6]. The 3D LIDAR on the other hand has a much higher range capability.
Furthermore, modern LIDAR systems often can provide a 360° field of view again exceeding the capability of
a RGBD-Camera, which can only provide a narrow field of view of typically 70° [6]. It should be noted that
the field of view can be increased by fusing multiple cameras together [6]. In addition, the actual usable field
of view is mainly determined by the sensor position on the robot [6]. Due to this the large field of view of the
3D LIDAR can often not be fully used.
All these factors lead to the desire to create an efficient and robust mapping algorithm using multiple RGBD-
Cameras. However, the great amount of information provided by such an RGBD-Camera setup makes real-time
mapping very challenging, whereas 3D LIDAR requires less computational power in order to map the sensor
data [21].
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4. Method

This chapter explains the proposed method to efficiently generate a map representation using dense data
from RGBD-Cameras. To achieve an efficient framework it needs to be highly parallelized. Furthermore, a
probabilistic map representation is chosen to cope with the noise of the sensor data. To improve the map
representation in dynamic scenes a ray-tracing based approach is proposed to clear passed dynamic objects
from the map. Furthermore, two approaches to estimate the surface normals are presented. The resulting
normals are used to compute the traversable area of the map for a given robot.
A quick graphical overview of the two possible update method are illustrated in figures 4.1 and 4.2, differing
only in the used approach to estimate the surface normals. Both approaches are later evaluated. To update
the map the variance of each point in the point cloud is computed. After the new height and the variance get
fused into the map, the traversable area is computed and ray-tracing is performed to clear dynamic obstacles
from the map representation.
The following chapter is structured as follows. First, the method for acquiring the surface normals is explained.
Then, a foundation of the definitions used for the map representation is given. Afterwards, the other main
parts of the update method are addressed, namely the computation of the variance at every point, the update
of the height and variance in the map, the classification of the traversable area and the handling of dynamic
objects. Finally, an overview of the whole system is given using pseudo code.

Surface 
Normal
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Point 
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Computa�on

Map Height
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Area

Annota�on

Dynamic 
Object
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Figure 4.1.: System overview with normals estimation from the input cloud.

4.1. Surface Normal Estimation

Currently, the surface normals in the L3 Terrain Model Generator are estimated using PlanePCA from a
unstructured point cloud. This work uses the 3F2N approach from Fan et al. [12] that takes advantage of
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Figure 4.2.: System overview with normals estimation from the map.

depth images and structured point clouds provided by RGBD-Cameras. This approach is explained in the
following section. The 3F2N approach applies three filters on a depth or disparity image to retrieve the surface
normals, namely a horizontal image gradient, a vertical gradient and a mean or median filter [12].
The surface normal ni = [nx , ny, nz]T of an observed 3D point pi = [x, y, z]T in the camera coordinate system is
estimated by fitting the local plane

nxx + nyy + nzz + b = 0 (4.1)

to the points in Q+
i = [QT

i ,pi]
T . Qi = [qi1, ...,qik] is a set of k neighboring points of pi.

In order to transform a 3D point pi in the camera coordinate system into the point ̃pi = [u, v]T , according to
Fan et al. [12] the following equation can be used

z
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, (4.2)

where K denotes the camera intrinsic matrix and p0 = [u0, v0]T is the image principal point. fx denotes the
camera focal length in pixel in x direction and fy in y direction, respectively [12]. As stated from Fan et al.
[12], combining 4.1 and 4.2 leads to

1
z
= −1

b
(nx

u − u0
fx

+ ny
v − v0
fy

+ nz) . (4.3)

Differentiating the resulting equation with respect to u and v results in [12]

𝜕1/z
𝜕u

= −
nx
bfx

,

𝜕1/z
𝜕v

= −
ny
bfy

.
(4.4)

By applying horizontal and vertical image gradient filters on the inverse depth image, for example Prewitt,
Scharr or Sobel, the shown derivations in (4.4) can be approximated [12]. An inverse depth image stores the
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values of 1/z. The expressions for nx and ny can then be found by rearranging 4.4 to [12]

nx = −bfx
𝜕1/z
𝜕u

,

ny = −bfy
𝜕1/z
𝜕v

.
(4.5)

The corresponding nzj can now be computed with a given arbitrary qij ∈ Qi by combining 4.1 and 4.5 to

nzj = b
fxΔxij

𝜕1/z
𝜕u + fyΔyij

𝜕1/z
𝜕v

Δzij
, (4.6)

where [xij, yij, zij] = qi − pi [12]. Simplifying 4.5 and 4.6, because they have a common factor of −b, leads to
the following equations

nx = fx
𝜕1/z
𝜕u

,

ny = fy
𝜕1/z
𝜕v

,

andnz = −Φ {
Δxiynx + fyΔyiyny

Δzij
} , j = 1, ..., k,

(4.7)

where Φ {⋅} denotes the manner of ̂nz estimation, which is the optimum nz [12]. Additionally, the mean or
median filtering operation used to estimate nz is represented as Φ {⋅}[12]. If the depth value of pi is identical
to those of all its neighbors, the surface normal ni is simply set to [0, 0, −1]T as its direction is considered to be
perpendicular to the image plane [12].
The approach from Fan et al. [12] can be further extended to be able to compute the surface normal of any
given organized point cloud. In this thesis the organized point cloud of the RGBD-Camera is used to estimate
the normals. To use the 3F2N approach the organized cloud needs to be in the camera frame and the camera
intrinsic matrix needs to be known.
However, this can be extended to also be able to compute the normals from a given 2.5D map representation.
In order to do so, the identity matrix is passed as the camera matrix. With these adaptations, the normals can
be computed from the map representation, as the data resembles an organized point cloud.
This approach is chosen to be tested under the assumption that the map works like a filter while fusing in the
new data. Therefore, the resulting normals should be less affected from the noise of the input cloud.

4.2. Definitions for the Elevation Map

Before the further update scheme can be explained, a general definition of all used identifiers needs to be
established first, which is based on [13], [25].
First, the used coordinate systems are defined as inertial frame I, the robot base frame B, the sensor frames Si
and the map frame M [13]. This differs from [13], because multi sensors could be used. The rotation and
translation between the robot frame B and the sensor frames Si are assumed to be known as they should
be clear from the robot kinematics, being both attached to the base and the sensors [13]. In the following,
the fixed transformation between the sensors and base is referred to as (rBSi , ΦBSi) [13]. Additionally, the
transformation (rIB, ΦIB) between the robot base frame B and the inertial frame I are obtained through the
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pose estimation, which also provides the pose covariance matrix ΣIB = cov(rIB, ΦIB) [13]. As stated from
Fankhauser et al. [13], the rotation between the inertial and base frame ΦIB can be split as

ΦIB = ΦI ̃B(𝜓 ) ∘ Φ ̃BB(𝜃, 𝜑), (4.8)

with ΦI ̃B(𝜓 ) describing the rotation with the yaw angle 𝜓 around the vertical axis eIz for the frame ̃B. ΦB̃B(𝜃, 𝜑)
describes the tilt rotation about the pitch and roll angle 𝜃 and 𝜑 between ̃B and B [13].
Finally, the elevation map is defined as a 2.5D probabilistic elevation grid map, where for each cell in the grid
multiple entries are stored. In a probabilistic map, the height measurement ̃p at each cell is approximated by
a Gaussian probability distribution as ̃p ∼ 𝒩 (p, 𝜎2p ), with p being the mean and 𝜎2p the variance [13].
Since in this thesis RGBD-Cameras are used, the RGB value crgb is stored for each cell additionally. Also, each
cell has a traversable value t stating whether this cell should be traversable by the robot or not. The map
frame M in this thesis is defined as the inertial frame I, differing from [13], because not a robot-centric map
representation is chosen.

4.3. Variance Computation

To create a probabilistic elevation map, the variance of every point needs to be computed. This thesis builds
on [13] in order to retrieve the variance of the sensor data.
The measurement p can be computed from a single measurement SrSP captured in the sensor frame Si using

p = P(Φ−1
SM(SrSP) − MrSM), (4.9)

with P = [0,0,1] being the projection matrix to retrieve the scalar height measurement p from the three-
dimensional measurement in the map frame M [13]. In order to obtain the variance of the measurement 𝜎2p
as suggested by Fankhauser et al. [13], first the Jacobian matrices for the sensor measurement JS and the
sensor frame rotation JΦ need to be calculated as

JS =
𝜕p

𝜕SrSP
= PC(ΦSM)T , (4.10)

JΦ =
𝜕p

𝜕ΦSM
= PC(ΦSM)T Sr

×
SP. (4.11)

C(Φ) describes the mapping of the corresponding rotation matrix, which Bloesch et al. [2] define as C ∶
SO(3) → ℝ3×3, such that Φ(r)=̂C(Φ)r with Φ ∈ SO(3). Based on that, the error propagation for the variance 𝜎2p
can be retrieved as

𝜎2p = JSΣSJTS + JΦΣΦIS
JTΦ, (4.12)

with ΣS being the covariance matrix of the sensor model [13]. Using the sensor noise models denoted from
Fankhauser et al. [14], the values for Σ can be obtained. ΣΦSM

, which is a submatrix of ΣIS, resembles the
covariance matrix of the sensor rotation [13]. The uncertainty of the yaw-rotation around the axis eIz of the
sensor does not need to be taken into account, because it gets excluded from the measurement with the use
of the projection matrix P [13].
This method can be efficiently parallelized, as the variance of every point can be computed independently.
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4.4. Height Update

After the variance for all points in the point cloud is computed, the data need to be transferred into the map
representation. Therefore, again the approaches from Fankhauser et al. [13] and Pan et al. [25] are used and
explained in this section.
The new height measurement is denoted as ( ̃p, 𝜎2p ) and gets fused into the map with the existing elevation
estimation ( ̂h, 𝜎2h) [13]. Using parallelization, the grid map is updated for every cell, thus it is possible that
multiple points are laying in the same grid cell. Like in the approach from Pan et al. [25], the 𝜒2 test is applied
to evaluate the difference Δ between the highest most recent measured elevation ̃p and the corresponding
grid elevation ̂h with variance 𝜎h

Δ =
|ĥ − ̃p|
𝜎h

. (4.13)

In case a higher elevation is measured and Δ not passing the 𝜒2 test, the grid cell is reinitialized with the
elevation ̃p and the corresponding variance 𝜎2p [25]. Then all elevations passing the test are fused into the
grid cell by means of a one dimensional Kalman filter as stated in [13] as

̂h+ =
𝜎2p ̂h− + 𝜎2h ̃p

𝜎2p + 𝜎2−h
,

𝜎2+h =
𝜎2−h 𝜎2p

𝜎2−h + 𝜎2p
.

(4.14)

Estimates before the update are denoted by an added - superscript and estimates after the update have an
added + superscript [13]. The 𝜒2 test is used to consider dynamic objects and vertical obstacles [25]. The
color of the grid cell is updated from every point falling into the grid cell, leading to the color of the grid cell
being represented by the color of the last point falling into the grid cell.
In order for the method to be efficiently paralleled, the update can be done independently concerning every
grid cell.

4.5. Traversable Area

After the height of the grid cells is updated, the traversable area is noted for all grid cells. A score tfree is being
calculated according to the equation given by Pan et al. [25]

tfree = max (0, 1 − ws
vslope
vs,crit

− wr
vrough
vr,crit

) , tfree ∈ [0, 1], (4.15)

where vslope denotes the value of the slope at the given grid cell using the estimated surface normals, and
vrough denotes the value of the roughness based on height deviation [25]. vs,crit and vr,crit are constants based
on the capability of the robot [25]. They represent the threshold between the grid cell being traversable or not
[25]. Additionally the weight factors ws and wr are the weight factors for slope and roughness, respectively
[25]. A score tfree of one indicates that an area is easy accessible, whereas a score of zero indicates a none
traversable are (e.g. an obstacle) [26].
The surface normals were already acquired using 3F2N [12]. In order to now obtain the value vslope, the
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cosinus of the angle 𝛼 between the surface normal and the z-axis ez = [0, 0, 1] is evaluated. The formulation of
the dot product between two vectors v1 and v2, is given as

v1 ⋅ v2 = ||v1|| ⋅ ||v2|| ⋅ cos(𝛼). (4.16)

Since the vector ez is normalized, the norm ||ez|| evaluates to one, so all that needs to be done to obtain cos(𝛼)
directly from the dot product is to normalize the computed normal vector. When the surface normal vector
and the z-axis are equal, the dot product now evaluates to one which denotes no slope. The final value vslope
is now obtained through

vslope = 1 − cos(𝛼) = nnormalized ⋅ ez. (4.17)

Finally, the deviation of the height Hd is computed as presented from [26]

Hd = |hx,y − ̄h|, (4.18)

where hx,y is the height of the current grid cell and ̄h is the average height of all cells in a 3×3 window centered
on the current grid cell [26]. Hd directly translates as vrough.
This can be done in parallel with respect to every grid cell.

4.6. Dynamic Object Handling

While fusing the point cloud data into the map, the grid cells between the new measurement and the sensor
are not updated. Obstacles get captured very well, but, in contrast to dynamic objects, they are not cleared
from the map if they move away.
This thesis tackles the problem using a ray-tracing based method to determine passed dynamic objects. The
concept of ray-tracing assumes that no obstacle can be located on the direct ray between the sensor and a
captured endpoint [25]. Otherwise, the endpoint could not have been captured by the sensor. This thesis uses
a 3D Bresenham line drawing algorithm for ray-tracing. The original 2D algorithm was already proposed by
Bresenham [5] in 1965. The algorithm is especially fast due to not using any floating-point-numbers in its
computation, but only relying on integer operations [7]. Today, the original approach got extended by many
different people, for example, L. Chiang [7] and Basma et al. [34], in order to cope with 3D data. This new
approach can be used for ray-tracing in a 3D voxel grid. The used 3D Bresenham algorithm is illustrated as a
flow chart in figure 4.3, which is based on the presented pseudo code from [7].
The presented 3D Bresenham works on a 3D voxel grid, the map representation in this thesis however is not
a full 3D representation. In order to still be able to use the algorithm, the data from the map gets transformed
into a pseudo-3D representation.
For the ray-tracing purpose of the 3D algorithm in this thesis, each line resembles a ray between the sensor
position and an endpoint in the input point cloud. The height of each grid cell is stored as a floating-
point-number. The algorithm however only computes with integer values, thus the information needs to be
transformed into a 3D voxel v = [x3D, y3D, z3D] with an integer index. The height h is transformed using the
same grid resolution resgrid as in the 2D grid. The corresponding voxel index z3D is computed as

z3D = ⌊h/resgrid⌋ (4.19)

As seen in figure 4.3, for one ray, only two voxels are needed. In this case, the start voxel V1 describes the
sensor position and the end voxel V2 describes one of the points from the input point cloud. Whether grid cell
g is a passed dynamic object or not is checked by performing ray-tracing for all points in the input cloud. Every
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Figure 4.3.: Illustration of the 3D Bresenham algorithm based on the pseudo code by Chiang [7].

time the algorithm evaluates a new voxel of the ray, the indices x3D and y3D are compared with the xg and yg
indices of the grid cell g. If both are equal, the height of the voxel is compared to the height stored in the grid
cell g. If the height of the voxel is lower, this cell is handled as a passed obstacle and hence, gets reinitialized.
Vertical walls are challenging for the proposed approach, as due to sensor noise and grid resolution often
points of a vertical wall can fall into neighboring cells. Usually, the surface ends up with a width of more
than one voxel. Using the algorithm explained above, the points in the row furthest away from the sensor of
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the vertical surface could clear the voxels in the closer rows. Additionally, neighboring cells on horizontal
surfaces could clear of each other, as the transformation into 3D voxel is only an approximation. This leads
to unwanted holes in the map. To address both problems the algorithm stops a few voxels early and never
reaches the created voxel for the endpoint. With this adaptation, the surfaces stay intact, at all times. However,
if the algorithm stops too early also small artifacts of passed dynamic objects are not cleared off anymore.
Based on [25], only cells being noted as obstacles get checked to reduce the computational cost due to ray
casting being a very computational expansive operation. The cells get determined as obstacles with a threshold
and the above explained traversable score. The ray-tracing can be done in parallel with regard to every grid
cell that needs to be checked.

4.7. System Overview

Concluding this chapter, a full overview of the whole system is given. The two algorithms 1 and 2 show the
two proposed update cycles as pseudo-code. Algorithm 1 shows the approach of computing the normals
directly from the input point cloud of the sensor, whereas algorithm 2 shows the approach of computing the
normals from the updated map representation.
Given a grid map, the robot obstacle parameters and the sensors, both algorithms estimate the surface normals,
compute the point variance, fuse the measurement into the grid cell, compute the traversable area and handle
dynamic obstacles.
Differing in the method of the surface computation, as they either are computed first as it can be seen in 1 or
after the map got update with the new sensor data as it can be seen in 2. However, the rest of the update
method is the same and is structured as follows:

1. The variance for each point in the point cloud is computed.

2. The height and variance for every grid cell in the elevation map is updated using the points and variances
calculated earlier.

3. The traversable score for each grid cell in the map is updated using the previously computed surface
normals.

4. Dynamic objects are handled. Therefore all grid cells, which are currently marked as obstacles get checked
using ray-tracing. The system uses a 3D version of the Bresenham algorithm [7] for ray-tracing. If a
grid cell is ruled as a passed dynamic object, it is reinitialized.

Additionally, another configuration of the system is tested, from that the surface normals do not get estimated
directly from the input cloud of the sensor. Rather, they get computed from the resulting grid map, after the
input points got fused into it. Therefore, the intrinsic camera matrix just need to set to be the identity matrix,
so the 3F2N [12] method can work on the 3D data provided by the grid map. This approach is chosen to be
tested under the assumption, that the map works like a filter, while fusing in the new data. Therefore, the
resulting normals should be less affected form the noise of the input cloud.
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Algorithm 1 Update Method (Normals from input
cloud)
Require: S : sensors , GM : grid map , RP : robot

parameters
1: for each si in S do
2:
3: // surface normal estimation
4: Pi ← si.getPointCloud()
5: Ni ← 3F2N(Pi, si.getIntrinsicMatrix())
6: transformToMapFrame(Ni, si.getPose())
7: fuseNormalsIntoMap(GM, Ni, Pi)
8:
9: // point variance computation

10: for in parallel for each pj in Pi do
11: 𝜎2j ← getVariance(pj,si.getPose())
12: end for
13:
14: transformToMapFrame(Pi,si.getPose())
15:
16: // height update
17: for in parallel for each gk in GM do
18: for each pj in Pi do
19: if pj lies in gk then
20: fusePointInMap(GM, pj, 𝜎2j )
21: end if
22: end for
23: end for
24:
25: // traversable area computation
26: for in parallel for each gk in GM do
27: vk,slope ← computeSlope(gk, RP)
28: vk,roughness ← computeRoughness(gk, RP)
29: gk.addTraversableScore(

computeTraversableScore(vk,slope, vk,slope,
RP))

30: end for
31:
32: // process dynamic objects
33: for in parallel for each gk in GM do
34: if GM.getTraversableScore < Threshold then
35: rayTracingBresenham(gk, GM, Pi, si.get-

Pose())
36: end if
37: end for
38: end for

Algorithm 2 Update Method (Normals from map)
Require: S : sensors , GM : grid_map , RP : robot

parameters
1: for each si in S do
2:
3: Pi ← si.getPointCloud()
4:
5: // point variance computation
6: for in parallel for each pj in Pi do
7: 𝜎2j ← getVariance(pj,si.getPose())
8: end for
9:

10: transformToMapFrame(Pi,si.getPose())
11:
12: // height update
13: for in parallel for each gk in GM do
14: for each pj in Pi do
15: if pj lies in gk then
16: fusePointInMap(GM, pj, 𝜎2j )
17: end if
18: end for
19: end for
20:
21: // surface normal estimation
22: Ni ← 3F2N(GM.asPointCloud(), IdentityMatrix)

23: fuseNormalsIntoMap(GM, Ni)
24:
25: // traversable area computation
26: for in parallel for each gk in GM do
27: vk,slope ← computeSlope(gk, RP)
28: vk,roughness ← computeRoughness(gk, RP)
29: GM.addTraversableScore(

computeTraversableScore(vk,slope, vk,slope,
RP))

30: end for
31:
32: // process dynamic objects
33: for in parallel for each gk in GM do
34: if GM.getTraversableScore < Threshold then
35: rayTracingBresenham(gk, GM, Pi, si.get-

Pose())
36: end if
37: end for
38: end for
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5. Implementation

In order to achieve a real-time mapping from RGBD-Camera data, the framework needs to be very efficient. In
order to do so, the algorithm relies on parallelization. Especially the GPU code needs to be strictly optimized
towards high parallelization, to capitalize on the high core count. Also on the CPU parallelization can bring a
significant performance boost. In order to achieve parallelism, the code is oriented to the Single Instruction,
multiple Data (SIMD) approach. In addition, the whole framework should work either with the use of a GPU
or without, so all computation steps should be available as GPU and CPU code. So that with loading in one
parameter the framework can adjust from just relying on the CPU to also using the GPU.
This chapter first gives an overview of the process chain of the L3 library. Then, the newly developed classes
are presented. Afterwards, the implementation of the CPU and GPU code is outlined.

5.1. L3 Overview

An overview is illustrated in figure 5.1. As can be seen, the library mainly consists of sensor, generator and
publisher plugins. Additionally, process chains can be triggered periodically at a fixed rate. The sensor plugins
resemble a sensor, for example a 3d LIDAR or a RGBD-Camera. They capture the sensor data from any source,
such as ROS messages and trigger a process chain forwarding the input data. A process chain is composed
of subsequently called process plugins, such as generators, publishers or filters. Generally, process plugins
produce a certain out, based on the input data given. The main purpose of generators is to produce new data
or fuse data into an existing data field such as a grid map. Exemplary, the surface normal plugin produces a
point cloud representing the surface normals and adds them into the grid map as a separate layer. The filters
serve as chained filtering step while usually not altering the data type. Publisher plugins take the acquired
data and publish them using ROS messages.

Figure 5.1.: Illustration of the structure of the L3 Terrain Model Generator.

23



5.2. Implemented Classes

In this thesis, four classes got added to the L3 library, namely three generator plugins and one sensor plugin.
These plugins are outlined in the following.

The RgbdCloudCameraSensor Plugin provides the data from an RGBD-Camera to the generators in the
framework. Additionally, it triggers the process chain of the needed generator plugins to fuse the data into
the map. A brief description of the class is provided in figure 5.2.
The plugin collects the data through subscribing to the ROS topics provided by the RGBD-Camera, in particular
it subscribes to the colored point cloud and the camera info topic. The point cloud and the intrinsic camera
matrix are then added to the data handler. Additionally, it provides the transformation between the sensor
frame and the map frame, so the generator plugins can access the data.

Figure 5.2.: Illustration of the RgbdCloudCameraSensor plugin.

The TftnSurfaceNormalGenerator Plugin implements the method explained in chapter 4.1 to estimate
the surface normals from the input point cloud. A brief overview of the class is provided in figure 5.3.
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As seen in 5.3, input is the RGB point cloud provided by the RgbdCloudCameraSensor, the transformation
between sensor and map frame and the intrinsic camera matrix, which is used by 3F2N [12] to compute
the surface normals. As 3F2N computes the normals in the camera frame, both the resulting point cloud
and normals need to be transformed into the map frame using the provided functions from PCL [29]. The
output of the class are the surface normals and the transformed point cloud to the map frame. Additionally,
the surface normals also get directly added into the map representation.

Figure 5.3.: Illustration of the TftnSurfaceNormalGenerator plugin.

25



The TftnMapSurfaceNormalGenerator Plugin also implements the method explained in chapter 4.1
to estimate the surface normals. The main difference to the previously introduced class is that now the surface
normals are not directly estimated from the input point cloud of the sensor, but using the provided 3D data in
the map. Therefore, no transformation and no intrinsic camera matrix are required, as the intrinsic camera
matrix becomes an identity matrix. The estimated normals then are directly fused in to the map. A brief
overview of the class is provided in figure 5.4.

Figure 5.4.: Illustration of the TftnMapSurfaceNormalGenerator plugin.

The ProbabilsiticElevationMapGenerator Plugin implements the remaining part of the update
method discussed in chapter 4. A brief overview of the class is provided in figure 5.5.
The exact implementation of the class differs between the GPU and the CPU implementation, but the core
functionality stays the same. The input is a point cloud optionally providing color data which is already
transformed into the map frame, as well as the map itself. Using the provided data in the point cloud the
variance, the height and the traversable area are computed in this class. Afterwards, dynamic objects are
handled using the 3D Bresenham algorithm from section 4.6 for ray-tracing. The map, with all the computed
annotations fused in to it, is output of this class.
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Figure 5.5.: Illustration of the ProbabilisticElevationMapGenerator plugin.
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5.3. CPU Implementation

Modern CPUs are usually multi core units that can execute instructions in parallel. In order to take advantage
of such CPUs, software must use parallelization techniques to support multi-threading. To achieve the
parallelization, in this thesis the multi-threading framework already existing in the L3 footstep planing library
is used.
The structure of the multi-threading framework is shown in figure 5.6. With initialization the Threading
Manager assigns a Work to every specified thread. While in progress, the ThreadingManager takes the
created job and hands them over to the Queue, which internally stores all jobs in a normal queue structure.
Afterwards, the jobs are handed over to the Worker, which got spawned by the ThreadingManger when
initializing the framework. For the initialization two parameters are read in, determining how many workers
are spawned and how many jobs should be assigned to every worker. After the Worker got the jobs handed
over from the Queue, it runs the run()method of these jobs, which means completing them. After completing
all jobs, it checks back with the Queue in order to fetch new jobs if there are still jobs queued. In order to
handle concurrency, threadsafe mutexes are used so data cannot be accessed concurrently.
The main framework now only needs to initialize the multi-threading framework with the required parameters,
create and hand over these jobs to the ThreadingManager to get them processed. It needs to be checked
whether every job was completed successfully afterwards. Important to note is that for every job type a new
ThreadManager with additional Queue and Worker needs to be configured.

Figure 5.6.: Class diagram of the threading framework used in this thesis.

The Variance is mainly computed in the PointVarianceJob. However, commonly used matrices are
pre-computed reducing computational overhead. For every point in the point cloud a job is created, where
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the variance is computed according to the method described in section 4.3. The resulting variance is stored in
a class variable of the generator so it can later be used to update the map.

The Height Update is performed paralleled for each grid cell for which new data is provided by the input
point cloud. Therefore, first all grid cells with new points need to be determined. This step is also very
important to ensure a thread-save computation, as otherwise the data of a grid cell could change while
another job is using it. Afterwards, a HeightUpdateJob is generated for each grill cell. In the job itself, the
computation is performed as explained in 4.4. Because every job works directly on the grid map, no data
transfer needs to be done afterwards.

The Traversable Area gets updated in parallel for every grid cell by a TraversableJob after the height
and variance in the grid map was updated. The computation of the traversable score is implemented as
described in section 4.5. Again, no data is transferred as the jobs directly work on the grid map and store the
new score also directly there. The generator just checks whether all jobs were completed successfully.

Dynamic Object Handling is done through ray-tracing in parallel for all grid cells. It should be noted that
ray-tracing is only applied, if a grid cell is annotated as an obstacle using the computed traversable score to
reduce the computational load. In a rectangular submap, which includes all cells between the sensor position
and the furthest point from the sensor in the point cloud, a RayCastingJob is created for each grid cell
flagged as an obstacle. The job uses the implementation of a 3D Bresenham algorithm discussed in section
4.6 to check along the rays between the sensor and every point in the point cloud. If a ray crosses the grid
cell and its height is lower than the height stored in the grill cell, the grid cell is reinitialized by setting the
elevation layer to not a number (NaN).

5.4. GPU Implementation

Running highly parallelized programs using Nvidia GPUs a dedicated toolchain named CUDA [8] is required.
It provides a C++ API to program for the Nvidia GPUs.
The GPU however can not directly access the memory of the computer, where the map is stored. In order
to make this data available to the GPU it needs to be transferred to the GPUs memory. This requires the
map and point data to be stored in additional arrays, which then are transferred to the GPUs memory. After
the computation the data on the GPU memory also needs to be transferred back to be put back in to the
map representation. As coping data from computer memory to GPU memory is a time expensive operation,
only the needed submap, which includes the sensor position and all points of the input cloud, is transferred.
Because the grid_map functions are not available for the GPU, all data are transferred as linear arrays. The
data copied to the GPU include the stored elevation, variance, traversable score and surface normals of the
submap, as well as the indices of the grid cells. Additionally, the 3D coordinates, the color value and the
corresponding grid cell are transferred for each input point.
Four different CUDA kernels are implemented, each being a representation of the above explained job types
on the GPU. These kernels can be launched to update the map once all the data is accessible from the GPU.
After all the computation is done on the GPU, the data need to be transferred back to the computer memory.
For that, new arrays were proactively pre-allocated and their pointers were given to the GPU to transfer the
data directly. After all data are back, the CPU now just needs to read the linear memory blocks and put the
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stored data back into the map representation.
On the GPU itself, the data are all stored in arrays, then the data gets processed in parallel using the kernels. For
each job explained in the CPU section, a corresponding kernel exists for the GPU implementation performing
the identical job.
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6. Evaluation

In the following chapter, the evaluation of the framework is presented. The main goal of the evaluation is to
show that the system works with both ground truth and real data. In order to achieve this goal, the framework
is tested using ground truth data produced from the implemented functions from the grid_map library [15]
and using real data produced by a mock-up, which consists of a D455 Realsense depth camera [9] and a T265
Realsense tracking camera [32]. Additionally, the whole system is tested on an Nvidia Jetson AGX Xavier
developer kit [22].
The chapter is structured as follows. First, the evaluation with ground truth data is presented. Second, the
results of using real data from the mock-up are shown. Third, an overview of the runtime of the framework
on both the CPU and the GPU is given. Fourth, the handling of dynamic objects is evaluated. Fifth, the new
proposed surface normal estimation approaches are tested and compared, including a comparison with the
previously used method in the L3 Terrain Model Generator. Lastly, the results are discussed.

6.1. Ground Truth

To ensure and evaluate the capabilities of the framework, it is tested with ground truth data first before using
real data.

6.1.1. Ground Truth Datasets

To create the ground truth data set, the function to create a grid map directly from a mono-colored image
provided by the grid_map framework [15] is used. Given a maximum and a minimum height, the function
translates every pixel as one grid cell. The height is created by linear mapping the color channel between the
specified minimum and maximum height. To further create an input cloud for the framework, the resulting
grid_map is transformed to 3D points. Every grid cell is resembled by one 3D point.
Three main scenarios are used to evaluate the ground truth behaviour of the framework. Two of which are
provided from the grid_map library [15], namely a test terrain and a flat surface with an attached even
slope. The mono-colored pictures used to create the maps can be seen in figure 6.1. Additionally, an image
resembling a stair is used and can be seen in 6.1c. The test terrain differs from the two other scenes, because
it already represents a non-perfect map. Noise is added to the map to better represent real terrain.
For all scenes, the maximum and minimum height is set accordingly, so the resulting data points lay between
0m and 1m. Additionally, the resolution of the maps is set to 2 cm.
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(a) flat surface with even slope dataset (b) test terrain from grid_map [15]

(c) stairs dataset

Figure 6.1.: The mono-colored images used to create the ground truth point cloud data.
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6.1.2. Map Representation

The capability of the framework to produce a map representation from an input cloud is tested using the
ground truth datasets explained above. The resulting map representations can be seen in figure 6.2.
Results show that given a perfect ground truth point cloud, without any sensor noise and position error from
the robot pose, the framework can create a perfect representation of the given point cloud.

0 m

1 m

(a) Elevation map created from the flat surface with even
slope dataset

(b) Elevation map created from
the terrain dataset provided by grid_map [15]

(c) Elevation map created from
the stairs datasets

Figure 6.2.: Resulting elevation maps from the framework using ground truth point clouds created from the
mono-colored pictures in 6.1.
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6.1.3. Traversable Score

Additionally, also the traversable score computation can be tested using the provided ground truth data.
As explained in chapter 4.5, to compute the traversable score, four parameters need to be specified. The
parameters should resemble the capabilities of the robot, so they differ from robot to robot. In order to
compute the traversable score shown in figure 6.3, the parameters got specified as: ws = 0.4 (weight of slope),
vs,crit = 0.3 (slope threshold), wr = 0.6 (weight of roughness) and vr,crit = 0.05 (roughness threshold).
The results show that the traversable score gets computed as expected. Large edges get denoted with a
traversable score of one, meaning an untraversable area, which are colored in green in figure 6.3. Even
surfaces are colored in red and have a traversable score of zero, meaning an easily traversable area. Also, it
can be seen that the noise and imperfections of the test terrain get resembled in the traversable score. To
translate the traversable score into an occupancy grid, only a threshold function needs to be used, with the
threshold again resembling the capabilities of the used robot.

0

1

(a) color
scale

(b) traversable score of
test terrain from grid_map [15]

(c) traversable score of
ground truth stairs dataset

Figure 6.3.: Traversable score on the provided terrain from the grid_map library [15] and on the stairs dataset.
A score of one describes a traversable area, whereas a score of zero denotes an untraversable
area.

6.1.4. Surface Normals

The surface normal estimator is tested using the ground truth data. The resulting normals of the slope and
the stairs are shown in figure 6.4. These surface normals are computed using the explained method in 4.1. As
no RGBD-Camera is used to produce the input cloud, the camera matrix is set to be the identity matrix.
In figure 6.4a, it can be seen that even slopes are represented perfectly by the normals. However, in figure
6.4b, the normals at the edges of the stairs do not look as expected. The expected normals should be pointing
away from the edge, but most of them point along the edges. This however should not be a problem, as the
slope score in the traversable area is computed only from the angle between the z-axis and the normal. As
this angle is nearly the same for both the expected and the real normals, it should not affect the computation
of the traversable score significantly.
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The surface normal estimation suffers greatly from noise. This can be especially seen in figure 6.5. As the
surface normals are computed using the neighboring cells, their computation is especially challenging in
rough terrain.

(a) Ground truth slope map with normals computed from
the map representation.

(b) Ground truth stairs map with normals computed from
the map representation.

Figure 6.4.: Resulting maps with estimated surface normals from the framework using ground truth point
clouds.

Figure 6.5.: Surface normal estimation from the map on even surfaces with added noise.

6.1.5. Discussion

Given perfect ground truth data, the whole system produces results as expected. However, the framework also
showed weaknesses, especially when computing the normals. Surface normals on edges do not get computed
as expected. In addition, the surface normals suffer greatly from noise in the point cloud.
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6.2. Real Data

After showing the capabilities of the framework using ground truth data, data from a real camera setup are
now used to further evaluate the framework.

6.2.1. Used Hardware

To produce the real data, a mock-up consisting of a D455 Realsense depth camera [9] and a T265 Realsense
tracking camera [32] is used. The D455 depth camera provides a 3D colored point cloud in the sensor frame.
Additionally, the T265 tracking camera provides a pose estimation of the camera in the map frame. Both
cameras are attached to a custom 3D printed plate ensuring that the orientation and translation between the
two cameras are always fixed and known. With this knowledge, the point cloud provided by the D455 depth
camera can be transformed into the map frame using the pose estimation of the T265 tracking camera. A
picture of the used camera setup is shown in figure 6.6.

Figure 6.6.: Camera setup consisting of a D455 depth camera [9] and a T265 tracking camera [32].
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6.2.2. Static Scenes

To show the functionality of the framework with real data, two static scenes were captured first. One is
showing a scene of a typical students’ room, the other is a black box on a floor. Both maps got captured with a
grid resolution of 2 cm.

Student Room

A picture of the captured scene is shown in 6.7a. The resulting map can be seen in figure 6.7b. Apart from
the color mapping, the results show a good mapping of the scene. As the map is only a 2.5D representation,
small details like the plant can not be captured, because only one height can be stored in each cell. The color
of the grid cell is determined by the point, which is last fused into the cell. This leads to errors in the coloring
of the map, especially at the borders of objects, which can be seen in 6.8b.

(a) photo of scene (b) map representation of scene

Figure 6.7.: On the left a picture of the scene and on the right the map representation of the scene.

Black Box Comparison with Ground Truth

Furthermore, a black box was placed on the floor and captured using the mock-up. The box has the dimensions
30 cm×30 cm×30 cm. The resulting map and a ground truth map for comparison can be seen in figure 6.8.
Comparing the two maps, it becomes clear that the noise of the camera sensor and the tracking module
has a negative effect on the quality of the map. However, it can also be seen that the box, as well as the
floor, were captured quite well. Using a grid resolution of 2 cm, the box should be exactly 15 grid cells wide.
Counting the grid cells in the map shows that the box is represented by 17 grid cells. This error could stem
from the resolution of the map, because the edges of the box could not line up the with edges of the grid
cells. Additionally, both the depth camera noise as well as the position error of the tracking camera could lead
to such an error. Taking these factors into account, the box is represented fairly well. In comparison to the
ground truth map, the map representation is not as smooth, which cloud also be down to the fact that the box
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and the floor are not perfectly shaped in reality either.
The biggest drawback can be seen on the computed surface normals, as they greatly suffer from the noise
provided by a real camera system.

(a) Resulting map from real data of the box with normals
computed from the map representation.

(b) Ground truth map of the box with normals computed
from the map representation.

Figure 6.8.: Resulting map of the black box from captured real data with the mock-up and ground truth map
for comparison.

6.2.3. Variance Computation

Two tests are performed to evaluate the computed variance. One uses a static camera setup, the other uses a
moving camera setup. The current implementation of the framework sets all values of the covariance matrix
of the robot pose to zero, so the variance of the pose estimation is not included in the computation.
The resulting variance is shown in figure 6.9. Even though the robot pose covariance is set to zero, the variance
differs between the two setups as the rotation of the sensors in the map is used to compute the variance. This
leads to a different variance when moving the camera, as the rotation constantly changes.
With the static camera setup, the variance is computed using only the noise model of the camera. As no noise
parameters for the d455 camera were provided from either Fankhauser et al. [13] or Pan et al. [25], the
noise parameters of the d435 provided from Fankhauser et al. [13] are used and can be seen in A.1. The
pictures in figure 6.9 show that the variance increases when the points are further away from the camera.
This resembles the noise of RGBD Cameras well, as they get noisier with larger distances to measured points.
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scale (b) Computed variance on map representation

captured from a static camera setup.
(c) Computed variance on map representation

captured from a moving camera setup.

Figure 6.9.: The computed variance with a static and a moving camera setup.

6.2.4. Traversable Score

For the static scene of the student room, the traversable score is computed using the same robot parameters
as in 6.1.3. The resulting traversable score is shown in figure 6.10. Compared to the computed traversable
score on the ground truth datasets see in figure 6.3, here the traversable score is not as often equal to zero
or one. This is an expected outcome, because the map representation captured from a real system is not as
smooth as the ground truth data. However, the traversable score still clearly shows a difference between the
individual sections of the map. Walls and vertical surfaces are evaluated as untraversable, whereas the floor
and even surfaces can easily be traversed by the robot.

0

1

Figure 6.10.: The resulting traversable score for the static scene, which can be seen in picture 6.7a. A score
of one describes a traversable area, whereas a score of zero denotes an untraversable area.
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6.2.5. Comparison to the Current Mapping Method in the L3 Terrain Model Generator

In order to compare the smoothing effect of the mapping method, a plain floor is captured by the camera.
Then, the data is used for both the currently used mapping method in the L3 Terrain Model Generator, as
well as the new mapping method presented in this thesis. The roughness filter provided by the grid_map
library [15] is used to evaluate the roughness of the captured scene. The maps after filtering can be seen
in figure 6.11. Comparing the resulting maps of the two approaches shows that the probabilistic mapping
approach is less rough than the mapping approach from the L3 Terrain Model Generator, which only uses a
simple update weight to update the grid cell. The results show that sensor noise is handled better in the new
approach presented in this thesis, which makes it more robust.
Additionally, vertical walls are better represented using the new approach, as points with lower heights do

0 cm

≥1 cm

(a) color
scale

(b) Deviation map and smooth surface approach
currently used in L3 Terrain Model Generator.

(c) Deviation map and smooth surface using newly
proposed approach in this thesis.

Figure 6.11.: On the left the representation of an even horizontal surface from the currently used approach in
L3 Terrain Model Generatorand on the right the representation from the proposed approach in
this thesis. The color shows the deviation between the smoothed surface and the actual map
representation.

not shrink the wall again, as is the case in figure 6.12a. In the mapping approach in the L3 Terrain Model
Generator all points in a grid cell are used to update the height, which leads to incomplete vertical walls. The
approach presented in this thesis rather tests whether the new points are within certain range of the currently
stored height in the grid cell. If the points are too low, they will not be considered while updating the height.
If they are higher, the grid cell will be reinitialized with a greater height. This leads to a good representation
of vertical walls.

6.2.6. Discussion

The provided map representations show that static scenes can be captured well using the framework proposed
in this work. The coloring of the grid cell is not very good, due to the fact that only one random point laying
in the grid cell is used to color it. This shortcoming could be improved by using the most relevant point for
coloring the grid cell. The 2.5D elevation map can not represent all details of the real world as only one height
can be stored in each grid cell. The grid resolution plays a major role in determining how many details can

40



(a) Vertical surface representation from the old approach
in L3 Terrain Model Generator.

(b) Vertical surface representation from the proposed
approach in this thesis.

Figure 6.12.: On the left the representation of a vertical surface from the old framework and on the right the
representation of a wall from the new framework.

be seen in the resulting map. Nevertheless, the framework delivers results for both the computation of the
variance and the traversable area, which are in line with the expectations.

6.3. Comparison between CPU and GPU Performance for Map Update

For the purpose of evaluating the efficiency of the mapping approach, the performance of each individual
updating method is tested. The hardware used for testing is the Nvidia Jetson AGX Xavier developer kit [22].
The framework is both tested with artificial data and real data from the camera setup explained in section
6.2.1.

6.3.1. Artificial Data

To test the framework with an artificial dataset, the terrain dataset from the grid_map library is used. Using
a grid resolution of 2 cm, the resulting map has a size of 10m × 10m. The mono-colored image used to
create the dataset can be seen in 6.1b and the resulting map is shown in 6.2b. The generated input cloud has
250,000 individual points, which resembles the size of a point cloud from a RGBD-Camera. The map size
resembles the size of a map captured by a multiple RGBD-Camera setup, which covers a 360° field of view
around the robot. In order to test the ray-tracing, the sensor position is placed into the middle of the map at a
height of 1m. To ensure that the same amount of grid cells are considered while ray-tracing for both the CPU
and GPU approach, only the last two rows on the end of the map are used, which leads to 1000 cells being
considered.
To measure the computation time needed by the mapping approach, the input cloud was fused into the system
a hundred times. The average consumed time and its standard deviation for updating the map on the CPU
and the GPU are denoted in table 6.1. All durations were measured on the Nvidia Jetson AGX Xavier [22].
The results show that the GPU implementation takes less time across all categories, being twice as faster for
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both the map update and the map update with additional traversable area computation. Most noticeable is
the difference between the CPU and the GPU implementation when ray tracing is used to handle dynamic
objects. There, the GPU implementation is up to four times faster.
The CUDA API statistics show how much time the different operations consumed on the GPU. When updating
the variance, height and the traversable score, it can be seen that 95% of the GPUs time is spent copying the
data from the computer memory to the GPU memory and vice versa. This shows how time-consuming the
copy of data is and that the mapping framework could be significantly faster, if fewer data were needed to be
transferred.

Update Step on arti-
ficial data

CPU time in [s] Standard devia-
tion CPU in [s]

GPU time in [s] Standard devia-
tion GPU in [s]

point variance +
height update

1.3822 0.0977 0.7877 0.0169

point variance +
height update +
traversable area

1.5999 0.0734 0.8588 0.0165

point variance +
height update +
traversable area
+ dynamic object
handling

19.0262 0.4850 5.2468 0.0181

Table 6.1.: Computation time comparison between the CPU and GPU implementation on artificial data using
the test terrain dataset.

6.3.2. Real Data

To test the implementations on real data, the dataset from the scene shown in 6.7 is used. The scene was
captured as a ROS bag-file to make sure that the test data for both implementations is consistent. While the
size of the input point cloud is nearly identical to the artificial dataset, the map size is significantly smaller
having only a size of 5m × 3m. As a consequence, it is expected that the updating of the map runs faster than
previously. Trough computing the traversable score identically for both implementations, it is ensured that the
same amount of grid cells are considered while ray tracing. Only the height deviation is taken into account to
compute the traversable score, as it is unclear whether the CPU and the GPU implementation of the 3F2N
code produce the exact same normal estimation. The resulting average computation time and its standard
deviation of the hundred taken measurements are shown in table 6.2. Again, the GPU version is significantly
more efficient than the CPU implementation being between two and three times faster.
The CUDA API statistics show how much time the different operations consumed on the GPU. When updating
the variance, height and the traversable score, it can be seen that 83% of the GPUs time is spent for copying
the data from the computer memory to the GPU memory and vice versa. This shows why the GPU is so much
faster using real data, as the map size is only around a fourth of the size of the map using artificial data. The
consumed computation time is clearly depending mostly on how much data need to be transferred between
the computer and the GPU memory.
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Update Step on real
data

CPU time in [s] Standard devia-
tion CPU in [s]

GPU time in [s] Standard devia-
tion GPU in [s]

point variance +
height update

0.3633 0.028561 0.1098 0.0239

point variance +
height update +
traversable area

0.3844 0.0271 0.1625 0.0205

point variance +
height update +
traversable area
+ dynamic object
handling

8.1946 1.9101 4.7074 0.7277

Table 6.2.: Computation time comparison between the CPU and GPU implementation on real data using the
student room dataset.

6.3.3. Discussion

Overall, the GPU implementation outperforms the CPU implementation as it is at least two times faster
across all categories. Using the GPU implementation on real data the map can be updated up to ten times a
second, which can be interpreted as real time processing. However, the most time is lost while transferring the
map data from the computer memory to the GPU memory, which shows that the data transferred should be
decreased in order to achieve a significant speed-up. The map size is the most predominant factor influencing
the used computation time as it determines how much data need to be transferred. This problem could be
addressed by always holding a map of fixed size in the GPU memory as then, only the data of the input point
cloud would need to be transferred.
Ray-tracing is a very computational demanding operation and can not be performed at the same rate taking a
minimum of four seconds. Consequently, further research should address how the system could be improved
to create a good map representation in a dynamic environment in real-time.

6.4. Dynamic Object Handling

As the comparison between the CPU and the GPU approach has shown, dynamic object handling is a very
computational demanding operation for both approaches. Dynamic object handling is not needed in a static
environment and should not be used to ensure good performance. However, in dynamic environments, it is
essential to clear passed dynamic objects.

6.4.1. Comparison Dynamic Object Handling Toggled On and Off

A reference picture of the used scene to evaluate the dynamic object handling can be seen in 6.13. The
resulting map representations in figure 6.14 show a scene before an object is added, while the object is in the
scene and after the object is removed again. On the left side, the map representation without dynamic object
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handling is shown. On the right side, the same scene is shown, however, this time dynamic object handling is
toggled on. The advantage of having dynamic objects handling on becomes very apparent, because the object
would otherwise congest the map, as is the case in picture 6.14e. This would lead to wrong information for
other applications using the map, for example, path planning.
In the last picture on the right side 6.14f, a small spike can be seen, which is the last remnant of the obstacle.
In the last picture on the left side 6.14e, a big cylinder, which is even bigger than the object that should have
been captured, remains in the map representation. This is due to the fact that the arm of the person placing
the object is captured as well.

Figure 6.13.: The scene used for testing the dynamic object handling. While testing the blue object is placed
into the empty scene and later is removed again.

6.4.2. Discussion

Looking at the results in the tables 6.1 and 6.2, it becomes clear that the dynamic object handling can not
be performed in real-time from the system, because the duration needed for the computation is too long.
However, it could be used at a lower rate in order to clear dynamic objects from the map representation.
Additionally, dynamic objects are not fully cleared, as shown in picture 6.14e. Small spikes on the floor remain
while handling dynamic objects, because the proposed ray-tracing algorithm stops a few voxels early in order
for vertical surfaces to not clear themselves.
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(a) Before the object is in frame:
Without dynamic object handling.

(b) Before the object is in frame:
With dynamic object handling.

(c) While object is in frame:
Without dynamic object handling.

(d) While object is in frame:
With dynamic object handling.

(e) After the object was removed from the frame:
Without dynamic object handling.

(f) After the object was removed from the frame:
With dynamic object handling.

Figure 6.14.: The map before, while and after a dynamic object entered and left the frame, with dynamic
object handling toggled on (right side) and off (left side).
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6.5. Surface Normal Estimator

In this section, the presented surface normal estimator is tested and compared against the currently used
surface normal estimator in the L3 Terrain Model Generator. For this, both the accuracy and the performance
are evaluated.

6.5.1. Estimation from Input Point Cloud or Map

In this thesis, two approaches to retrieve the surface normal estimation are proposed. The first one uses the
3F2N code directly on the input point cloud from the RGBD-Camera and then fuses the estimated normals
into the map. The other approach uses the updated map representation to compute the normals from the
stored data in the map. This approach was proposed under the assumption that the map update can be seen
as a filtering mechanism. As already discussed in section 6.2.5, the probabilistic mapping approach handles
sensor noise better than the previously used mapping approach in the L3 Terrain Model Generator.
Aiming to test the two proposed surface normal estimation approaches, a dataset of an even horizontal surface
is created by pointing the camera setup towards the floor. Figure 6.15 shows the resulting normals from
both approaches, whereas figure 6.16 shows the deviation of the computed and the expected normals of the
surface. The shown deviation is computed as the angle between the expected and the computed normals. The
average measured error angle between the expected normals and the ones computed from the approaches at
twenty different time steps can be seen in table 6.3. The resulting deviation shown in figure 6.16 and the
average error angle clearly show that the normals from the input cloud are more accurate than the normals
computed from the map representation.

(a) normals from input cloud (b) normals from map

Figure 6.15.: On the left the normals computed directly from the input cloud and on the right the normals
computed from the map.
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computed from map

Figure 6.16.: The deviation between the computed and the expected normals for both proposed approaches.

6.5.2. Comparison with Currently Used Estimator in L3 Terrain Model Generator

The same scene explained above is used to compute the normals with the current approach used in the L3
Terrain Model Generator. The resulting normals and their deviation from the expected normals can be seen in
figure 6.17. Furthermore, the average error angle is denoted in table 6.3. It is computed trough comparing
the computed normals with the expected normals for the surface at twenty different time steps. As the results
show, the surface normals are much more accurate compared to the normals of the two proposed approaches
in this thesis.

(a) Normals computed by currently used approach in
L3 Terrain Model Generator

0o

≥45o

(b) color
scale

(c) Deviation from
expected normals

Figure 6.17.: On the left the estimated normals computed from the currently used approach in the L3 Terrain
Model Generator. On the right the deviation of these normals from the expected ones for the
given surface.
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Approach New approach from
input cloud

New approach from
map

Old approach in L3
Terrain Model Gener-
ator

Average error angle
in [degrees]

6.98 11.34 1.521

Table 6.3.: The table shows the average error angle between the estimated surface normals from the three
aproaches and the expected normals of the surface.

6.5.3. Performance Comparison

Due to not being able to run the 3F2N [12] code on the ARM processor of the Nvidia Jetson AGX Xavier, the
CPU implementation got tested using another PC with an Intel Core i5-4670 CPU with four cores. To keep
consistency while testing, the current surface normal estimator of the L3 Terrain Model Generator is also tested
on the other PC. The GPU implementation is tested on the Nvidia Jetson AGX Xavier.

Artificial Data

The following tables (6.4 and 6.5) show the average consumed time of the different approaches to compute
the surface normals. To measure the time, the input cloud was fused into the system a hundred times. The
average consumed time and its standard deviation are denoted in the tables. The table 6.4 shows the measured
durations using the test terrain map presented at the beginning of the chapter, which creates an input cloud
with 250,000 points. The table 6.5 shows the measured durations using the stairs dataset presented at the
beginning of this chapter. With a grid resolution of 2 cm, the stairs map has a size of 2.4 m × 4.8 m, which
creates an input cloud of 28,800 points. Due to the long duration needed of the currently used normal
estimator in the L3 Terrain Model Generator, only the CPU and the GPU implementation of the surface normal
estimator developed in this thesis are tested on the larger dataset.
The results show that the CPU approach presented in this thesis is the fastest of the three approaches, even
being faster than the GPU approach. The CUDA API statistics show that most of the time is spent on transferring
data between the computer memory and the GPU memory and vice versa. While testing with the terrain
dataset, it can be seen that 75% of the time is lost transferring data. The computation on the CPU is already
so fast that the additional transfer of data reduces the overall performance.
The currently used approach in the L3 Terrain Model Generator is very slow and can not produce surface
normals in real-time. The new proposed approach is over a thousand times faster, thus being able to produce
surface normal estimation in real-time.

Real Data

In a next step, the surface normal estimator’s performances are tested using real data by using the dataset
of the student room scene, which can be seen in 6.7. The average consumed computational time and the
standard deviation of the hundred taken measurements are shown in table 6.6.
Again, the new proposed approach drastically outperformed the currently used one in the L3 Terrain Model
Generator. Further, the CPU version is two times faster than the GPU version.
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Normals on terrain
dataset

New approach CPU
time in [s]

Standard devi-
ation new ap-
proach CPU in
[s]

New approach GPU
time in [s]

Standard devi-
ation new ap-
proach GPU in
[s]

Surface normal esti-
mation

0.0922 0.0003 0.1263 0.0093

Table 6.4.: Computation time comparison between the CPU and GPU implementation of the surface normal
estimator using the ground truth terrain dataset.

Normals
on stairs
dataset

Old approach
CPU time in [s]

Standard
deviation
old ap-
proach
CPU in [s]

New approach
CPU time in [s]

Standard
deviation
new ap-
proach
CPU in [s]

New approach
GPU time in [s]

Standard
deviation
new ap-
proach
GPU in [s]

Surface
normal
estima-
tion on
artificial
data

26.1946 2.7409 0.0098 0.0007 0.0173 0.0016

Table 6.5.: Computation time comparison between the old surface normal estimator and the new one with
CPU and GPU implementation using the ground truth stairs dataset.

Normals
on stu-
dent
room
dataset

Old approach
CPU time in [s]

Standard
deviation
old ap-
proach
CPU in [s]

New approach
CPU time in [s]

Standard
deviation
new ap-
proach
CPU in [s]

New approach
GPU time in [s]

Standard
deviation
new ap-
proach
GPU in [s]

Surface
normal es-
timation
on real
data

17.7052 11.6658 0.0053 0.0009 0.0108 0.0019

Table 6.6.: Computation time comparison between the old surface normal estimator and the new one with
CPU and GPU implementation using the student room dataset.

6.5.4. Discussion

The results in the previous section show that the currently used approach in the L3 Terrain Model Generator
can not produce normals in real-time, whereas the presented approaches in this thesis are more than capable
to do so. The CPU version outperformed the GPU version suggesting that the additional data transfer between
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GPU and computer memory has an negative effect on the performance.
However, the accuracy of the computed surface normals of the proposed approaches is not as good as the
accuracy of the current approach in the L3 Terrain Model Generator. With a speed-up of over a thousand
times, the CPU approach demonstrates a significant performance boost. If the application requires real-time
calculation, the newly introduced approaches in this work should be used. The accuracy however should be
improved in future works.
Comparing only the two approaches developed in this thesis, the one using the input point cloud to compute
the surface normals shows significantly higher accuracy.

6.6. Summary

To conclude this chapter, an overview of the benefits and the remaining challenges of the proposed approach
is given.

Benefits: Using ground truth data, the system is able to produce the map representation, traversable score
and surface normals according to the expectations from an artificial input cloud. Further, using real data from
a camera setup, the system produces consistent map representations. The variance of the height measurement
and the traversable area annotation produce meaningful results. Additionally, the system demonstrates its
capability of clearing dynamic objects from the map. Using high parallelization shows to be a big advantage,
especially using the GPU, as the map is able to update two times faster than the CPU. Furthermore, the surface
normal estimator proves to be very efficient, being over a thousand times faster than the approach currently
used in the L3 Terrain Model Generator. Using real data, the system is capable of updating the map, the surface
normals, and the traversable score of up to ten times a second.

Remaining Challenges: The surface normals are computed very fast, but their accuracy is not very good
as they are especially susceptible to sensor noise. Additionally, the system shows that it will not be able to
produce a consistent map representation in dynamic environments, because the computation time used for
ray-tracing is too high. Even though the system is capable of updating the map up to ten times a second, the
normal update rate of RGBD-Cameras, which is as high as thirty times a second, can not be reached. The GPU
approach would especially benefit from a robot-centric map representation, as then a map of consistent size
could always be held in the GPU memory. This in turn would drastically reduce the data that needs to be
transferred between computer and GPU memory. The coloring of grid cells, which is especially fragile around
the edges of objects, should be looked at in future research.
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7. Conclusion and Future Work

In the following chapter, the results achieved in this thesis are summarized.
Furthermore, potential work based on the shown results is discussed.

7.1. Conclusion

This thesis gives an overview of different mapping and surface normal estimation approaches. Furthermore,
common open-source programs are introduced and it is evaluated, whether they are suitable for the proposed
method.
Based on the discussed mapping approaches, a mapping system is proposed, which uses a probabilistic
elevation map representation with added color, traversable area computation and dynamic object handling.
Additionally, the 3F2N approach from [12] is used and enhanced, such that normals can be computed from
an organized point cloud and a grid-based elevation map.
The mapping approach computes the variance for the sensor data using the robot’s pose covariance matrix
and a sensor model. The corresponding height and variance are then stored in a probabilistic elevation map
using the grid_map library [15]. In a next step, the deviation between the height at each grid cell and its
neighbors and the computed surface normals are used to calculate the traversable area on the map. Finally,
the system tackles the problem of dynamic objects congesting the map representation by using a ray-tracing
based approach to clear off passed dynamic objects.
The main goal of the proposed approach is to maximize efficiency, as the computational resources of mobile
robots are limited. Using massive parallelization at every step of updating the map, the proposed approach
works efficiently on both multi-threaded CPUs and GPUs.
The system is evaluated using both ground truth and real RGBD-Camera data. The ground truth datasets are
generated using the available functionality of the grid_map library to transform mono-colored images into a
map representation. The real data are captured using a camera system consisting of a RealSense D455 and a
RealSense T265 camera.
While the proposed surface normal estimation approaches show to be significantly more efficient than the
one currently used in the L3 Terrain Model Generator, they are prone to exhibit a lower accuracy. From the
proposed two approaches to compute the normals, the accuracy of the one estimating the normals from the
input cloud instead of the map representation is significantly higher.
The proposed mapping system shows clear advantages over the one used in the L3 Terrain Model Generator,
especially at reducing the impact of sensor noise and capturing vertical surfaces. This gives reason to believe
that the developed system is more robust. Furthermore, the uncertainty is captured and stored for every
grid cell of the map. Computing the traversable area on both the ground truth and the real data produces
meaningful results.
The evaluation shows that the ray-tracing based approach used is capable of clearing dynamic objects well,
though it also becomes apparent that the operation is too computationally intensive to be used in real-time
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applications.
Finally, the CPU and GPU implementations were benchmarked to find out which of the two methods is most
efficient. As part of this, it is found that the GPU approach is already significantly faster than computing the
map update using the CPU, despite the fact that the majority of computation time is spent transferring data
between the computer and the GPU memory. Given no dynamic object handling is done and the data come
from a single RGBD-Camera, the proposed approach can easily handle updating the map with a rate of up to
ten Hz. Once additional cameras are added, which in turn increases the data load, updating the map is only
possible at a lower rate, thus being less suitable for real-time applications.

7.2. Outlook

Based on the results illustrated above, future research could address the following points to further increase
both the efficiency as well as the robustness with which map representations can be produced.
First, the color mapping could be improved, as currently, the last fused point determines the color of the grid
cell, which shows to lead to wrong coloring especially around the edges. Using only the most relevant point,
which is the point closest to the height of the grid cell, to color the cell could be an improvement. However,
this detail does not have any implications for the robot, but rather is only of relevance to the human eye.
Second, the point variance is computed using a sensor model, therefore, the specific sensor model should
be selected for the respective camera. Due to fact that the D455 was not yet on the market when [13] was
published, there were no parameters for the sensor model of the camera provided by Fankhauser et al.. As a
consequence, the parameters for the D455 should be determined. It is unclear to what extent the variance
would differ if an updated sensor model for the D455 camera was used.
Third, while the proposed surface normal estimators are already very time efficient, their accuracy could be
further increased. Future work could achieve this by applying different filtering methods for the normals.
Additionally, the size of the used filter masks from 3F2N could be increased, which might further improve the
accuracy of the computed normals. This, however, could also harm the efficiency of the system, as additional
computational steps need to be carried out.
Fourth, for the dynamic object handling to work in real-time, future work should seek to reduce the number of
points used for ray-tracing, thus lowering the computational effort substantially. As often multiple points fall
into the same grid cell, one strategy might be considering only the lowest point at each grid cell. Furthermore,
the problem of small artifacts remaining in the map after an object was cleared should be tackled to improve
the consistency of the map.
Lastly, although it is shown that it is more favorable to use the GPU instead of the CPU for mapping, this
difference in efficiency can even be extended, if one could reduce the amount of data that need to be transferred
between computer and GPU memory. This could be achieved by storing a map representation of fixed size on
the GPU memory at all times, thus only transferring the data of the input point cloud to the GPU. Furthermore,
this could be enhanced by using a robot-centric mapping approach, where only a map of fixed size around
the robot is maintained, instead of a world-centric mapping approach. Such an approach is already used
in [25]. While still capitalizing on the high core count of the GPU to compute the different update steps in
parallel, fewer data need to be transferred when applying these suggestions. Therefore, a significant speed-up
of the GPU version is expected, which could make it feasible to handle data from multiple RGBD-Cameras
sufficiently well, thus potentially allowing the system to be suitable in real-time applications.
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A.1. Used Noise Parameters

• normal_factor_a: 0.000611

• normal_factor_b: 0.003587

• normal_factor_c: 0.3515

• normal_factor_d: 0

• normal_factor_e: 1

• lateral_factor: 0.01576
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