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Abstract

Object pose estimation is a widely appearing and challenging problem and thus many
different approaches have been proposed in recent decades. Using three dimensional
registration of surfaces is a promising technique to solve this problem.
While the surface alignment problem has even been solved globally optimal by now, the
issue of a high computational complexity remains.
In practice, surface registration often appears in applications that are partially solved by
a human user. By making use of basic human skills, the computational complexity can
be reduced in order to be applicable to time-dependent scenarios.
While object recognition is an easy task for humans, it remains difficult for computers.
However, pose manipulation of objects is time-consuming for humans but can be solved
efficiently by computers. By combining the strengths of both, the human and the com-
puter, pose estimation can be solved semi-autonomously in a quick and robust manner.
This thesis proposes an approach that relies on an initial guess and prior knowledge of
the shape of the object as input that can be given by a human supervisor or be available
to the robot a-priori. Thereby, the complexity of the surface alignment that will be used
for the pose estimation can be reduced.
In contrast to existing state-of-the-art methods that are mostly either only locally con-
vergent or are based on complex optimization methods that guarantee global optimality,
the proposed method implements a heuristic search strategy that evaluates samples from
a search space and chooses the best sample in the end.
By combining this strategy with the initial guess, pose estimation can be solved rotation-
invariant in feasible time which makes the algorithm promising for user-interactive
real-time applications.
The algorithm is initialized with a rough estimate of the relative position between the
two surfaces. After completion, it returns an estimate of the pose, consisting of rotation,
translation and of the relative scale between the two surfaces. Although no optimality
guarantee is incorporated, the user can easily give feedback on the result’s correctness.
The algorithm operates on point clouds which can be easily obtained from any surface
representation by a sampling procedure. The 3D-registration problem is then solved by
defining a search space and creating a sophisticated version of the Iterative Closest Point
(ICP) algorithm that is able to evaluate the search space locally, deal with partial overlap
and integrate a scaling property. The algorithm aims to find the global optimum by using
a custom-built search strategy.
As a test case scenario in this thesis, the algorithm is applied to pose estimation of objects
in the environment of so-called avatar robots that are partially controlled by a human
supervisor that takes control of high-level planning tasks.
Therefore, the algorithm is integrated in an existing user interface so that the supervi-
sor is able to easily identify an estimate of the position of desired objects and to give
feedback. In order to provide a point cloud, the objects have to be pre-known and ad-
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ditionally, custom-built templates of the desired objects have to be available. Thereby,
the supervisor is able to define specified object-templates and an initial estimate of the
object’s position in the 3D-sensor data of the robot.
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1 Introduction

Object pose estimation is a highly important task for modern robotics which can be solved
by various approaches. This thesis will utilize surface alignment in order to provide a
semi-autonomous solution for the problem.
A novel approach will be presented that is based on prior knowledge, for example an
initial guess of a human user. Thereby, the complexity of the surface registration problem
can be reduced in order to be applicable in time-dependent scenarios.
The provided algorithm will then be applied to pose estimation for avatar robots that
are partially user controlled. A rough initial guess of the supervisor will be used as prior
knowledge.
Object recognition is an easy task for humans and by combining it with computational
power for surface alignment, the efficiency of user-dependent pose estimation can be
strongly improved.

1.1 Surface Alignment

Figure 1.1.: Examples for Surface Registration
On both left images, two surfaces in point cloud representation can be seen.
By estimating the transformation, one surface can be projected onto the
other as depicted in the images on the right.
(Adapted from Xiong et al [1])
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The registration of surfaces is a widely appearing and challenging problem that has its
roots in early computer vision in the alignment of curves in two dimensional images. Al-
though many different approaches have been proposed in recent decades, the solutions
depend strongly on their application and are still subject to computational limitations.
The surface registration problem describes the search for a transformation that maps
one surface in an arbitrary representation onto another surface. Mostly the two surfaces
represent at least partly a common object and the resulting transformation projects corre-
sponding parts of the object onto one another. Two examples for the surface registration
problem are depicted in figure 1.1.
Efficient methods have existed for a long time that are capable of aligning two surfaces
in a locally convergent manner. Therefore, the surface alignment problem can be solved
efficiently and accurately if an initial estimate is known. Many approaches were made
that used heuristics and other techniques to aim for global convergence until the problem
was first solved globally in 2013. However, the computational costs of globally conver-
gent algorithms are too high for many applications.
Some of the applications that depend on surface registration are interactive and partially
user-controlled. This thesis presents an approach that makes use of known algorithms
and extends them in a way that supervision and control by a human user is exploited in
order to shorten computation time.
On the one hand, object recognition is a highly challenging task for machines while
humans solve it even subconsciously. One the other hand, pose manipulation of objects
remain costly and time-consuming for humans. By combining the advantages of comput-
ers and humans, efficient surface alignment can be achieved.

1.2 Context

Figure 1.2.: Semi-Autonomous Avatar Robots
From left to right: DRC Hubo (DARPA), Atlas (Boston Dynamics), Chimp
(DARPA)
(Source: A. Romay [2])
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The proposed algorithm can be applied, for example, to object recognition for avatar
robots.
Avatar robots are a category of robots that can be seen as a trade-off between purely-
teleoperated and fully-autonomous robots. While the motion planning of body parts of
humanoid robots can be solved autonomously by state-of-the-art techniques, tasks like
perception, recognition and interaction with the environment remain difficult for fully-
autonomous robots. Furthermore, communication with the robot is difficult in many
cases due to a limited bandwidth or a high signal latency.
Avatar robots are an approach to deal with these limitations by using a human super-
visor to adopt certain high-level planning tasks. The robot uses the relatively simple
commands of the user to create complex behaviours and therefore reduces the communi-
cation between the robot and the supervisor. Three prevailing avatar robots are depicted
in figure 1.2.
In order to make the interaction between the avatar robot and the human supervisor
possible, an interface that allows to transfer the high-level commands to the robots has
to be provided. This interaction allows the avatar robot to perform highly complex tasks
that cannot be fulfilled completely autonomously and also permits the human supervi-
sor to focus on the problem rather than monitoring and commanding relatively simple
actions of the robot. Figure 1.3 illustrates the interaction between the supervisor and
the robot.
In recent years, avatar robots have emerged as an important tool by allowing the ex-
ecution of complex tasks in various remote environments, such as post-disaster and
hazardous scenarios, medical assistance or planetary exploration. Proceeding progress
in robotics allows for more complex applications which demand further improvement in
matters of autonomy of the robot and reduction of supervisor tasks.
Object recognition is an important tool for the robot in order to interact with its environ-
ment that is currently at least partially solved by the human supervisor in most cases.
Interpreting this data autonomously is a non-trivial task. In order to interact with dif-
ferent objects in the environment, the robot has to recognize and identify the pose
(consisting of rotation and translation) of the objects that should be interacted with. A
common approach to solve this problem is to use pre-constructed templates of pre-known

Figure 1.3.: Illustration of the interaction between the Human Supervisor and the
Avatar Robot
(Source: A. Romay [2])
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objects and align these with the scan data of the real object and thereby identifying the
pose of the object.
These object templates can be seen as an abstract representation of the surface of an
object. By aligning the template with the corresponding object in the sensor data of the
robot, the object and its pose in the environment of the robot can be explicitly identified.
The supervisor can solve the alignment between the template and the sensor data by
hand.
The purpose of this thesis is to enhance pose estimation and reduce the necessary inter-
action of the supervisor by introducing a novel approach for semi-autonomous surface
alignment and applying it to pose estimation of object templates.

Figure 1.4.: Template-based Pose Estimation
Example of a template-based pose estimation on the basis of a drill: By es-
timating how to transform a pre-defined template of the drill (upper right)
in order to match the real drill in the scan data (upper left), the pose of the
drill in the environment of the robot is defined (bottom).
(Adapted from A. Romay [2])

1.3 Contribution

This thesis proposes a novel approach that extends state-of-the-art methods for surface
alignment and aims for finding a correct registration estimation invariant of the initial
rotation in feasible time.
The proposed algorithm will be specifically designed to allow for good applicability to
pose estimation with object templates. By utilizing the object recognition abilities of the
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supervisor, prior information about the position of the object template in the sensor data
can be used to reduce the computational complexity of the surface alignment algorithm.
Thereby, the effort of the human supervisor can be reduced and the pose of a pre-known
object can be estimated semi-autonomously in a quick and robust manner.
The supervisor simply has to provide a rough guess of the position of the object and select
the desired object template. The algorithm then calculates and returns the estimate of
the pose of the object.
The extension of existing surface registration methods is crucial because no alternatives
exist that allow for semi-autonomous alignment of surfaces in feasible time.

1.4 Challenges

This approach faces various challenges, such as non-perfect templates or noise caused
due to the sampling procedure of the environment by the sensors. Furthermore, only a
partial overlap of the template with the object in the scan data can be expected because
in general, the sample view is only generated from a single perspective which leads to
a hidden side of the sought-after object. The visible part of the object can also happen
to be only a small portion of the surface of the object or consist of two separated sub-
surfaces if the sensors are targeted towards the object from an unfavourable perspective.
Occlusions by other objects are also common and may shadow a huge part of the object.
Another problem to face are self-occlusions from the robot itself because interaction with
an object often obscures a large portion of the very same object.

1.5 Outline

The rest of this thesis is structured as follows:

Section 2 gives a short overview of the most famous approaches for surface registra-
tion and reviews them in regard to their applicability to the presented problem.
Afterwards, current solutions from some research groups for the semi-autonomous
manipulation of objects will be presented.

Section 3 presents the algorithmic concept to solve the proposed problem.

Section 4 explains the requirements that must be satisfied in order to use the algorithm
from section 3.

Section 5 describes implementation issues of the proposed algorithm.

Section 6 explains the integration of the implemented algorithm in the utilized set-up
and presents the user interface.
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Section 7 gives a performance evaluation of the implemented algorithm. It will not only
be tested on different objects with simulation data from various perspectives, but
also on sensor data captured by a real robot with different objects.

Section 8 will discuss the results, review fulfilment of the mentioned challenges and give
an outlook on open problems and possible solutions.
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2 State of Research

This section will present an overview of current literature and review famous approaches
for surface alignment. Afterwards, a short insight to solutions for template alignment for
object manipulation of robots groups will be given.

2.1 Surface Alignment Approaches

Registration of surfaces or curves in various representations is a challenging problem
and has appeared in a broad range of applications and therefore many possible regis-
tration approaches have been proposed. The representation of the two surfaces may
vary, whereas most approaches are easiest implemented with sampled point clouds from
the two objects but representations like implicit functions or Computer Aided Design
(CAD) models are also possible. Most algorithms work with dense objects as well as with
surface representations, whereas the latter is much more common due to the surface
sampling character of most sensors.
This thesis will focus on surfaces in point cloud representations because they are most
common and other representations can easily be converted to point clouds by sampling.
The reviewed methods aim to estimate the transformation parameters that project one
point cloud onto the other. The point cloud to which the transformation is applied will
be referred to as source point cloud, while the point cloud onto which the source cloud
is projected will be called target point cloud.
The transformation parameters can be of different form but mostly appear in their easi-
est variant as a homogeneous transformation matrix that encodes rotation, translation
and can for example be extended to include scaling.
In the following, different surface registration techniques will be described and reviewed
with regard to their applicability to the presented problem.
The reviewed methods will be split into two categories: First, local surface alignment
approaches that will only find a local optimum and thus rely on a rough initial estimate
of the transformation parameters to work properly will be presented. Afterwards, more
sophisticated approaches that aim for global convergence and thus work without an
initial estimate of the transformation parameters will be reviewed.
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2.1.1 Local Point Cloud Alignment

Iterative Closest Point (ICP) Algorithm

Figure 2.1.: Visualization of the ICP Algorithm
The ICP algorithm is applied to two mushrooms (red and blue points). The
blue lines visualize the correspondences in the depicted steps. The images
show the algorithm in iteration 1, 3, 8, 13, 20 and in the final iteration 27.

The most common approach for local point cloud alignment is the so-called Iterative
Closest Point or Iterative Corresponding Point (ICP) algorithm that has been developed
by Besl & McKay [3] and Chen & Medioni [4] independently and has since then appeared
in many different versions.
The ICP algorithm defines a cost function that is iteratively minimized until a local
optimum is reached. In each iteration, the nearest neighbour in the target point cloud
is assigned as a correspondence for each point in the source point cloud. The cost
function is defined as the sum-of-least-squares between the source points and their
correspondences. The parameters are estimated by minimizing this cost function.
This can be understood as an Expectation-Maximization (EM) approach that consists of
two steps. In the E-Step of the algorithm, the correspondences are assigned and in the
M-step, the distance between the source points and their correspondences is minimized.
These two steps are alternated until the ICP algorithm has reached a local minimum. A
visualization of the ICP algorithm’s execution can be seen in figure 2.1.
As the correct transformation and correspondences are both unknown, this resembles a
chicken-and-egg problem because the transformation depends on the correspondences
and the correct correspondences depend on the transformation. Solving one of these
problems is easy if the other one is known but having to estimate both at the same
time carries many problems due to a highly non-linear and non-convex cost function.
Additional difficulties like noise or partial overlap of the two objects and occlusions cause
the algorithm to be even more likely to fail and end up in a local minimum of the cost
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function.
Over the years, numerous extensions have been proposed in order to make the ICP
algorithm more robust and overcome some of its limitations. Most of these changes and
improvements can be categorized as follows:

Selection The Selection of the points in both point clouds that are taken into account
for the nearest-neighbour search. This is often regarded as a preprocessing step
and thus not considered as part of the ICP algorithm. Subsampling as proposed in
[5] can speed up the classical ICP algorithm by removing redundant information.
This can for example be achieved by using the surface normals as a measure for
the similarity of points as proposed by [6].

Matching The matching of the source points with their correspondences. In most cases,
this is simply achieved by using the nearest neighbours but it is also possible to
use additional information. In [7], the matching is carried out in a six dimensional
space, where three dimensions represent the standard euclidean dimensions and
the other three encode additional colour information. The distance between differ-
ent points is still measured with the sum-of-least-squares. Since the most expensive
part of the ICP algorithm is the correspondence-matching, data structures with fast
look-up times like kd-trees are used in most implementations. It is also possible
to use a sophisticated version of a kd-tree that exploits the properties of the ICP
algorithm as described in [8].

Weighting Some variants of ICP weigh corresponding point pairs differently, for example
by calculating the surface normals of points (by assuming locally planar surfaces
and taking their neighbours into account) and by assigning correspondences with
similar normals a higher weighting factor.

Rejection Rejection of correspondences (assign them a weight of zero) is especially im-
portant for outlier detection. It is possible to reject correspondences with a distance
above a certain threshold or to reject a fixed percentage of correspondences with
the biggest distances. Chetverikov et al [9] proposed a method in 2002 called
Trimmed ICP that only takes a fixed percentage of source-correspondence pairs
with the smallest distances into account. Zinsser et al [10] introduced an approach
called Picky ICP that works with arbitrary overlapping percentages and that only
uses pairs with a distance lower than a certain threshold for the minimization step
and rejects the remaining pairs.

Error Metric While the standard ICP only uses the sum-of-squared-distances between
the correspondences as error metric, more sophisticated approaches like the point-
to-plane [11] and Generaliced ICP [12] algorithm exist that also take neighbouring
points of the correspondences into account. The point-to-plane ICP algorithm mini-
mizes the projection of a source point onto the approximated surface of the target
cloud. The Generalized ICP algorithm regards all points as samples drawn from
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an underlying probability distribution that are afflicted by noise. By using a full
probabilistic approach, the Generalized ICP algorithm can be regarded as a plane-
to-plane ICP that minimizes the distances between approximated planes of the
source and target object.

Minimization Closed form solutions based on Singular Value Decomposition (SVD) for
the standard ICP algorithm exist. More complex ICP variants require numerical
optimization algorithms such as the Levenberg-Marquardt-algorithm to estimate
the transformation parameters.

Rotation Representation Different rotation representations are possible, such as the Car-
dan, Euler or the Angle-Axis representation. Another famous representation are the
so-called quaternions which avoid redundant angle representations.

Non-rigid extensions There are also approaches that allow the target point cloud to
change shape (e.g. necessary for face detection with ICP).

Scaling Property Extensions which include a scaling parameter that allows to search for
a target that is of different size than the source object have also been proposed.
Approaches following this idea have been introduced by [13] and [14].

Performance Evaluation

Comparisons of different point cloud alignment approaches for locally convergent regis-
tration can be found for example in [15], [16], [17] and [18]. Many evaluations focus on
the accuracy of the different approaches, whereas only few can be found that compare
the convergence rate of the algorithms which is more relevant to the problem this thesis
aims to solve. A short review of a convergence comparison of different algorithms from
Salvi et al [18] that is visualized in 2.2 will be given here.
Five different versions of the ICP algorithm and their behaviour when executed on the
same scene are depicted in the graph. The tested algorithms are the standard ICP al-
gorithm, the Picky ICP algorithm (that only takes pairs into account whose distance is
lower than a certain threshold) as well as the point-to-plane ICP algorithm. Salvi et al
also evaluate two ICP versions that have not yet been mentioned here. The first one ex-
tends the ICP algorithm by using a genetic algorithm approach. The second one focuses
on minimizing the least-median-of-squares instead of the sum-of-squared-distances.
The standard ICP converges slightly faster than the point-to-plane version, whereas the
latter one is more accurate. The Picky ICP converges slower and ends up with a smaller
error. The least-median-of-squares approach converges fastest, while the genetic method
takes the longest time to converge. These two also end up with the highest mean-squared
error.
It is important to note that this graphic only considers the number of iterations needed,
not the duration of single iterations. Algorithms whose optimization step can be sped
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Figure 2.2.: Comparison of Different Local Point Cloud Alignment Algorithms
Convergence behaviour of different versions of the ICP algorithm. The num-
ber of iterations is depicted on the horizontal axis and the corresponding
mean-squared-error on the vertical axis.
(Adapted from [18])

up by using closed-form solutions, can easily outperform algorithms where this is not
possible in terms of execution time. In addition, algorithms with simpler cost-functions
can also be extended easier, for example by adding a scaling property.

Limitations of the ICP Algorithm

As reviewed in the previous section, numerous variants of the ICP algorithm exist that
improve different parts of the algorithm. Extensions for different problems, such as par-
tial overlap of the source and target point clouds or the extension to a scaling property,
have been proposed.
However, all these variants of the ICP algorithm have in common that they are extremely
likely to get stuck in a local minimum. Therefore, a good initial estimate of the transfor-
mation parameters is necessary in order for the algorithm to work properly and converge
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to the global optimum of the parameters.
The standard version of the algorithm defines a highly non-linear and non-convex cost
function due to the two-way dependencies of the transformation and the correspon-
dences which are both a-priori unknown. Extensions for dealing with a scaling parame-
ter and partial overlap of the point clouds make the cost function even more difficult to
solve and create more local minima.
Versions of the ICP algorithm, such as the Generalized [12] or the point-to-plane ICP
algorithm [11], exist that try to improve the behaviour of the algorithm by using a more
complex cost function but they come at the cost of higher optimization complexity be-
cause closed-form solutions do not exist for these extensions.
There are also solutions that aim to widen the basin of convergence by using multiple
correspondences and then assign each one a possibility. The transformation can be es-
timated by maximizing the likelihood of these multiple correspondences. However, the
resulting high computational cost makes them hard to use for real-time applications.
Different approaches have been proposed to solve the problem of avoiding local minima,
the most important ones will be reviewed in the next section.

2.1.2 Non-local Point Cloud Alignment

Not all approaches covered here are fully globally convergent or incorporate a conver-
gence guarantee. However, all presented methods have in common that they try to
overcome local limitations of basic algorithms.

Correlation-Based Registration

The basic idea of correlation-based techniques is to identify some intrinsic properties in
both point clouds and then align them. If these intrinsic properties are transformation-
invariant, this is an easy way to estimate the transformation parameters.
A classical solution for fast and initialization-invariant point cloud registration following
this idea is based on Principal Component Analysis (PCA) and was introduced by Yambor
et al [19] in 2000. The used intrinsic parameters are the eigenbases of the point clouds.
The alignment is carried out as follows: First, the covariance matrices of the normalized
clouds are calculated. Afterwards, the eigenvectors and eigenvalues of these matrices
are computed. The three eigenvectors represent a basis, the before-mentioned eigenba-
sis. This eigenbasis can be understood as the directions with the greatest variances of
each point cloud. The eigenvector with the largest eigenvalue thus corresponds to the
direction with the largest variance of the points. Figure 2.3 shows two example point
clouds and their corresponding eigenbases.
The transformation matrix that projects one of the eigenbases onto the other is also the
transformation matrix that can be used for projecting one point cloud onto the other.
If the source and target point cloud are identical, this approach will find the global
optimum directly. However, in almost all cases the objects are sampled and consist of
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Figure 2.3.: Two Point Clouds and Their Eigenbases
The image depicts two example point clouds of a mushroom in dark blue and
red. The corresponding eigenbases are visualized as three vectors in green
and light blue respectively.

different points covered by noise. This approach may still be helpful when using the
result to get a rough initial estimate of the transformation parameters and afterwards
use them as initialization for a standard ICP algorithm.
However, this approach is still very sensitive to outliers because even a few outliers can
have a severe impact on the covariance matrix. If the two point clouds only partially
overlap each other and thus the two point clouds represent different parts of the surface
of the object, the covariances do not have similar eigenbases any more.
The PCA-based approach can be understood as fitting each of the point clouds as a sin-
gle Gaussian distribution and then aligning their means (translation) and covariances
(rotation). To overcome the sensitiveness to outliers, Xiong et al [1] proposed a more
robust extension of this approach in 2013 called Kernel Feature Maps that was inspired
by kernel methods in machine learning.
Instead of fitting a Gaussian in the original three dimensional space, the points are im-
plicitly mapped to a much higher dimensional Hilbert space, where a single Gaussian
distribution can fit well which makes the technique more robust to outliers. The trans-
formation is not computed explicitly, but is implicitly encoded in the applied kernel PCA.
This method shows promising results and outlier robustness in feasible time.
However, if the point clouds only partially overlap each other and structures of outliers
(e.g. parts of the environment) are part of the target point cloud, the Kernel Feature
Maps method is still not very promising.
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Probabilistic Point Cloud Alignment

Another family of algorithms follows a probabilistic approach that regards the points of
the clouds as samples drawn from an underlying probability distribution.
One of the algorithms following this idea is called Soft Assign and was introduced by
Jian et al [20] in 2011.
Probably the most important approach from this family is the so-called Coherent Point
Drift (CPD) [21]. It can be regarded as a probabilistic method that solves a density esti-
mation problem. CPD approximates the two point clouds as a probability density with
a Gaussian Mixture Model (GMM) and afterwards the distance, defined by the Kullback-
Leibler-Divergence, between the two probability distributions is minimized in order to
estimate the transformation.
Although the method has shown good results in case of outliers, noise and missing points
with a higher accuracy than other approaches, its computation is very time consuming
which makes it impractical to use for real-time applications. An improved version ap-
proximating the CPD for better runtime has been proposed by Lu et al [22] in 2016 but
the improvements are not sufficient to regard the algorithm as a serious candidate for
real-time applications.
In addition, the density estimation nature of the algorithm complicates the extension to
point clouds with partial overlap.
A performance comparison of the CPD with other state-of-the-art techniques can be
found in section 2.1.2.

Branch-and-Bound (BnB)-Based Registration

In recent years, a group of algorithms was developed that aims to give a convergence
guarantee to the global optimum of the transformation parameters.
These algorithms are based on Branch-and-Bound (BnB)-optimization. Surveys on BnB-
optimization can be found in [23] and [24].
The basic idea of BnB-optimization can be summarized as follows: If a higher and a lower
bound on the derivative of the cost function is known, certain regions of the parameter
domain can be excluded from the possibility that they may contain the global optimum
and do not have to be searched in. Furthermore, if the function value of a point in the
domain is known and a current best value exists, a certain area around the evaluated
point must have smaller function values than the current best point. If all parts of the
domain are excluded this way, the current best point is the global optimum.
BnB-optimization was first applied to point cloud registration by Li and Hartley [25] in
2007 but their approach made unrealistic assumptions (equally large point clouds, no
outliers) which makes their method not very useful in practice.
Yang et al [26] extended the approach in 2013 and proposed a methoalled Globally Op-
timal ICP (GO-ICP). By deriving a higher and lower bound on the sum-of-least-squares
cost function and using the BnB criterion, they developed an algorithm that is able to
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Figure 2.4.: Parameter Space of the GO-ICP Algorithm
Left: Rotation parameter space in Angle-Axis representation: All possible
rotation values lie inside the sphere with radius π. Right: Translation param-
eter space: All possible translation parameters lie inside the cube with edge
length ξ. (Source: [26])

solve the point cloud registration problem globally in rotation and translation space and
provide a convergence guarantee.
GO-ICP uses a standard version of ICP as function evaluation that takes the six rotation
parameters as arguments.
The parameter domain is parametrized as follows: The translation space can be under-
stood as a three-dimensional cube that contains all possible values of the translation
parameters lower than a certain value. This value can simply be chosen as the maxi-
mum distance between two points from the two point clouds. The rotation space can be
parametrized as a cube with radius π by using the Angle-Axis representation for rotation.
The two parameter spaces are depicted in figure 2.4.
The rotation and translation space are both divided recursively with an octree and the
sub-cubes at the branches of the tree are cut if the BnB-criterion is fulfilled. This is the
case if the radius around the point that cannot contain a better point than the current
best point completely surrounds a sub-cube of the octree. The mentioned radius is re-
ferred to as uncertainty radius. A visualization of this issue can be found in figure 2.5.
The GO-ICP algorithm uses a nested BnB-algorithm to avoid having to search a six-
dimensional (three rotation and three translation parameters) parameter space. First,
the global translation optimum is searched for a given rotation and afterwards, the opti-
mal rotation is searched.
The GO-ICP algorithm works with a priority-queue that contains all cubes or branches
of the tree that could contain the global optimum, sorted in increasing order by their
lower bound on the cost function. If the cube with the lowest lower bound is closer to
the current best found value than a certain threshold, the algorithm is stopped and the
current estimate is returned as global optimum.
Otherwise, the first element of the list gets extracted, evaluated and divided into eight
sub-cubes that then get inserted into the priority queue.
As mentioned before, the GO-ICP algorithm is able to solve the point cloud alignment
registration problem globally optimally and it can be easily extended to other local
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Figure 2.5.: BnB-Criterion of the GO-ICP Algorithm
The uncertainty radius (γr for the rotation and γt for the translation) depicts
a region of the parameter space that has been excluded from the probabil-
ity of containing the global optimum. If this radius completely surrounds a
sub-cube of the octree that divides the parameter space, the corresponding
branch can be cut. (Source: [26])

variants of ICP and thus deal with problems, such as partial overlap and occlusions.
Unfortunately, GO-ICP shows long runtimes which will be evaluated in the following
section.
The idea of GO-ICP has also be transferred to probabilistic models using GMMs as de-
scribed in section 2.1.2. Campbell and Petersson [27] introduced a new method called
Globally Optimal Gaussian Mixture Alignment (GOGMA) in 2016. The parameter space is
parametrized in the same way as for the GO-ICP algorithm but the function evaluation
is done with a Gaussian Mixture Alignment instead of an ICP execution. The upper and
lower bounds are adapted accordingly.

Performance Evaluation

Campbell and Petersson [27] present a performance evaluation where they test their
proposed GOGMA-algorithm and compare it to other point cloud alignment approaches.
The results of their tests are depicted in figure 2.6.
In the table, six columns can be seen where each column represents the result of one of

Figure 2.6.: Comparison Between Different Point Cloud Alignment Approaches
(Adapted from [27])
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the algorithms. The first two columns represent two different versions of the GOGMA
algorithm, the third and fourth GO-ICP versions with ε = 1e−4 and ε = 1e−5 where ε
denotes the tolerated error of the global optimum. The last two columns represent the
standard ICP algorithm and the CPD algorithm.
The tests are executed on two point sets. The first one depicted on the left is called
STAIRS, the second one on the right is called WOOD-SUMMER.
In the first two rows, the average absolute error of translation (in metres) and rotation
(in degrees) can be seen. In the three rows beneath, the results are categorized in the
three categories coarse (C), medium (M) and fine (F) that describe the percentage of
executions that achieved a certain accuracy. Coarse allows an error of 2m/10°, medium
an error of 1m/5° and fine an error of at least 0.5m/2.5°. In the last row, the average
runtime is depicted.
It can be seen that in both cases the ICP algorithm performed poorly but has by far the
shortest runtime. The CPD algorithm succeeds in more cases but has a runtime that is
much higher than that of the standard ICP. GO-ICP solves about 80% of the executions
coarsely and the GOGMA-algorithm even full 100% of the tests.
However, both GOGMA and GO-ICP suffer of a very high computational cost that makes
them impractical for many time-dependent applications.

2.2 Pointcloud Alignment for Object Manipulation

In this subsection, current solutions for object manipulation will be presented.
Most semi-autonomous approaches for object manipulation are based on three dimen-
sional models that are located in the environment by a supervisor. These models define
different properties of the object, such as grasping or stance information that are used to
create the trajectories of the robot. Symbolic level approaches that define manipulation
instructions are also possible.
The first approach presented here is called the Affordance Template (AT) ROS Package
and was published by TRACLabs and NASA in 2015 [28].
By providing an environment that allows a human user to modify the pose of these tem-
plates, the objects in the environment can be identified explicitly by manually adjusting
the template to the according object in the sensor data.
An approach called Online Affordance-based Perception published by Fallon et al from
the MIT [29] in 2014 implements an approach for the semi-autonomous alignment of
templates, that was used at the DARPA Robotics Challenge (DRC).
The research group also developed another fully-autonomous approach for a different
contest, but the required time for human input was short compared to the time lost due
to planning the robot motion with a poorly fit affordance model.
The semi-autonomous approach relies on user input that provides a one- or a two-
dimensional input (e.g. a point or a line) that specifies a search region. A chosen
template is then aligned to the best fit in the local environment automatically. Fig-
ure 2.7 depicts an example for this procedure.
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Figure 2.7.: MIT Perception Approach for the DRC
Semi-autonomous template matching: The operator specifies a template
from the box in the bottom right corner and a search region by drawing a
line (as it can be seen in the left image). Afterwards, the template is aligned
automatically.
(Source: Screenshots taken from a youtube video [30])

2.3 Discussion

This thesis will present a semi-autonomous approach that makes use of techniques for
surface registration in order to improve the template-based pose estimation used by
state-of-the-art methods for object manipulation in robotics.
Affordance-based approaches rely on the registration of pre-build templates with their
correspondences in sensor data. Designing a specifically adapted surface alignment algo-
rithm that makes use of human object recognition abilities and computational efficiency
can simplify and improve this alignment.
State-of-the-art methods for surface registration mostly feature only local convergence
properties or suffer of high computational costs by aiming for global convergence in
terms of translation and rotation.
For semi-autonomous template alignment, global translation convergence is not very
important because the position of object templates in a three dimensional virtual envi-
ronment can relatively easy be determined. The same accounts for the scaling factor.
Rotation manipulation of objects on the other hand is time-consuming for humans.
This suggests to utilize a surface alignment technique that operates invariant of the
rotation, but is only locally convergent in terms of translation and scaling in order to
best trade-off human and computer abilities.
Therefore, a custom-built method which uses a search strategy that evaluates possible ro-
tations in order to find the desired solution will be used. The evaluation can be achieved
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by using a locally convergent algorithm, as it has been proposed in the literature.
The search strategy relinquishs convergence guarantees but features a high success prob-
ability. This is sufficient because if a human user monitors the results, falsely aligned
surfaces can be identified and corrected easily.
This could not be achieved by using existing methods because locally convergent algo-
rithms require time-consuming rotation manipulation by humans and techniques that
offer a convergence guarantee are too computationally expensive.
The proposed method will trade-off both sides in order to improve the speed and quality
of semi-autonomous template-based pose estimation.
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3 Concept

This thesis presents an approach for object pose estimation that uses pre-known shape
information of objects and an initial input of rough position and scale estimation in
order to accurately estimate the pose and scale of an object. In this thesis, the problem
is approached by the alignment of two surfaces in order to determine the pose of one of
the surfaces relative to the other.
In general, surface alignment describes the problem of estimating a transformation that
projects one surface onto another, so that parts of a common object are mapped together.
To be applicable to pose estimation, the problem will be extended to deal with partial
overlap, noise and to incorporate a scaling factor.
While various approaches for surface registration have been proposed, many applica-
tions require specifically adapted and optimized solutions. Many of these applications
appear in user-interactive scenarios. Therefore, by restricting to these scenarios, the
human ability for object recognition can be utilized in order to improve the performance
of surface alignment algorithms.
The proposed algorithm follows this idea and will therefore be designed to rely on an
initial guess and thereby shorten computation time.
In a human supervised approach, an appropriate interface should allow the user to be
able to efficiently specify a rough estimate of the position and scaling factor. Since manip-
ulation of the orientation of object templates in a three dimensional virtual environment
is often difficult and time consuming, the algorithm will be designed to operate indepen-
dently of the initial rotation, while relying on the initial guess and providing only locally
optimal properties in the case of the translation and scaling factor.
The basic concept of the proposed algorithm can be understood as follows: A locally
convergent algorithm will be constructed by using existing surface alignment techniques
that will be able to deal with the defined requirements. By discretizing a rotation search
space that encodes all possible orientations of a surface, the locally convergent algorithm
can be used to evaluate samples from this search space.
After a time-dependent stop-criterion has been fulfilled, the algorithm will be terminated
and the best evaluated sample will be chosen. The stop-criterion will depend on time
to allow for autonomous adaptation to the difficulty of the problem. In cases where
alignment between the surfaces is easy, the algorithm can be terminated quicker, while
in more difficult cases, more samples will be evaluated to increase the certainty in the
correctness of the estimate.
The procedure will be designed and optimized in order to provide a high success proba-
bility in feasible time.
With this approach, human object recognition abilities and computational power can be
combined and the strengths of both, the computer and the human supervisor, can be
utilized efficiently.

20



4 Requirements

In this section, the different requirements for properly using the proposed algorithm will
be explained.
The algorithm takes two point clouds and an initial estimate of the position and scaling
factor as input and returns the full pose estimate as result. After discussing the require-
ments for the source and target point clouds and the initial guess, the requirements
for a necessary user interface will be presented. The interface allows the user to in-
teract appropriately with the algorithm. An example for such an interface will also be
presented.

4.1 Source and Target Clouds

The source and target objects have to be provided as discrete point clouds. If other repre-
sentations are used, such as CAD-models or implicit functions, they have to be converted
into point clouds, for example by using an appropriate sampling procedure.
The objects are supposed to be provided in a surface representation, whereas dense
models are basically possible but will not be tested in this thesis.
The points from the source and target point cloud are usually represented in different
coordinate systems, namely the source and target coordinate system. If both objects are
represented in the same coordinate system, the initial position, that will be explained in
detail in the following subsection, equals zero.
While the orientation of the target coordinate system does not matter directly, the ori-
entation of the source coordinate system relative to the target coordinate system is
important. The initial guess of the position is supposed to translate the source cloud so
that it is projected onto the target cloud.
The proposed algorithm tries to avoid local minima of the cost function that are caused
by symmetrical resemblances in the shape of an object. In order to increase the success
probability, it is advised to align the symmetrical-axes of the source cloud with the axes
of the source cloud’s coordinate system’s axes. Thereby, the algorithm will be able to
check for better estimates with symmetrically rotated versions of the template.

4.2 Source Object

The proposed algorithm is generally able to deal with arbitrary surfaces but is designed
to be applied to template-based pose estimation in particular. Therefore, the source
cloud is supposed to resemble the surface of an object, while the target cloud contains a
part of the surface of the desired object, as well as parts of the environment.
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The quality of the template affects the success probability. It is possible to use imperfect
templates, but they can significantly reduce the success rate in some cases.
Some applications also work if the used template only represents parts of the source
object, e.g. the handle of a switch. For template-alignment, full template versions of the
object will perform better because small parts of objects can often fit well with parts of
the environment, too.
The bigger the represented part of an object, the more the desired solution differs from
suboptimal solutions.
Then again, if a source object is deformable, e.g. a switch with different positions, it may
be helpful to use only the handle of the switch because the template would only match
the real switch in specific states.
In summary, templates representing complete object surfaces improve the performance
of the algorithm, while deformable objects may be easier aligned with a template that
resembles only a part of the object’s surface.

4.3 Initial Estimate

The initial guess describes the rough location and scale of the source object relative to
the target object. If the source and target objects are represented in the same coordinate
system (if the source and target coordinate system are equal), the initial position is set
to zero.
The position of the source object is defined as the point relative to which the rotation is
applied, namely the origin of the source coordinate system.
If the symmetrical axes are aligned with the coordinate system’s axes, as demanded in
the previous subsection, this centre point is well defined. For an object with uniform
density, this point is equal to its emphasis.
The question of the necessary accuracy of the initial position cannot be answered in
general. It depends on many properties, such as the source and target object’s shape,
the perspective and quality of the sensors, the overlapping percentage, as well as on the
environment.
It can be said that the more difficult the problem is, the more accurately the initial guess
has to be set. Especially if the target cloud is separated into two sub-clouds due to a
disadvantageous perspective, the initial position is required to be very precise. Noise
and imperfect or very small templates further increase the problem.
A sophisticated analysis of the necessary accuracy can be found in section 7.2.

4.4 Operator Environment

The implemented algorithm is constructed to operate semi-autonomously and allow for
fast initialization and feedback by a supervisor. This suggests that an environment has
to be provided that allows a user to efficiently interact with the algorithm.
The environment is supposed to visualize the source and target point clouds and enable
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Figure 4.1.: Example of the Alignment Procedure with OCS
The User Interface of the Operator Control Station (OCS). In the first two
images, a robot standing in front of a table with a drill on top can be seen
from two different perspectives. The third image shows the same setup with
a template of the drill. The drill can be inserted at an arbitrary position and
the pose of the template can be changed by using the arrows and circles
around the drill. By double clicking on the template the alignment algorithm
is executed and the template is aligned with the scan data as depicted in the
last image.

the operator to choose templates and modify their pose. If the scaling factor is also taken
into account, the size of the object should also be manipulable. Manipulation of the
rotation is not necessary, but can be helpful in order to allow the operator to use better
initial positions of the source object in case the algorithm fails. However, this should only
be required in very difficult cases, such as a target object that is split into two sub-clouds.
The environment should also enable the operator to simply send a request to the tem-
plate alignment server and visualize the result to allow for feedback. The operator can
immediately see whether the result is correct and if not, start the template alignment
again with a different initial position.
An example for an environment that incorporates these requirements is the so-called
Operator Control Station (OCS). An example of the alignment process with OCS is shown
in figure 4.1.
OCS visualizes both point clouds and allows the operator to insert different pre-defined
object templates as source clouds to a specified position in the target cloud. Therefore,
the source objects have to be pre-known and the corresponding templates have to be
provided. The insertion point is chosen via ray-casting from the virtual camera to the
surface of the target cloud.
The rotation and position of the template can be changed by using circles and arrows
around the template. A support of the manipulation of the scale of objects has not yet
been implemented.
If the template has been roughly aligned (which usually is the case directly after insert-
ing the template because the position can be chosen before), the template alignment
server can be called by double-clicking on the template. The algorithm is then initialized
with the current position of the template. As soon as the server has returned, the result
is visualized.
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Remark: The OCS environment currently does not incorporate the functionality to
change the scale of a template. In order to be able to use this feature in the future,
the algorithm will be designed so that it also estimates the scaling property. In order to
integrate this functionality, OCS will have to be adapted accordingly.
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5 Implementation

In this section, the implementation of the proposed algorithm problem will be presented.
The algorithm is supposed to solve the registration problem between two surfaces. The
surfaces are represented as point clouds because they are most common, allow to define
a good cost function easily and additionally, all other surface representations can be
converted into point clouds by a sampling procedure.
The point cloud, which the estimated transformation is applied to, is referred to as source
cloud, while the second point cloud will be denoted as target point cloud.
The proposed algorithm mainly consists of two parts: A local surface registration algo-
rithm that is able to deal with the before-mentioned challenges, such as partial overlap,
occlusions and an incorporated scaling property. This local algorithm is executed with
a global search strategy from different initial positions and after a time-dependent stop-
criterion has been satisfied, the best solution is chosen.
The final algorithm is supposed to be able to align two surfaces with only an initial
estimate of the position of the source cloud relative to the target cloud and to operate
completely independent of the rotation of the source cloud.
First, the input-output-interface of the algorithm will be defined. Afterwards, the local
alignment algorithm and the global search strategy will be explained.

5.1 Interface

The source point cloud is defined as X= {xi}
nx
i=1 and the target point cloud as Y= {yi}

ny
i=1

with xi,yi ∈ R3. nx denotes the number of points in X and ny the number of points in Y
accordingly.
The point clouds are represented in two different coordinate systems, namely the source
and the target coordinate system.
In general, the two point clouds contain a different amount of points. In most cases,
the source cloud will represent an object which can be partially found in the target
cloud. The target cloud usually also contains a large portion of outliers because the
surroundings of the object are scanned, too. Nevertheless, the algorithm will of course
also work for other cases, such as point clouds with full overlap.
An initial position of the source object relative to the target object is also required. This
position is represented by an initial translation vector tini t ∈ R3. If the objects are of
different size, an initial scaling parameter sini t ∈ R also has to be provided as input.
After successfully completing the registration problem, the algorithm returns the estimate
of the source object’s pose relative to the target object. The pose consists of the rotation
R ∈ R3×3 and translation t ∈ R3 of the source object. In the case the objects are of
different size, the scaling parameter s ∈ R will also be estimated.
The output of the algorithm can be seen as the transformation matrix between the source
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and the target point cloud. Therefore, applying the homogeneous transformation matrix
to the source cloud, will project it onto the target cloud.

5.2 Data Preprocessing

Before executing the alignment algorithm on the data, some preprocessing steps are
necessary to improve the performance and the success probability.
Computational power limits the number of points in the point clouds that can be pro-
cessed efficiently. Different down-sampling methods exist, such as a Voxel-grid filter or
algorithms that try to preserve important information in the data and down-sample the
clouds non-uniformly. However, if the clouds are adequately large, a random-filter is
generally sufficient and can even have advantages because it is possible to use different
sub-sampled point clouds which can be helpful in order to avoid small local minima.
Another possibility to improve the success probability of the algorithm is to remove those
points from the target cloud of which it can be assumed that they do not correspond to
the source cloud.
The probably easiest but also very efficient form of data removal is to delete those points
that can be assigned to a plane in the target cloud. If it is known that the source object
does not contain large planar structures, it can be assumed that planes in the target
cloud do not belong to the desired source object. This is advisable because many com-
mon objects do not contain planar structures while frequently appearing environments
like tables or walls do contain easily detectable planes.
The plane removal procedure deletes the largest plane in the target cloud. Therefore, it
is possible to also use the plane removal for partially-planar objects. If a part of a planar
environment, that is larger than the planar structures in the object, is also contained in
the target cloud, the plane will be removed without affecting the desired object.
If activated, the plane-removal is executed by using a RANSAC-based method.

5.3 Local Point Cloud Alignment

In this section, different parts of the literature from section 2 will be used in order to
design an algorithm that can be initialized arbitrarily and will then converge to a local
minimum.
The local algorithm is initialized with a point from the parameter space. The initial
parameters are a rotation matrix R ∈ R3×3, a translation vector t ∈ R3 and a scaling
factor s ∈ R.
The transformation that is applied to the source point cloud is referred to as T .
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5.3.1 Iterative Closest Point Algorithm

The best-known approach for the 3D-registration problem is the ICP algorithm that uses
an iterative procedure to estimate the transformation matrix which projects the source
point cloud onto the target cloud.
If the correct correspondences between the points of the two point clouds are known,
the problem is relatively easy to solve. Unfortunately, the correct correspondences are
a-priori unknown and depend on the transformation matrix. The correct transformation,
however, depends on the correspondences.
The ICP algorithm splits this problem into two sub-problems by using a common
approach to solve this kind of chicken-and-egg problem, the so-called Expectation-
Maximization (EM)-algorithm. By using the EM-approach and the nearest neighbours
in the target cloud as temporary correspondences for the points in the source cloud, the
two-way dependency can be solved by iterating the following three steps:

Apply Transformation The current transformation matrix T(X) is applied to the source
point cloud.

E-Step: Find correspondences The nearest neighbour in the target point cloud is assigned
as correspondence for each point in the projected source point cloud.

M-Step: Find transformation The transformation matrix is calculated so that the sum-
of-least-squares between the source cloud and the assigned correspondences is
minimized.

By iterating these steps, the algorithm is guaranteed to converge to a local minimum as
shown by Besl and McKay [3].
A schematic visualization of the ICP algorithm can be found in figure 5.1.
The simple sum-of-least-squares cost function φ(X, Y) as it is used by the ICP algorithm
will be defined as

φ(X, Y) =
nx
∑

i=1

ny
∑

j=1

‖T (xi)− y j‖2 ·ωi, j (5.1)

where T (x) describes the affine transformation that is searched for and ωi, j is defined
as

ωi, j =

�

1 if j = argmin j′∈1:ny
‖T (xi)− y j′‖

0 else
(5.2)

For now, the transformation matrix is designed to only rotate and translate the points,
so it is set as T (xi) = R · xi + t.
The rotation matrix has nine components but only three degrees of freedom. This means
that additional constraints have to be made in order to receive a valid rotation matrix.
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This can be achieved by fulfilling the equations det (R) = 1 and R ·RT = I with I as the
3× 3-identity matrix.
For simplicity, the nearest neighbours of the source points xi will be denoted as C =
{ci}

nx
i=1, where ci represents the target point in y ∈ Y that minimizes the euclidean

distance to the source point xi.
The cost function can now be written as

R?, t? = argmin
R,t

nx
∑

i=1

‖(R · xi + t)− ci‖2 (5.3)

s.t. RT R= I∧ det(R) = 1 (5.4)

with R? and t? as the (locally) optimal transformation parameters.

Figure 5.1.: Schematic Visualization of the ICP Algorithm
The ICP algorithm takes the source cloud X , the target cloud Y as well as
an initial transformation matrix T (X) as input. The algorithm then iteratively
executes the following procedure until T (X) is converged: First, the current
transformation matrix is applied to the source cloud. Afterwards, for each
point in the resulting projected source cloud the nearest neighbour in the
target cloud is assigned as correspondence. Finally, the transformation matrix
is recalculated so that the sum-of-least-squares between the source cloud and
the correspondences is minimized.
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5.3.2 E- and M-Step of the ICP Algorithm

The E-Step seems straightforward as for each point xi a nearest-neighbour (NN)-lookup
in the target cloud has to be performed and assigned as correspondence ci. In practice,
however, this is often the bottleneck of the algorithm. This makes optimization for the
NN-lookup, that will be discussed in section 5.5.2, necessary.
The M-Step operates on a set of hard-set correspondences and optimizes for the transfor-
mation so that the sum-of-squared-distances between the source-correspondence pairs
are minimized. For this simple cost function, closed-form solutions exist which avoid
using computational expensive numerical optimization methods.
Arun and Huang [31] proposed a method using SVD that can solve the described opti-
mization problem in a fast and robust manner.
This can be done by calculating the matrix

H=
xn
∑

i=1

x′ic
′T
i (5.5)

with x′i and c′i as the normalized source points and their normalized correspondences.
These can be calculated easily by subtracting the mean x̄ of the source point cloud and
the mean c̄ of the correspondences from each point

x′i = xi − x̄,c′i = ci − c̄ (5.6)

The Singular Value Decomposition of H can now be calculated as

H= UΣVT (5.7)

The optimal rotation matrix R? and the optimal transformation vector t? can be computed
as

R? = VUT , t? = c̄−Rx̄ (5.8)

In some cases, this results in a reflection matrix R with a determinant equal to −1. This
can be easily corrected in most cases by multiplying the last column of R with −1. In
cases this fails, conventional least-squares is not appropriate and a RANSAC-like tech-
nique is proposed. However, this should only happen if the problem is ill-fitted and for
the purpose of the proposed algorithm, it is sufficient to stop the execution of the ICP
algorithm.
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5.3.3 Scaling Property

In the previous sections, the computational background for the estimation of the rotation
and the translation have been discussed but if the source and target point cloud are of
different sizes, the scaling parameter also has to be taken into account for the algorithm.
Another advantage of the SVD approach in the M-Step is that it allows to integrate the
scaling parameter simply in the closed-form solution as shown by Zinssner [13] in 2005.
The scaling factor s ∈ R can be integrated in the transformation by multiplying the
rotation matrix with the parameter s

T (x) = s ·R · xi + t (5.9)

An additional constraint has to be set because s must be greater than zero. Otherwise
s = 0 would be a trivial but perfect solution and would simply translate the whole source
cloud (that is shrunk to a single point) to one of the target cloud points.
The cost function now looks like the following:

R?, t?, s? = arg min
R,t,s

nx
∑

i=1

‖(s ·R · xi + t)− ci‖2 (5.10)

s.t. RT R= I∧ det(R) = 1∧ s > 0 (5.11)

It can be shown that the rotation matrix R is not affected by the new scaling parameter
s and can thus be computed the same way as before.
If the normalized source and target points are used as in the previous section, it is
possible to solve for the scaling factor independently of the translation. Thus, the scaling
factor is the only unknown in the following optimization problem as the rotation R? has
already been estimated

s? = argmin
s

nx
∑

i=1

‖(s ·R? · x′i)− ci‖2

s.t. s > 0

(5.12)

By using the vectors c′i = ci − c̄ and x′i = xi − x̄ from the previous subsection, s? can be
calculated as

s? =

∑nx
i=1 c

′T
i x′i

∑nx
i=1 x′Ti x′i

(5.13)

In the last step, the transformation is computed as

t? = c̄− s? ·R? · x̄ (5.14)
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If these equations are put in the M-Step of the standard ICP algorithm, the estimation of
the scaling property has been successfully integrated.
The algorithm does not increase the runtime very much in comparison to the standard
ICP and works well and stable with relatively small size differences, which is sufficient
due to the commitments that have been made. However, the algorithm still depends on
a good initial estimate as it is only guaranteed to converge to a local minimum.

5.3.4 Partial-Overlap and Occlusion Robustness

The algorithm in its current form is able to find a local minimum for two point clouds
with full overlap. It will now be extended so that it can also handle target clouds that
only contain parts of the source object’s surface.
As discussed in section 2, there are basically two famous variants to reach this goal.
In both variants, all correspondences are assigned the same way as in the regular ICP
algorithm and afterwards, some of the source-correspondence pairs are rejected. One
possibility is to reject a fixed portion of the assigned pairs. The disadvantage of this
approach is the fact that the inlier-outlier-rate has to be set to a fixed value before the
execution of the algorithm. This restricts the possible applications of the final algorithm
and limits the possible range of overlap-portions.
The second variant rejects all pairs whose distance is larger than a certain threshold.
This is a much better solution because a good threshold can be experimentally evaluated
(see section 5.6) and this approach will be able to deal with arbitrary inlier-outlier-
proportions.
Other more complex solutions that assign weights (for example points with similar
normals are assigned higher weights) or use multiple correspondences are not suitable
as they require numerical optimization methods because no closed-form solutions exist
for these approaches. This would conflict with the performance requirement that has
been discussed at the beginning of the section.
The algorithm can be extended by inserting another step between the E-Step and M-Step
in the iterative routine and by defining a distance threshold ζ that limits the distance
of points that are taken into account. The modified routine now iterates the following
steps:

Apply Transformation

E-Step: Find correspondences

Trim Point Cloud Remove all pairs with higher distance than the distance threshold ζ.

M-Step: Find transformation
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Figure 5.2.: Schematic Visualization of the Modified Algorithm
In contrast to the procedure in figure 5.1, another step between the E- and
M- Step is added. In the Trim Point Cloud step, all source-correspondence
pairs whose distance is greater than the distance threshold ζ are removed .

A schematic sketch of the modified algorithm can be found in figure 5.2.
The modified cost function can be written as

R?, t? = argmin
R,t,s

nx
∑

i=1

‖(s ·R · xi + t)− ci‖2 ·ωi (5.15)

s.t. RT R= I∧ det(R) = 1∧ s > 0 (5.16)

with

ωi =
§

1 if ‖xi − ci‖< ζ
0 else (5.17)

A problem arising by only using pairs with a distance lower than a certain threshold is
that if the source cloud is initially placed outside of the target cloud and all pairs have a
higher distance than the threshold, no valid pairs will be found and the algorithm fails.
This is especially problematic for target clouds that are split in the middle of the desired
object (which may for example happen if the object is scanned from an unfavourable
perspective). In these cases, the source cloud would be ideally placed in the middle of
the target cloud. If the initial orientation of the source object is unfortunate, all source-
correspondence pairs may have a higher distance from each other than ζ. This can be
avoided by using a minimum overlapping percentage. If the portion of valid pairs is
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lower than this minimum overlapping percentage, the number of pairs that are taken
into account is increased so that the fixed minimum overlapping criterion is satisfied.
Pairs with a lower distance are of course always preferentially used by the algorithm for
the M-Step, instead of pairs with higher distances.

5.4 Global Rotation Search Strategy

This section will present a search strategy that aims for estimating the transformation
of the 3D surface registration problem independently of the initial rotation and locally
convergent in terms of translation and scaling factor. This will be done by constructing
a search strategy that uses the locally convergent algorithm from the previous section to
evaluate samples from a rotation search space. When the algorithm is terminated, the
best evaluated sample is returned.
First, the rotation search space will be defined and discretized. Afterwards, the search
strategy will be constructed so that a high success probability of finding the desired
solution will be provided.
As discussed in section 2, different approaches have been made to achieve global conver-
gence for the point cloud registration problem but real-time requirements limit complex
strategies. This is why an iterative refinement procedure that aims to find the global
optimum by using samples with a great variety is used. This strategy will be explained
and presented in the following subsections.
Since no knowledge about the overlapping percentage of the source and target point
cloud is available, it is hard to decide when to stop the search strategy and whether the
desired solution has been found.
It seems reasonable to spend more time searching for a better sample in difficult cases
than in easier ones. Therefore, a stop-criterion for the search strategy that depends on
the quality of the current best solution, as well as on the passed execution time of the
search strategy, will be used.
Thereby, the average runtime will be decreased by spending less time searching for a
good estimate in easier cases than in more difficult ones.

5.4.1 Rotations in Angle-Axis-Representation

The search strategy will use the Angle-Axis representation to describe the rotation pa-
rameters which will be shortly explained here.
Rotations in Angle-Axis representation are defined by a vector r ∈ R3. The rotation axis
is simply given by r/‖r‖ and the rotation angle by ‖r‖.
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By using the skew-symmetric matrix

[r]× =





0 −r3 r2
r3 0 −r1
−r2 r1 0



 , with r=





r1
r2
r3



 (5.18)

the rotation matrix Rr that is defined by r can be calculated by using the matrix expo-
nential of [r]×

Rr = exp ([r]×) = I+
[r]× · sin (‖r‖)

‖r‖
+
[r]2× · (1− cos (‖r‖))

‖r2‖
(5.19)

The vector r can accordingly be computed by the matrix logarithm [r]× = log (Rr).
The main advantage of the Angle-Axis representation for the purpose of this thesis is
that it allows to divide the rotation space easily. All possible rotations can be represented
by the values of r that lie inside a sphere with centre 0 ∈ R3 and radius π.
Compare Yang et al [26].

5.4.2 Rotation Space Parametrization

Figure 5.3.: Rotation Space
With the Angle-Axis representation, all possible 3D-rotations lie inside a
sphere with radius π.

First, the search space will be defined. Since the translation and scaling are supposed to
be locally convergent, only the rotation space has to be parametrized.
When following the same approach as Yang et al [26], all possible three dimensional
rotations r ∈ R3 can be represented as the points that lie inside a three dimensional
sphere with centre 0 ∈ R3 and radius π and thus satisfy the inequality ‖r‖≤ π. This
is depicted in figure 5.3. Note that all points outside the sphere are also valid rotation
parameters but can be seen as redundant representations of points inside the sphere.
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5.4.3 Iterative Refinement Strategy

Figure 5.4.: Extended Rotation Space
The extended rotation space consists of a cube with edge length 2π that
completely surrounds the sphere from figure 5.3.

Now that the search space has been parametrized, the search strategy can be defined.
The strategy should aim for a fast location of the global optimum with a high certainty
in the correctness of the result. The fact that the global optimum cannot be identified
definitely complicates the decision when to stop the search strategy.
Since no prior knowledge of the optimal rotation is available, taking samples from the
rotation space with a high variance seems reasonable. Therefore, the distances between
the samples and to the boundaries should be maximal.
In order to make discretization of the parameter space easier, the rotation space will be
extended to a cube with edge length 2π that imbeds the sphere that has been defined
as the parameter space. This extended parameter space is depicted in figure 5.4.
By using this trick, the parameter space can be divided by an octree that defines the
sample points.
The octree simply splits the cube into eight equally large sub-cubes and can thus di-
vide the rotation space in arbitrary small pieces. Each cube stores its centre coordinates
that can be used to initialize the local point cloud alignment algorithm. The root node
contains the origin (0, 0,0)T and thus represents an identity matrix as rotation ma-
trix. The eight children of the root node can be obtained by permuting the signs of
(±π/2,±π/2,±π/2)T .
Fixed parameters define the maximum recursion-depth of the octree and also the mini-
mum distance between two samples in rotation space.
In general, not the complete octree will be evaluated because the algorithm is terminated
if a time-dependent stop criterion is fulfilled that will be defined in a later subsection.
The samples defined by the centres of the sub-cubes of the octree are stored in a priority
queue that is straight-lined evaluated until the stop-criterion is fulfilled. When travers-
ing the priority queue, the best sample evaluated yet will be stored and returned if the
stop-criterion is fulfilled.
The best sample will be defined with a different cost function than the sum-of-least-
squares of the locally convergent algorithm and will be presented in the following sub-
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Figure 5.5.: Creation Process of the Priority Queue
2D example of the search strategy: The three boxes show how the space is
divided by the quadtree (octree for the 3D case) where each node stores
the centre of the corresponding cube. On the right side, the corresponding
quadtree of each recursion-step can be seen. On the bottom, an example
priority queue for the given depth is depicted. The nodes of the octree are
stored in increasing level order but the order of the nodes of each level is
estimated randomly.

section.
When traversing the queue, it is beneficial to try to explore the whole rotation space
uniformly and refine the search steadily. This is achieved by a breadth-first search which
means that each recursion level will be explored completely before the next one is taken
into account.
The number of nodes in each level grows exponentially with basis eight, meaning that
the third level already contains 83 = 512 samples. If these samples were put in order
into the priority queue, only a small portion of the search space would be evaluated
thoroughly, while other areas would be neglected. This problem can be avoided simply
by traversing each level of the octree in a random order. The whole process is depicted
in figure 5.5 for the 2D-case for the simplicity of the visualization.
By extending the parameter space, some cubes of the octree represent redundant in-
formation. In order to reduce unnecessary computations, all cubes whose centre lies
outside the sphere with radius π can be discarded. This is visualized in figure 5.6.
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Figure 5.6.: Discarding of Redundant Cubes
Cubes in the quadtree (octree in the 3D-case) whose center lies outside the
sphere with radius π represent rotation parameters which can also be found
at a point inside the sphere and can thus be discarded.

5.4.4 Evaluation of the Sample Quality

As seen in the previous section, the rotation space is searched with a refinement strategy
that aims to search the whole area relatively equally to avoid missing the global optimum
by focussing on the wrong section of the rotation space.
In practice, the main difficulty is not to find the desired solution with one of the samples,
but to identify and distinguish it from other suboptimal solutions. The global optimum of
the cost function that is used by the local algorithm is often not identical to the desired
solution.
Therefore, the best evaluated sample from the search strategy has to be identified based
on different criteria.
The desired solution is expected to have a low distance between its correspondences
and a high inlier percentage. This suggests to define a quality criterion based on these
assumptions.
Each sample from the rotation space is optimized in terms of the parameters and all
criteria regarded here are evaluated by using the optimized parameters R, t and s, which
get returned by the locally convergent algorithm.
The local algorithm maximizes a sum-of-squared-distances cost function that only takes
correspondences whose distance is lower than the distance threshold ζ into account.
This is problematic when comparing different samples because estimates with fewer
inliers will have an advantage compared to samples with a higher amount of inliers.
This can be circumvented by dividing the sum-of-squared-distances by the number of
points that are taken into account for the calculation and therefore using a per-point-
error ε(R, t, s).
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In order to reward high overlaps, the overlapping percentage Ψ(R, t, s) can be calculated
by computing the number of points whose correspondence is lower than an evaluation
threshold ρ

Ψ(R, t, s) =

∑nx
1 ωi

nx
, ωi =

§

1 if ‖(s ·R · xi + t)− ci‖< ρ
0 else (5.20)

It has to be noted that the distance threshold ζ used to determine which points are
taken into account for the M-Step of the ICP algorithm is not the same as the evaluation
threshold ρ in general.
The per-point-error is defined as

ε(R, t, s) =

∑nx
i=1‖(s ·R · xi + t)− ci‖2 ·ωi

Ψ(R, t, s) · nx
(5.21)

where ci denotes the nearest neighbour of xi in the target cloud.
Finally, an optional penalty for the deviation of the estimated translation from the initial
position of the source cloud will be included.
This penalty can be useful if the template has a long shape and continues to "fly away"
from the initial position or if an imperfect template is used and the global optimum can
barely be designed to coincide with the desired solution. If the position penalty is taken
into account, the operator can improve the success probability by cleverly placing the
template at a position that is closer to the correspondence of the desired object than to
the suboptimal solution.
The quality criterion Q(R, t, s) for the samples will now be defined as

Q(R, t, s) = log(1−Ψ(R, t, s)) +λ · logε(R, t, s) +µ · log‖tini t − t‖ (5.22)

with the tuning parameters λ,µ ∈ R.
After the search strategy is stopped by a time-dependent stop-criterion that will be de-
fined in the following subsection, the sample with the minimum value of Q is returned.

5.4.5 Stop Criterion

The algorithm could easily be stopped after a fixed number of iterations or after a suffi-
ciently good estimate has been found. It turns out, however, that in practice good esti-
mates for easier problems with a high overlapping percentage are found much quicker
than in difficult cases, for example if the sensors are placed at an unfavourable perspec-
tive.
Therefore, it seems reasonable to let the stop-criterion depend on time. The more time
has passed, the smaller the overlapping percentage of the best sample has to be. Other-
wise, in order for the algorithm to terminate quickly, an estimate with a high overlapping
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percentage has to be found.
This leads to a time-dependent stop-criterion Π(t) that decreases the minimum require-
ments of the solution over time. A delayed and damped negative exponential function

Π(t) = exp(−α(t − β)) · 100 (5.23)

will be used, with the damping coefficient α and delay factor β . If the returned value
of Π(t) is smaller than the overlapping percentage Ψ(R, t, s), the stop-criterion has been
satisfied and the algorithm is terminated.
The overlapping percentage is computed according to equation 5.20 from the previous
section.
An example plot of the time-dependent stop-criterion can be found in figure 5.7.

Figure 5.7.: Function Plot of the Time-Dependent Stop-Criterion
The vertical axis depicts the minimal overlapping percentage of the
source with the target point cloud. Their relation is described by
y = exp(−α(x − β)) · 100 with damping coefficient α and delay factor β .
The graph shows an example plot with α= 0.5 and β = 1.

5.4.6 Symmetry Search and Refinement

When executing the described algorithm, it terminates with an estimate of the optimal
rotation parameters. Sometimes, it still terminates in a local minimum, however, because
of the heuristic background.
In practice, it turns out that some of these local minima appear more often than others
and sometimes they can be exploited in order to reach the global optimum.
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Many objects have a partly-symmetric shape which creates a large local optimum that
may cause the algorithm to finish before the globally optimal parameters are found.
If the symmetries of the source cloud are known (due to axis-aligned symmetries of the
source object), the locally convergent algorithm can be initialized with symmetrically
rotated versions of the best found estimate so far.
In case a new result is assigned a higher quality value, it is more likely to be the desired
solution and will replace the old best estimate.
Now that the final estimate has been chosen, it is reasonable to try to increase the accu-
racy of the result. The samples evaluated so far have been evaluated on small sub-clouds
of the source and target point clouds in order to improve the performance.
As soon as the stop-criterion is fulfilled and the algorithm terminated, the locally con-
vergent point cloud alignment algorithm can be initialized one last time with the best
estimate of the transformation parameters.
Thereby, the accuracy of the result can be increased by using more points than before.
Since the local point cloud algorithm is executed only once with a bigger number of
points in the clouds, the accuracy can be increased without severely stretching the
runtime of the global algorithm.

5.5 Implementation Details

An implementation of the presented algorithm in C++ is enclosed to this thesis. This
section will present and discuss implementation details, such as utilized environments,
optimization strategies and data structures that are used to improve the performance of
the algorithm.

5.5.1 ROS Action

The algorithm will be based on the Robot Operating System (ROS) library and imple-
mented as a ROS Action Server, due to its application in robotics.
An action server in ROS takes a goal as input, can return feedback about the progress of
the action and after completion returns the result.
This server takes two point clouds (source and target) and an initial position as argu-
ments and returns the pose estimate of the corresponding registration problem.
Every time a new best estimate is found, the overlapping percentage and the per-point-
error will be published as feedback.
A ROS action client will be used to send requests to the server and process the results.
This client also represents the connection to the used interface OCS.
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5.5.2 Optimization

The performance of the local ICP algorithm is extremely important because a faster exe-
cution results in more ICP evaluations and therefore, a higher overall success probability
of the point cloud alignment.
The bottleneck of the ICP algorithm is the E-Step where the correspondences are as-
signed. A naive NN-search results in a runtime of O(nx · ny) but can be easily improved
by using a KD-tree representation of the target point cloud. Thereby, the runtime can be
reduced to O(nx · log ny). The attached implementation uses a kd-tree implementation
of the open source Point Cloud Library (PCL).
Even with a linear-logarithmic runtime, the performance of the ICP algorithm can be
further improved by discarding a subset of points before the execution. Point clouds of
the environment can get extremely large and there is little use of searching the complete
point cloud for correspondences if the algorithm is supposed to be only locally conver-
gent in case of the translation. Therefore, the maximum distance of the points in the
source cloud from the origin of the coordinate system is calculated. Afterwards, each
point in the target cloud that is further away from the initial position than this maximum
radius times a fixed factor is discarded and the target cloud thereby downsized.
The computations of the algorithm are performed with the matrix data structure from
the open source library Eigen that especially optimizes cache and memory efficiency.
As described, the search strategy evaluates as many ICP iterations as possible until the
stop-criterion is fulfilled. Afterwards, the best estimate is returned. This can be improved
by using multiple threads that process the priority queue in a parallel manner. If a result
of one of the threads satisfies the stop-criterion, the other threads finish their current
ICP evaluation normally and afterwards, the best estimate is chosen.
The symmetry checks of the best estimate are also executed in parallel. The paralleliza-
tion process is implemented by using the open source library OpenMP.
The ICP algorithm operates only with sub-samples of the clouds that contain a fraction
of the points (the number of used points is set by fixed parameters) that are contained
in the original point clouds. This is done to achieve a higher performance and the lack
of benefits that arise from a higher amount of points, as these mostly contain redundant
information.
This sub-sampling can be used to avoid getting stuck in small minima which happens
very often in practice. When the ICP algorithm is converged, this often happens only
because of a very small local minima. By using a different sub-sample of the source cloud,
the algorithm is often freed from this local minima and continues iterating. Therefore,
using different sub-samples can eliminate small local minima.
In practice, this is done by creating different sub-samples of the source cloud at the
beginning. If the ICP algorithm gets stuck, another sub-sample is used. If all samples
converged without any change, the algorithm is terminated.
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5.6 Important Parameter Values

Alongside the arguments for the action server, the user also provides the necessary param-
eters. These parameters are set by default but can be changed for specific requirements.
The most important of these parameters will be discussed here and reasonable settings
will be suggested and justified.
The first parameter that will be reviewed is the distance threshold of the ICP algorithm
that defines which points are taken into account for the minimization step to estimate
the transformation matrix. All source-correspondence pairs whose distance is higher
than the evaluation threshold are discarded and only the points with a distance lower
than the threshold are regarded.
It is advisable to assign the distance threshold according to the sensors that are used
and the accuracy of the object template. A relatively easy way to estimate the distance
threshold is by aligning a template by hand and assigning each point of the source cloud
its nearest neighbour in the target cloud as correspondence. Afterwards, the distances
between the source points and their correspondences are saved and a probability density
is estimated, for example by using an arbitrary density estimation algorithm. Thereby,
the frequency of the distances of the correct solution can be analyzed.
Figure 5.8 depicts an example of such a density distribution of a simulated drill with
a high overlap. The target cloud is created by simulated Light Detection and Ranging
(LiDaR)-scanners. In the image, the horizontal axis shows the distance of the source-
correspondence pairs and the vertical axis their frequency of occurrence.
A part of a Gaussian distribution can be seen clearly on the left side of the plot. This

Figure 5.8.: Density Distribution of the Distances Between Source-Correspondence
Pairs of a Simulated Drill
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seems reasonable as measurement errors from the scanners are usually Gaussian dis-
tributed and arise as additive noise to the inlier points. Note that the mean of the
Gaussian distribution will not lie at point zero of the horizontal axis, as there are no
negative distances.
The outliers appear in a decreasing frequency with increasing distance.
When setting the distance threshold, a trade-off between missed inliers because of a
too small threshold and outliers that are falsely taken into account due to a too high
threshold has to be made. The algorithm is also not initialized optimally which causes
higher distances to neighbouring points. This suggests to set the distance threshold a
little bit higher than it would be done for a perfectly-aligned template. In the example
depicted in figure 5.8, a distance threshold of about ζ= 0.02m would be a good value
to choose.
The same figure is also helpful for setting the evaluation threshold ρ. This threshold
defines which points are taken into account for the computation of the overlap of the
two point clouds. In contrary to the distance threshold, it should be strictly avoided to
take outliers into account. This suggests to set the evaluation threshold to the point
on the x-axis where the Gaussian distribution stops being dominant and the influence
of the outliers increases. In the depicted example, a good point to choose would be
ρ = 0.015m.
Next, the two parameters α and β that create the shape of the time-dependent stop-
criterion will be discussed. In figure 5.9, plots of the stop-criterion for different combi-
nations of the two parameters can be seen.
These parameters can be set in a broad range. They depend strongly on user-preferences
and on the difficulty of the alignment problem. Longer execution times result in a higher

Figure 5.9.: Function Plot of the Time-Dependent Stop-Criterion with Different Param-
eters
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success probability but it can also be helpful to use short execution times. If the algorithm
fails, it can simply be executed again. If the time saved due to a shorter computation
time is greater than the time lost due to multiple necessary executions of the algorithm,
this can be a good strategy, too.
Various other parameters, such as the number of points in the sub-cloud or the maximum
refinement depth of the search strategy, can also be changed by the user. Explanations
of these parameters can be found in an documentation associated to the configuration
file that contains the parameter value definitions.

5.7 Summary

Figure 5.10.: A Schematic Visualization of the Final Algorithm

An algorithm that estimates a transformation matrix has been proposed, connecting two
partially-overlapping point clouds, given only a rough estimate of the position, scale and
of the size of the target object.
After preprocessing the data and, if applicable, removing a plane from the target cloud,
a priority queue is created. The priority queue contains samples that iteratively refine a
search space that defines all possible rotation parameters.
The points from the queue are evaluated by an locally convergent algorithm and the cur-
rent best solution is stored until a time-dependent stop-criterion is fulfilled. Afterwards,
symmetry checks for better estimates and a refinement step are executed.
An overview of the algorithm can be found in figure 5.10.
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6 Integration

This section will describe the integration of the algorithm in the utilized set-up OCS.
It has already been mentioned that the point cloud alignment algorithm is implemented
as a ROS action server that processes point clouds as input and returns the estimated
pose. The requests are sent by a ROS action client accordingly.
The server will handle requests from arbitrary clients and can therefore be integrated
in different set-ups. This can be seen as a separation into a model and a view part that
allows for good adaptability.
The model part contains the algorithm with a provided interface that operates inde-
pendently of the processes in the view part. The view part represents a client with an
interface that visualizes data and allows the user to interact with the model part.
Figure 6.1 depicts the separation of the OCS environment and the processes inside the
model and view parts.
The two parts will now be reviewed individually.

Figure 6.1.: Visualization of the Separation in Model and View Part

6.1 Model Part

The model part provides the action server that takes requests for the point cloud align-
ment. The implementation as a ROS action server denotes the interface structure, con-
sisting of a goal, feedback and a result.
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The goal consists of two point clouds represented as PointCloud2-messages from the PCL
library and an initial pose stored as a PoseStamped data structure that contains the initial
position and orientation. The orientation is only used to allow for different initial align-
ments but the algorithm does not depend on the initialization in terms of the rotation.
After a goal has been sent to the server, the initialization and preprocessing starts and
afterwards the actual algorithm is executed. Every time a new best solution has been
found, a feedback message is sent to inform the user of the quality of the current best es-
timate. The feedback consists of the overlapping percentage of the current best estimate
and of the corresponding per-point-error of the inliers.
As soon as the algorithm is finished, the result is returned in the goal data structure. The
goal consists again of a PoseStamped-message, containing the estimated position and
orientation of the source cloud relative to the target cloud.

6.2 View Part

The basic task of the view part is to allow for the user’s fast interaction with the model
part from the previous section.
Different solutions are possible as long as the interface of the model part is respected.
The OCS environment depicted in figure 6.1 will now be presented and can be regarded
as an example for an interface for the user.
In the middle of the view part, the Point Cloud Alignment Client that stores the necessary
data and sends it to the server as goal can be seen. The OCS environment visualizes the
data and allows the user to adjust the pose of the template (see figure 4.1 in section 4).
The user can request point clouds from a chosen region of the robot’s environment via the
OCS Point Cloud Request plugin. These point clouds are sent via ROS messages, stored by
the point cloud alignment server and are later provided as target cloud to the model part.
The client always discards old point clouds and stores the latest one. After requesting a
template, the user is able to chose a template and insert it at a chosen position in the
target cloud. This insertion is ignored by the client. Only after the template has been
placed at the desired position for the initialization of the server and the user double-
clicks on it, a message is sent and the template is saved as the source cloud by the client.
This message is sent by the OCS Object Selection plugin.
The client receives the pose of the template and stores it as initial pose. Now the goal
message is sent to the server and the point cloud alignment server is started. Note that
this happens right after the double-click on the template, no further alignment command
has to be sent.
The client then waits for the server to return and after the result is received, a request
with the estimated pose is sent to the Align Template Server. This server updates the
position of the template to the estimated pose in the provided visualization and the user
can immediately see whether the result is correct.
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7 Evaluation

Examples for the execution of the algorithm have been uploaded on Youtube [32].
This section will discuss the performance of the proposed algorithm that will be tested
on different data sets that are are generated from simulations or have been captured
with LiDaR-scanners of a robot.
A detailed documentation of all test sets can be found in appendix A.2. An overview of
all template is depicted in figure A.1.
Because of the missing functionality of the OCS environment to scale objects, the tests
will be executed without taking the scale into account. However, the provided imple-
mentation contains an integrated scale estimation that has been tested for operational
capability on independent data.
The tests will be executed on an AMD FX-8350 CPU with 8x4 GHz clock frequency and
16 GB of RAM. All tests will be using the same parameters that can be found in appendix
A.4.
Each test set has been assigned the correct solutions manually. However, it has to be
noted that these solutions are not a ground truth, but have been verified by hand. A test
set may have multiple correct solutions if symmetries exist and all of them are correct.
The correctness of a result is evaluated by its deviation to the correct solution. If the
norm of the translation is smaller than 5% of the template’s size and the error of the
rotation matrix is smaller than 0.05, it is regarded as correctly aligned. The size of the
template is defined as the maximum distance between a point from the template and its
mid-point.
The execution time measurement starts right before the server is called and is terminated
right after it has returned.

7.1 Tests on Simulation Data

At first, the tests will be executed on different test sets that are generated by a simulation.
The tests will be evaluated with regard to the success probability and the time needed
for the execution. The target cloud is generated by using the same object that is used to
generate the source cloud. This implicates a perfect template, which is not the case for
real world tests.
Each configuration is executed 1000 times with random initial orientations and a small
error in case of the translation. The initial translation is calculated by adding a random
offset to the correct solution. This offset is sampled from the inside of a sphere with a
radius that is 15% of the size of the template that is used.
If a test set contains a surface in the environment of the template, the algorithm is
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executed with both, activated and deactivated plane removal.
Table 7.1 shows the results of the tests.

Test Set Success
Rate [%]

Min Time
[s]

Avg Time
[s]

Max Time
[s]

Plane
Removal

drill_ 1
99.6 0.03 2.19 2.46 on
98.6 0.25 2.13 2.44 off

drill_ 2
90.8 2.10 2.26 2.53 on
3 2.11 2.39 2.80 off

drill_ 3
99.5 2.10 0.02 2.38 on
8.6 0.59 2.29 2.68 off

drill_ 4
95.5 2.10 2.40 2.82 on
88.33 2.03 2.14 2.61 off

drill_ 5
99.3 2.05 2.18 2.33 on
98 2.01 2.12 2.32 off

hammer_ 1
100 1.92 2.02 2.16 on
100 1.85 1.90 2.22 off

hammer_ 2
100 1.89 2.04 2.13 on
0 1.87 1.97 02.59 off

ladder_ 1
45 2.68 3.13 4.29 on
46.33 2.68 3.06 4.97 off

ladder_ 2 65 2.70 3.05 6.67 off

fire_ hose
94.4 1.91 1.98 2.13 on
91.6 1.91 1.99 2.22 off

cup_ 1
49.4 1.92 1.99 2.22 on
81.2 1.93 2.02 2.23 off

cup_ 2
54 1.95 2.05 2.41 on
63.4 1.93 2.07 2.34 off

cutting_ tool_ 1
0 2.07 2.24 2.61 on
0 2.03 2.18 2.51 off

cutting_ tool_ 2
0.6 2.08 2.30 2.766 on
8 2.02 2.22 2.55 off

valve
100 1.94 2.06 2.27 on
100 1.93 2.04 2.66 off

stair_ 1
23.6 1.76 2.09 2.83 on
14.6 1.72 2.11 3.10 off

stair_ 2
18.4 1.74 2.09 2.81 on
20.4 1.64 1.99 2.60 off

Table 7.1.: Simulation Data Test Results
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Discussion

Overall, the algorithm performed well on the tests. Some of the results will be discussed
individually in the following:

drill The drill template was tested the most often and in different poses with varying
difficulty. If plane removal was activated, all tests have been estimated with a very
high success probability. If plane removal was deactivated, it still performed well
but failed in the difficult cases.

hammer The hammer is rather flat, which is why the plane (if not removed) provided
a better solution than the desired one if the LiDaR-scanners were placed in an
unfortunate perspective. This is why the algorithm failed in all executions of the
hammer_ 2 set.

ladder Good initialization is important for the ladder because shifting it for one rug
causes large local minima. In addition, the top part of the template (that averts
functional symmetries) is barely seen by the LiDaR-scanners from unfortunate
perspectives.

cup The results of the cup are interesting because the algorithm performed better with-
out plane removal. This may be the case because parts of the cup were assigned
as parts of the plane and were therefore removed. This eliminates the very small
size differences of the two sides of the cup which are important for the correct
estimation of the rotation.

cutting_ tool As it could be expected, the algorithm failed due to nearly perfect symme-
tries in the shape of the cutting tool but no functional symmetries.

7.2 Distance Tests

This section will evaluate the dependence of the success probability on the accuracy of
the initial guess.
The tests will be executed on the drill_ 1-3 test sets that represent surface alignment
problems with different difficulties. The deviation from the initial guess will be calculated
by adding an offset to the correct solution. In contrast to the previous section where the
offset was sampled from the inside of a sphere, it will now be sampled only from the
surface of a sphere in order to assign all tests the same deviation.
The distance from the correct solution will be evaluated in steps of 0.02m in a range
from 0 to 0.4m. Each setting will be executed 200 times. The results are plotted in figure
7.2.
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Figure 7.1.: Results of the Distance Tests
The horizontal axis depicts the deviation of the initial guess from the correct
solution, while the vertical axis represents the achieved success rate of the
tests.
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Discussion

It can be seen that the algorithm performed well in the easy cases, when the plane has
been removed, even if the position deviation is greater than the size of the drill. Only in
the case of the drill_ 2 test set the success rate decreases a little bit (which is supposedly
due to the target cloud that is split into two) but remains stable.
Without plane removal, the drill_ 2-3 test sets performed badly but the success rate
increases with ascending distance. This may be due to some of the initializations that
are sampled so that the source cloud is placed upon the drill in the target cloud. Thereby,
the plane is not taken into account much for the alignment.
The performance of the algorithm decreased on the drill_ 1 set from a certain distance
on, which is not very surprising because some of the initializations are placed under the
plane and therefore are not assigned to the drill in the target cloud.

7.3 Accuracy Tests

The tests in this section compare the accuracy of the proposed algorithm to templates
that have been aligned by a supervisor using the OCS environment.
Each test will be executed ten times by the operator and ten times by the proposed
algorithm. The accuracy will be measured by the achieved overlapping percentage (with
an evaluation threshold ρ = 0.015m) and the per-point-error of all inliers.
The possibility of measuring the distance to the optimal transformation parameters has
been rejected because no ground truth exists and therefore, the correct parameter would
have had to be determined by hand or by the algorithm, which would have conflicted
with the test procedure.
In order to avoid an advantage of the algorithm that optimizes a cost function which
depends on the points, independent point cloud sets for the source and target point
cloud will be used for the accuracy evaluation.
The results of the tests are shown in table 7.2.
It can be seen than the algorithm performed better than the supervisor on all test sets.

Supervisor Results Algorithm Results
Test Set Overlapping

percentage [%]
per-point-error
[m]

Overlapping
percentage [%]

per-point-error
[m]

drill_ 1 66.37 0.01272 72.16 0.01187
drill_ 2 42.14 0.01517 47.15 0.01519
drill_ 3 61.27 0.01151 63.91 0.01092

Table 7.2.: Accuracy Tests Results
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7.4 Tests on Real Data

The following tests are executed on data that has been captured with the LiDaR-scanners
of the robot Johnny #5, as depicted in figure 7.2, in order to evaluate the performance
of the algorithm in real world scenarios. All test sets are depicted in appendix A.3.
The objects have been scanned in different poses and varying perspectives. The templates
used to estimate the pose of the objects are imperfect, meaning they do not accurately
represent the object’s shape. Especially the drill, that can also be seen in figure 7.2, was
tested with two different templates: The first one was a template of a drill that was used
at the DRC challenge but which does not resemble the drill used for the scans. The other
template used was a rough generic version of a drill. The other templates fit better but
not perfectly.
The solutions of the test sets are generated by hand, just like it was done for the simula-
tion data sets.
The offset is also computed the same way, by sampling a distance deviation from the
inside of a sphere with a radius that is 15% of the template’s size.
The results of the tests are shown in table 7.3.

Figure 7.2.: Capturing Test Data with the Robot Johnny #5
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Test Set Template Success
Rate
[%]

Min
Time [s]

Avg
Time [s]

Max
Time [s]

Plane
Removal

real_ drill_ 1
DRC_ drill

90.6 2.10 2.24 2.63 on
3.6 2.06 2.31 2.70 off

drill_ rough
83.6 2.11 2.25 2.47 on
79.6 2.11 2.26 2.71 off

real_ drill_ 2
DRC_ drill

90.4 2.10 2.29 2.61 on
2.5 2.06 2.28 2.67 off

drill_ rough
76.67 2.08 2.26 2.64 on
0 2.07 2.24 2.70 off

real_ drill_ 3
DRC_ drill

96.1 2.10 2.26 2.52 on
0.4 2.07 2.34 2.72 off

drill_ rough
88.7 2.07 2.21 2.49 on
0 2.10 2.26 2.64 off

real_ drill_ 4
DRC_ drill

89.0 2.11 2.25 2.56 on
0.6 2.04 2.28 2.63 off

drill_ rough
95.64 2.05 2.17 2.60 on
0 2.01 2.32 2.67 off

real_ drill_ 5
DRC_ drill

72.2 2.13 2.29 2.65 on
0 2.02 2.28 2.66 off

drill_ rough
90.04 2.02 2.14 2.62 on
62 2.02 2.21 2.74 off

real_ valve
valve 100 2.00 2.12 2.39 on

100 1.93 2.04 2.66 off

obstacle_ 1
obstacle 100 1.92 2.13 2.55 on

99 1.73 1.94 2.25 off

obstacle_ 2
obstacle 95.3 2.14 2.41 2.78 on

72.6 1.67 1.93 2.33 off

handle
handle 30 1.94 2.07 2.45 on

16.8 1.93 2.04 2.39 off

cup_ 1
cup 38.5 1.89 1.97 2.31 on

78 1.88 1.99 2.69 off

cup_ 2
cup 57.2 1.93 2.01 2.34 on

36.5 1.89 1.98 2.37 off

Table 7.3.: Real Data Test Results

Discussion

Both templates used for the drill test sets performed well with activated plane removal.
If planes were not removed, the performance broke down, especially when using the
DRC drill. A detailed analysis showed that because of the imperfect templates, a wrong
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solution with plane involved gave better results in both cases, per-point-error and over-
lapping percentage, than the desired solution.
The handle, however, did not perform very well. This may be due to noise that makes
the handle in the target cloud hardly recognizable.
The difficulty when aligning the cup was again that the two sides of the template almost
have the same extent, which is prone for errors.
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8 Conclusion

Three dimensional pose estimation remains a challenging problem and no overall appli-
cable solution exists. Surface alignment for pose estimation is a promising approach but
different requirements demand customized and extended versions of common surface
alignment techniques. Especially the computational complexity remains a big problem
in many cases.

Contribution

This thesis proposed a novel approach for three dimensional surface alignment, specifi-
cally designed for scenarios where prior knowledge is available or can be obtained.
If an appropriate interface is available, it is easy for a human user to specify a rough
guess of the position and scale of a surface, whereas manipulation of the orientation of
objects turns out to be difficult and time-consuming in three dimensional applications.
Therefore, the proposed algorithm was designed so that it only depends on an easily
providable initial guess in terms of translation and scaling factor, while operating com-
pletely independently in regard to the initial rotation of the surfaces.
The algorithm was applied to semi-autonomous pose estimation for avatar robots and
therefore integrated in an existing visualization environment that allows to insert tem-
plates and to modify their pose.
By providing a good interface between user and the implemented algorithm, template-
based pose estimation of object templates could be improved in terms of speed and
accuracy.
The algorithm was evaluated on test sets that were designed according to the application
in robotics to represent real robot scenarios.

Evaluation and Limitations

Overall, the proposed algorithm performed well on tests with simulation and real sensor
data. It is also applicable in cases when only imprecise templates exist.
In practice, it turned out that the main problem is not to find the desired solution, but
to differentiate it from suboptimal solutions. Different scenarios demand customized
quality evaluation of the samples but generalizing the quality evaluation is a difficult
task. Especially imperfect templates did not perform well on most of the criteria that can
be used to identify desired solutions.
Large portions of outliers sometimes caused suboptimal solutions to have a better value
of the quality evaluation function than the desired solution. Therefore, plane extraction,
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which was first considered a small improvement, proved to be extremely important and
to strongly improve some of the test cases, especially the ones with imperfect templates.
This can be seen clearly in the tests of the real drill, when plane extraction could improve
the result to have a better success rate of up to 95%.
Furthermore, the applicability of the algorithm is limited if the sought-after objects
feature almost symmetrical shape but no functional symmetries. In these cases, the algo-
rithm often fails due to a lack of information in the sensor data. In the tests, this can be
seen when evaluating the sets of the cutting tool or the cup where the success rate was
nearly down to zero percent.
Therefore, feedback from a human supervisor is essential to identify failed attempts.
However, the presented interface allows to rotate object templates for each axis indepen-
dently. Given that the non-symmetrical axes are correctly aligned, the error of the failed
axis can be quickly corrected by the supervisor because only one rotational degree of
freedom has to be changed, which can be done without influencing the other degrees of
freedom. This can also be seen in the video where the manometer and the cutting tool
were aligned by their non-symmetrical axes and afterwards, the last axis was adjusted
manually [32].
In addition, specifically sampled point clouds can be used to improve behaviour in diffi-
cult cases. By sampling important regions of a point cloud (e.g. a switch of a tool) with
a higher resolution and therefore assigning these areas more points, the modified areas
also have a bigger impact on the cost function and have therefore a higher probability
to be chosen as best drawn sample.

Usage in Practice

In the end, the supervisor should regard the algorithm as a helpful tool that has to be
used according to the art of the problem. If possible, plane extraction should always be
activated and the point clouds requested so that the plane can be easily detected.
In case of templates with symmetries, the algorithm should be used to align the non-
symmetrical axes and afterwards the remaining axis can be aligned by hand.
In difficult cases, when the algorithm performs badly, the global search strategy can
be avoided and only the local algorithm should be used. This can be also very helpful
because the exact alignment is often the most time-consuming part and templates that
are aligned by hand are less accurate.

Outlook

The proposed algorithm provides a good improvement to object manipulation ap-
proaches for avatar robots. However, various extensions are possible to further develop
the autonomous abilities of avatar robots.
Since the plane removal proved to boost the algorithm’s performance especially in diffi-
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cult cases, further techniques for outlier removal could be used before the execution of
the main algorithm.
The proposed algorithm could also be embedded in a procedure that uses state-of-the-art
techniques for object recognition from computer vision. Thereby, regions of interest can
be extracted from a camera of the avatar robot and be used to initialize the point cloud
alignment algorithm with the template of the recognized object and its position. The
operator’s task would be to correct falsely identified objects or wrong pose estimations.
With this method, a bigger part of object recognition and pose estimation could be relo-
cated to the avatar robot to further reduce the interaction of the supervisor.
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A Appendix

A.1 Templates

Figure A.1.: Overview of the Templates Used in this Thesis
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A.2 Simulation Data Test Sets

The following data sets are depicted in increasing order from left to right and from top
to bottom.

Figure A.2.: The drill Test Sets
In the bottom right of the second image the according point cloud of the
set can be seen. Due to an unfavourable perspective, the cloud is split into
two sub-clouds.

Figure A.3.: The hammer Test Sets
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Figure A.4.: The ladder Test Sets

Figure A.5.: The fire_ hose Test Set

Figure A.6.: The cup Test Sets
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Figure A.7.: The cutting_ tool Test Sets

Figure A.8.: The valve Test Set

Figure A.9.: The stair Test Sets
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A.3 Real World Data Test Sets

The following data sets are depicted in increasing order from left to right and from top
to bottom.

Figure A.10.: The real_ drill Test Sets

Figure A.11.: The real_ valve Test Set
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Figure A.12.: The obstacle Test Sets
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Figure A.13.: The handle Test Set

Figure A.14.: The real_ cup Test Sets
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A.4 Test Parameter Values

Parameter Symbol Value
distance_ threshold ζ 0.03
evaluation_ threshold ρ 0.02
min_ overlapping_ percentage 0.15
target_ radius_ factor 2
number_ subclouds 5
size_ source 150
size_ target 2000
refinement_ icp_ source_ size 1000
refinement_ icp_ target_ size 5000
min_ plane_ portion 0.1
min_ plane_ distance 0.04
min_ scaling_ factor 0.8
max_ scaling_ factor 1.2
icp_ eps 1.0e−5

icp_ eps2 1.0e−3

max_ icp_ it 300
max_ numerical_ error 1.0e−4

max_ percentage 0.85
damping_ coefficient α 3
delay_ factor β 0.2
max_ icp_ evaluations 600
lambda λ 1
mu µ 0
remove_ plane 0/1

Table A.1.: Parameters Used in the Tests
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