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Abstract

This thesis describes a novel approach for modification of robot behaviors during runtime. Ex-
isting high-level robot control has very limited adaptability regarding unexpected disturbances.
Possible uncertainties have to be known and explicitly considered in advance by defining strate-
gies of how to react to these. This requirement confines the development of robust robots as for
example required in complex and unstructured disaster mitigation scenarios. In order to over-
come this limitation and to facilitate the development of more flexible high-level robot behavior
control, the approach developed in this thesis enables to change the whole structure of behav-
iors even while they are executed. Therefore, the operator is able to incorporate situational
knowledge gained during execution, and thus to compensate insufficient a priori knowledge
about the status of the environment. The approach is proposed based on modeling behaviors
as hierarchical state machines, allowing for modular composition and intuitive specification in
different levels of abstraction. Detailed monitoring of the state of execution and occurred errors
assists the operator when giving commands and adjusting the level of autonomy, utilizing the
individual capabilities of both robot and operator in a cooperative manner. Nevertheless, the
developed framework is able to cope with severe restrictions on the communication channel to
the robot and is robust regarding runtime failure. In addition, verification of specified behaviors
greatly reduces the risk of failure. As part of this thesis, the behavior engine FlexBE has been
developed in order to implement and refine the promoted concepts. It comes with a compre-
hensive user interface and behavior editor and is practically applied in the upcoming DARPA
Robotics Challenge Finals.
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Zusammenfassung

Die vorliegende Arbeit beschreibt einen neuartigen Ansatz zur Anpassung des Roboterverhal-
tens während der Laufzeit. Aktuelle Verfahren zur Steuerung von Robotern sind nur sehr ein-
geschränkt in der Lage, auf unerwartete Störungen zu reagieren. Mögliche Unsicherheiten und
Strategien, um diese zu überwinden, müssen im Voraus bekannt sein und explizit berücksichtigt
werden. Diese Anforderung schränkt die Entwicklung robuster Roboter, wie sie beispielsweise in
komplexen und unstrukturierten Krisenszenarien erforderlich sind, deutlich ein. Um diese Ein-
schränkung zu überwinden und die Entwicklung flexiblerer Verhaltenssteuerung von Robotern
zu erleichtern, ermöglicht es der in dieser Arbeit entwickelte Ansatz, die komplette Struktur
von Verhalten zu ändern, selbst während diese bereits ausgeführt werden. Das erlaubt es dem
Bediener, zur Laufzeit gesammeltes Wissen über die Situation des Roboters einzubringen und
so unzureichendes Ausgangswissen auszugleichen. Der verfolgte Ansatz basiert auf der Wahl
von hierarchischen Zustandsautomaten zur Modellierung von Verhalten, was eine modulare
und intuitive Definition in verschiedenen Abstraktionsschichten erlaubt. Detaillierte Informa-
tionen über den aktuellen Laufzeitstatus und aufgetretene Fehler unterstützen den Bediener
dabei, Befehle zu senden und den Autonomiegrad des Roboters anzupassen. Dadurch können
die individuellen Fähigkeiten von Roboter und Bediener für eine kooperative Herangehensweise
genutzt werden. Dennoch ist das System in der Lage, mit starken Beschränkungen hinsichtlich
der Kommunikation mit dem Roboter umzugehen und robust auf Laufzeitfehler zu reagieren.
Das Risiko solcher Fehler wird zudem durch die Verifizierung von Verhaltensdefinitionen deut-
lich reduziert. Als Teil dieser Arbeit wurde auch die Verhaltensengine FlexBE entwickelt, um die
erarbeiteten Konzepte umzusetzen und zu verbessern. FlexBE beinhaltet eine umfangreiche Be-
nutzeroberfläche sowie einen Verhaltenseditor und wird im bevorstehenden Finale der DARPA
Robotics Challenge eingesetzt.
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1 Introduction

Robotics research showed significant progress during recent years. Individual robot capabilities
such as grasp planning for enhanced manipulation, reliable bipedal locomotion, or advanced
techniques to perceive the environment, have been significantly improved and enable applying
robots to an even greater extend to tasks where they can support humans or replace them in
dangerous situations. However, most of the current robot applications are very domain specific.
They are tailored to specific tasks and are not arbitrarily applicable, while often based on one
or two main capabilities. For example, a common service robot is focused on human robot
interaction, but it is only able to navigate on flat ground. A robot equipped with a multitude
of sensors might be able to detect objects of interest in its vicinity, but lacks in autonomous
manipulation, and thus can only report its findings.

The assumed scenarios are typically well defined. It is known in advance what is required
to solve a task, and also possible sources of failure are known in detail. Furthermore, if the
problem is too complex to be precisely modeled, teleoperation of the robot agents is a common
approach. Unfortunately, scenarios in rescue robotics are often much more severe. Besides typ-
ically performing on tasks of critical importance, rescue robots face much harder restrictions
regarding the ability to model their expected environment and to communicate with them dur-
ing task execution. While the former restriction limits the applicability of approaches relying on
autonomous robot behavior, the latter prevents conventional teleoperation. In order to address
such tasks a hybrid approach is required instead. The robot and its human operator need to
jointly work together and support each other when possible. In addition, precise a priori knowl-
edge of the circumstances of such tasks is rarely available, which makes it difficult to design an
approach in advance.

In order to encourage research in this important field of robotics, the United States Defense
Advanced Research Projects Agency1 (DARPA) proposed the DARPA Robotics Challenge2 (DRC).

Figure 1.1: High-resolution photos taken by one of the robots at Fukushima [30].

1 http://www.darpa.mil (03/21/2015)
2 http://www.theroboticschallenge.org/ (03/21/2015)
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Figure 1.2: Overview of the tasks in the DRC Finals, illustrated by James Provost.

Motivated by the earthquake and tsunami which caused significant damage to the Fukushima
Daiichi nuclear plant in 2011, this challenge defines a sequence of tasks required to mitigate
similar disasters. At this time, robots were deployed at the destructed nuclear plant with the goal
to investigate the site and to avert further danger. Despite all effort, unexpected limitations such
as narrow stairs, and disturbances like debris blocking the way prevented successful execution
of the conducted missions.

An overview of the tasks of the DRC Finals is given in figure 1.2. After approaching the site by
driving a vehicle and egressing it, the robot has to enter the building by opening a door. Inside,
the robot will face a number of different tasks such as negotiating debris, cutting a hole in a wall
and opening a valve behind it, or plugging in a fire hose. Finally, the robot will have to climb
up stairs and solve a previously unknown manipulation task. The whole course has to be solved
in a single run with a time limit of one hour. During the task, no wired connection to the robot
is allowed, neither for communication nor as power supply. As further restrictions, the wireless
connection to the robot is strictly limited to incorporate the expected conditions of a disaster
response scenario and to prevent teleoperation and the availability of detailed environmental
data. Especially indoors, communication is barely available and may occasionally face blackouts.

Team ViGIR3 (standing for Virginia-Germany Interdisciplinary Robotics) is one of the Track
B teams participating at the DARPA Robotics Challenge. While Track A teams receive DARPA
3 http://www.teamvigir.org/ (03/31/2015)
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funding to develop an own robot including software, Track B teams are funded for sole software
development and are provided an ATLAS4 robot developed by Boston Dynamics5. In addition,
further teams can participate by relying on external funding. The challenge has been proposed
in early 2012 and started in October 2012. The first competition, the Virtual Robotics Challenge
(VRC) was held in June 2013 between the teams without an own robot in order to determine
the top teams to receive an ATLAS robot. Team ViGIR was ranked 6th out of the 126 registered
teams and thus qualified to continue participation at the DRC and got an ATLAS robot. In
December 2013, the DRC Trials formed the first competition of the DARPA Robotics Challenge
including the real robots and the Track A teams. Team ViGIR ranked 10th out of the remaining
16 teams and is now facing the DRC Finals, held in June 2015.

The team was initially formed by TORC Robotics6, the Simulation, Systems Optimization and
Robotics Group7 at TU Darmstadt, and the 3D Interaction Group8 at Virgina Tech. After the VRC,
the Robotics and Human Control Systems Lab9 at Oregon State University joined the team, and
on track to the DRC Finals, the Verifiable Robotics Research Group10 at Cornell University and
the Institute for Automatic Control11 at Leibniz University Hanover joined as well. The software
of Team ViGIR is based on ROS12 and leverages several open-source software frameworks. The
main part of the software runs on the robot while the operator interacts with the part running at
the Operator Control Station (OCS). An overview of the system as used for the trials is given by

Figure 1.3: Florian, the ATLAS robot of Team ViGIR, at the DRC Trials [22].

4 http://www.bostondynamics.com/robot_Atlas.html (03/31/2015)
5 http://www.bostondynamics.com/ (03/31/2015)
6 http://www.torcrobotics.com/ (03/31/2015)
7 http://www.sim.informatik.tu-darmstadt.de/ (03/31/2015)
8 https://research.cs.vt.edu/3di/ (03/31/2015)
9 http://mime.oregonstate.edu/research/rhcs/ (03/31/2015)
10 http://verifiablerobotics.com/ (03/31/2015)
11 http://www.irt.uni-hannover.de/ (03/31/2015)
12 http://www.ros.org/ (03/31/2015)
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[22]. The behavior control framework developed in this thesis incorporates the team’s approach
towards a more operator-independent operation of the robot and to support high-level human
robot cooperation when autonomous execution is not possible. Previous work already targeted
this issue and provided an approach for specifying high-level behaviors of the robot, as well as a
way to adjust the level of autonomy during execution. But as approaching the DRC Finals, these
capabilities are not flexible enough for such complex tasks and the provided operator interaction
is not sufficiently detailed. While the robot had to solve eight different tasks in separate runs
with a time limit of half an hour for each run in the DRC Trials, the upcoming DRC Finals require
the robot to solve ten tasks, one of them even not specified in advance, in a single run with a
time limit of only one hour.

1.1 Motivation

Considering the disaster response scenario as previously described, main focus of this thesis is
the development of a framework applicable on a single robot with advanced locomotion and
manipulation abilities. It is assisted by at least one operator in order to solve complex tasks
in an unstructured environment while facing tough restrictions regarding communication. The
exact details of a task are not necessarily known in advance and unforeseen failure during task
execution has to be taken into account carefully. Therefore, high adaptation of behavior control
at runtime is required.

Adaptation to gained knowledge during task execution is generally possible in two different
ways. On the one hand, abstracting from details and trying to detect these during runtime is a
data-based way of adaptation. For example, when grasping an object, instead of commanding
the robot to close its fingers by a certain value, the command can be to close the fingers until
an increased force to the sensors indicates that the object is safely grasped. On the other hand,
modifications to the control flow of a behavior might be required in order to successfully adapt
to disturbances. Closing the fingers of the robot, for example, could be the wrong decision at
this time. If the operator detects that the object to be grasped is completely different from what
was expected, the grasping strategy developed and specified in advance may not be applicable.

Existing approaches only allow for limited adaptation by targeting the data-based way. Recent
research, especially work in the field of assisted or supervised autonomy, starts also focusing on
decision-based adaptation. However, these approaches mostly aim at preventing wrong deci-
sions by utilizing operator interaction and reducing the autonomous capabilities of the robot.
Although this is an important aspect for preventing task failure, high involvement of the op-
erator for the rest of a task just because the scenario does not meet the previously assumed
specifications close enough, is neither a robust approach, nor is it always possible.

In order to overcome this limitation and to be able to flexibly adapt to arbitrary disturbances,
this thesis not only proposes a way to allow for closer cooperation between the operator and the
robot in case of insufficient autonomous capabilities of the robot due to its behavior specification
not matching the faced scenario. But also, the developed approach enables re-specification of
the robot’s behavior based on the gained situational knowledge without interrupting or aborting
task execution, and without being limited in any way by previous specifications.

1.1 Motivation 4



(a) (b)

Figure 1.4: Possible scenario where the control flow has to be adjusted: Instead of using the yellow drill
as planned in advance, a more powerful drill is detected and preferred by the operator. The
behavior defined in (b) does not account for choosing between drills. (a) taken from [22].

Motivated by the complex scenarios including a high level of uncertainty as faced by rescue
robots, the ability to modify behaviors flexibly during runtime is a powerful feature to improve
task performance and to be able to develop significantly more adaptable robots. However,
changing the specifications of a behavior during its execution also makes it prone to failure by
possibly introducing new errors. This is especially likely considering the high pressure situation
in which the operator has to specify the changes, and his limited possibilities to test the new
specifications in advance because the robot is already in the field. Thus, it is an important aspect
of this thesis to reduce the sources of failure by assisting the operator in developing the behavior,
and to automate as much as possible while also incorporating verification checks.

Finally, further challenges of modifying behaviors during runtime have to be addressed. It
is very important to not distract the operator from supervising the actions taken by the robot.
Considering that the circumstances in which a modification of the robot behavior is required
typically also require careful supervision and high attention by the operator, specification of the
modifications has to be as easy and intuitive as possible. In addition, choosing a multi-operator
approach is very advisable for such situations. Furthermore, even small adjustments of the
behavior require time. Although the scenario itself may put time constraints on task execution,
modifying the behavior of the robot should not add further time pressure. For this reason, the
operator needs to be able to specify a point in behavior execution where the robot will pause
until the changes are applied, while keeping to execute the correct behavior as long as possible
in parallel to defining the changes in order to still make progress on the task.

1.2 Contributions

As discussed in the previous section, this thesis mainly addresses the support of runtime modifi-
cations of robot behaviors. But while these adaptations offer great flexibility when considering
the capability of reacting to unforeseen difficulties or imminent failure, they come along with
a considerably high risk regarding reliability. When changing a behavior specification during
runtime, the new version of the respective behavior is very prone to errors since it can not be

1.2 Contributions 5



tested before applying it to the robot. Furthermore, occurring execution failure may directly
lead to task failure, or at least have a significantly negative impact on task performance. For this
reason, the thesis also addresses assistance for the operator when specifying behaviors and takes
mechanisms regarding behavior verification into consideration. Therefore, this thesis includes
contributions in the following three domains:

Runtime Modifications

The realization of runtime modifications to behavior code without interrupting the execution
of the current task and without having to specify certain points for just making predefined
decisions represents the main contribution of this thesis. At first, several ways of how to define
and execute behaviors will be discussed and evaluated regarding their capabilities to incorporate
runtime changes. Subsequently, one approach is selected and a concept for the realization of
changes is developed. Finally, the implementation of this concept is presented and evaluated in
scenarios motivated by tasks of the DARPA Robotics Challenge.

Human Robot Cooperation

In order to enable the specification of behavior changes and to leverage the operator’s ca-
pability of reacting to unexpected situations, this thesis discusses ways for the realization of
cooperation between the robot and its operator. Requirements for a suitable user interface are
derived and their realization is demonstrated. Based on the special conditions imposed by the
situation in which behavior modifications have to be specified, as well as on the required com-
plexity of behaviors in order to solve the faced tasks, an innovative modeling tool is developed.
This not only allows to automatically generate executable behavior source code, but also to
monitor and control behaviors during their execution.

Behavior Verification

Considering the high reliability required for behavior specifications due to the missing possi-
bility of performing extensive testing during an ongoing mission, this thesis investigates ways
to efficiently and robustly verify complex behaviors. This not only refers to structural consis-
tency, but also to the dataflow implied by the structure. Furthermore, ways to define custom
conditions for actions triggered by the behavior and integrating behavior synthesis for prov-
ably correct behaviors will be discussed, though not yet provided by the implemented behavior
framework, in order to form a basis for future extensions.

Although originated from the DARPA Robotics Challenge, this behavior framework is applica-
ble in a variety of scenarios under different circumstances. Systems can benefit a lot from the
possibility to flexibly combine individual capabilities in order to form high-level task behaviors.
The tight integration of a human operator into the decision process of the robot enables even
application in complex, unstructured, or unknown environments. Especially applications in the
field of rescue robotics, but also similar disciplines such as space robotics or deep-sea explo-
ration, take advantage of the tolerance to impeded communication as well as of the ability to
flexibly react to unforeseen situations without needing to reset the robot.
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1.3 FlexBE

As result of this thesis, the behavior engine FlexBE (standing for Flexible Behavior Engine) has
been developed, based on the discussed concepts and defined requirements. It includes a user
interface combining an advanced behavior editor and a behavior control station for supervising
behaviors during runtime. While the engine itself is applicable for even underspecified tasks
in unstructured environments, the interface is designed for use by non-expert operators and
developers as well. Especially when specifying complex behaviors, even a developer familiar
with robotics will typically not have detailed knowledge regarding all the individual capabilities
involved for solving the task. Thus, a modular and abstract composition of behaviors is possible
using FlexBE, with a strong focus on assisting the developer by providing relevant documenta-
tion. Even advanced behaviors can be specified and executed without manually writing a single
line of code, although editing source code is possible in order to not limit expert users.

In addition to solely providing a way for specifying complex behaviors, FlexBE also manages
their execution on a remote robot agent. It includes operator interaction for close human robot
collaboration by design and deals with issues such as keeping track of the remote execution, or
sending commands and monitoring their execution. Switching flexibly from the currently exe-
cuted version of a behavior to a new one is possible without restarting the robot or interrupting
task progress, in order to take gained knowledge regarding the task into account. Even if a
behavior unexpectedly fails during its execution, the robustness of FlexBE allows the operator
to correct it on-the-fly or to select a different behavior to be executed instead.

Figure 1.5: Defining a behavior state machine in the FlexBE editor.
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Figure 1.6: Supervising a behavior during its execution using the FlexBE runtime control view.

1.4 Thesis Overview

After having given a first impression of the topic and the motivation behind this thesis in this
chapter, the thesis is divided into four parts, presented in chapters 2-6. At first, chapter 2 gives an
overview of the current state in relevant fields of research. Main emphasize is placed on behavior
control, but approaches of behavior synthesis and verification, as well as runtime modifications
are touched in order to be considered for the newly developed approach contributed by this
thesis. Next, chapter 3 focuses on the underlying concepts and discusses the theoretical back-
ground in an abstract manner. After summarizing the available basis provided by previous work
in a uniform way, concepts regarding operator interaction and runtime modifications are added
on top. Finally, consequences for behavior development are discussed.

The third part, chapters 4 and 5, presents various aspects of the implemented software based
on the developed concepts. Chapter 4 targets the onboard behavior engine and shows how
execution of behaviors is solved by FlexBE and how the process of behavior switching during
runtime is integrated. Subsequently, after an initial discussion regarding the detailed approach
specific to the user interface, chapter 5 presents the behavior control station, including code
generation of behaviors and controlling their execution.

Chapter 6 finally concludes this thesis with an evaluation of the developed behavior control
framework. Both, the development of new behaviors and the provided support during their
execution, is investigated, and strengths as well as weaknesses are identified. Following, the ap-
plication of this framework in the context of the DARPA Robotics Challenge on the robot platforms
ATLAS and THOR-MANG is presented. Finally, an outlook regarding further work is given.

1.4 Thesis Overview 8



2 State of Research

When speaking of behavior control, there are many ways to realize such a system. Nonetheless,
there are core characteristics of a behavior control system which all approaches have in common,
regardless of their different ways of realization. The main purpose of a behavior control system
typically is to coordinate high-level decisions, select appropriate actions, and trigger recovery
from failure while assuming that the implementation of each single capability of the robot is
solved separately and can be accessed by a common, known interface. Behaviors, in this context,
refer to specific representations of strategies to address at least one of the three listed problems.

This chapter presents and discusses different approaches of such behavior control systems,
especially varying with regard to the way how decisions are taken and how behaviors are rep-
resented. Next, going towards runtime-modifiable behavior control, current work regarding
behavior synthesis and verification is presented, and it is discussed how these techniques can
support the implementation of complex behaviors during runtime, considering the specific cir-
cumstances as discussed in chapter 1.1 as well as their possible use to ensure consistency and
correctness of defined behaviors.

Furthermore, ways to enable runtime modifications as required for the implementation of
behavior updates are discussed, and relevant research is presented. The latter, due to the inno-
vative character of this topic, is not specifically focused on robot behavior control. Last, selected
existing frameworks are introduced. These can be used as a foundation for the framework
developed in this thesis and are discussed regarding their applicability.

2.1 Behavior Control Approaches

Classic behavior control approaches mainly focus on either teleoperation of single robots or
as much autonomy as possible. Unfortunately, each of these characteristics comes along with
its unique pitfalls and disadvantages. In order to overcome this conflict and incorporate the
strengths of each approach, recent work starts focusing on solutions to combine both paradigms
in an intelligent way, as for example summarized in [6].

This section presents the most relevant approaches for this thesis and discusses their advan-
tages as well as their applicability for the given context. Furthermore, approaches which are
not directly applicable are discussed in order to evaluate some of their aspects and to learn
from their results and experience. But runtime-modifiable behavior control also strongly de-
pends on the ability to monitor and influence the execution of behaviors. Therefore, not only
behavior control systems are presented, but also concepts regarding human robot interaction
are discussed and it is evaluated how these paradigms can be incorporated by advanced assisted
autonomy approaches of behavior control. This is especially relevant because the commands
an operator can give the robot have a high impact on task execution when speaking of runtime
modifications, and thus have to be given on a reliable basis.

9



2.1.1 Autonomous Behaviors

The main goal of autonomous behaviors is to remove the need for human operators by providing
decisions depending on available situational data. This includes the internal state of the robot
as well as sensor data of its surroundings. The availability and reliability of this data is one of
the factors which characterizes the requirements for a behavior control system. Especially the
reliability has to be above a certain level in order to enable autonomous behaviors at all. If not,
the human cognition is much better able to identify certain situations. Further characteristics of
a task which determine the type of behavior control are for example the complexity of the task,
the number of tasks to be solved in parallel, the amount of robots involved, and the probability
of failure or external interruptions. As already presented in chapter 1, the characteristics con-
sidered in this thesis target a single robot solving a sequence of complex tasks while facing a
high probability of failure in executing the desired actions.

In the context of the DARPA Robotics Challenge (DRC), many teams like IHMC [18] and WPI
[10] used scripts to execute a series of predefined motions or relied on templates, as for example
done by team HUBO [44], to provide known endeffector poses. These approaches are simple
and require a lot of knowledge and preparation in advance, at the same time struggling to
deal with variations, uncertainty and failure. For example, WPI prepared a motion script for
picking up a piece of debris and moving it out of the way. In order to score the first point in
the corresponding task of the DRC Trials, it is required to remove at least five pieces. The script
worked well for the first four pieces, but since the motion was predefined, the robot was unable
to consider its environment and collided with a wall while trying to execute the script for the
fifth time.

Another, more reactive approach, are the behavior-based systems as presented in [26] and
illustrated by figure 2.1. Behavior, in this context, refers to relatively simple policies which are
used to preserve or achieve a single property of the system. In order to solve the given tasks,

Figure 2.1: A typical behavior-based system, taken from [26].
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multiple of these policies are active in parallel and their output is combined in order to form
the overall behavior of the agent. As stated by [9], the reactive nature of these systems makes
them less appropriate for complex scenarios. Especially when a sequence of actions has to be
executed, meaning the goal to be achieved by the behavior control system changes over time, a
purely behavior-based approach is hard to apply.

This yields the need for more advanced strategies of how to combine single behaviors de-
pending on the state of task execution and the environment of the agent. [25] uses a Bayesian
framework for estimating the current state of the agent and selecting the appropriate behavior
when facing uncertainty regarding the environment. This approach not only helps to increase
the likelihood that the desired goal is achieved, but also keeps the complexity of action selec-
tion relatively low. Action selection can also be targeted by approaches based on fuzzy logic for
combining multiple applicable policies as done by [23]. [15] proposes a fuzzy discrete event
system in order to coordinate between single policies.

When facing complex tasks, it is a trending and reasonable approach to use machine learning
for determining and parameterizing behaviors to achieve the desired goal. It is often combined
with a behavior-based approach as described above. The advantage of such an approach is the
remarkably low amount of required knowledge with regard to the details of the environment
which enables behaviors to be applicable under various circumstances. However, the influenc-
ing aspects of a task have to be reliably identified and taken into consideration. Finally, the
system has to be trained. This is often very time-consuming and typically requires multiple at-
tempts on the task. [42] uses modular reinforcement learning for navigation, while the modular
characteristic of this approach is used to reduce the learning time. [33] relies on hierarchical
abstraction in order to achieve the same goal. Given the scenario of rescue robotics, multiple
attempts to solve a task while steadily learning and improving task performance is not desir-
able. It may even be the case that task failure leads to completely losing access to the robot, as
already discussed in chapter 1. Therefore, machine learning approaches are not considered as
applicable for the given context.

A different, widely-used approach for specifying the top-level behavior of an agent is the use of
state machines. The active state of the state machine somehow represents the situation currently
faced by the robot, while the state machine itself defines how to act in response. However, there
are many existing approaches relying on state machines for realization.

The system presented in [1], the approach of team NimbRo for the RoboCup1 Soccer com-
petition, is one example for an autonomous behavior control system based on state machines.
The system consists of two main parts, the State Controller Library (SC Library) and the Be-
havior Control Framework (BC Framework). Both parts are independent in principle, but are
used together to address a variety of situations. The SC Library internally holds a state queue,
containing states which should be executed by the controller. Each state can modify this queue
in order to perform transition. This means, there is no explicit definition of transitions, but the
transitions are encapsulated in the state execution instead. The BC Framework, on the other
hand, is realized similar to the behavior-based approach and uses the behaviors provided by the
SC Library in order to compose more complex behaviors.

1 http://www.robocup.org/ (03/31/2015)
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In general, there are two different approaches of using actions in the context of state ma-
chines. One approach is that actions are called when executing a transition between two states.
This means that each state is determined by the runtime status of the robot, such as its cur-
rent physical or logical properties. If one of these properties changes, it causes a transition and
actions are selected and executed while transitioning to the subsequent state, resulting from
the external property changes. Unfortunately, this approach is hardly able to react to failure
or unexpected outcomes of the executed actions since the target state of a transition is already
defined. The second approach defines actions to happen while a state is active and transitions
only point to possible subsequent states, but don’t execute anything themselves. Depending on
the outcome of the called actions, the appropriate transition is selected which then points to the
next state, and thus to the next actions to be executed in response to the previous result. This
approach is less capable of reacting to environmental changes happening independently from
executed actions, but is more robust regarding action execution itself.

Working towards a more flexible and interactive behavior control, in [2], Beer et al. define
a framework for different levels of autonomy and propose criteria for determining an adequate
level respective to each situation. This work can be seen as a first step towards defining behav-
iors that not only let the robot operate autonomously, but also try to include a human into the
loop for assisting with decisions.

2.1.2 Human Robot Interaction

While approaches focusing on autonomous behavior control are centered around the robot,
more complex or previously unclear scenarios critically require good operator integration.
Therefore, this section briefly presents the state of research regarding human robot interac-
tion (HRI) as to be considered for integrating cooperative behavior approaches into the natural
interaction process between the robot and the operator. Deriving principles and metrics from
classic HRI will help in order to apply the collected experience to interaction with behaviors and
evaluate existing approaches.

The basis for a good interaction between robot and operator is provided by the following two
aspects: Monitoring the current state of the robot and offering ways to operate the robot. If
either of these two aspects is lacking, it will noticeably decrease the performance of the system.
As already investigated by [20], human skill is an important factor for human robot interaction.
It is not sufficient to just focus on the robot and improve its capabilities without considering
what can be better solved by the human. Human robot teams can only perform well if both
members of the team are able to utilize their unique capabilities. Communication and a good
insight to what the robot is doing are basic prerequisites for this aspect.

Typically, an interactive behavior control will offer good ways of operating the robot since it
is providing additional abstraction of instructions and has the goal to make operator commands
less explicit yet more decisive. Opposed to this, monitoring the robot is often not integrated into
behavior control, especially when focusing on as much autonomy as possible. For this reason,
the main focus of a practical framework should be providing a good understanding of what the
robot is currently doing in order to let the operator decide whether the robot needs help or is
capable of executing the current sub-task on its own. In the context of state machine-based
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Figure 2.2: Gulfs of evaluation and execution as defined by Norman in [32].

behaviors, this mostly refers to the active state of the behavior. But the data characterizing
the current state is as well important. The behavior framework, for example, should not only
indicate that the robot is currently moving, but also to which goal pose. In [24], as an example,
different strategies for autonomously assisted grasping have been investigated. When using
autonomous planning, the planner finally visualizes the calculated gripper pose in order to let
the operator know what will be executed.

In [38], Scholtz proposes a theory for human robot interaction based on Norman’s seven
stages of interaction [32]. Along with these seven stages, Norman identifies two possible
sources of failure. The gulf of evaluation refers to the operator’s limitations in being aware
of the current situation of the robot and can indicate insufficient monitoring, while the gulf of
execution assumes proper intents but refers to failure in giving the corresponding commands.
[38] includes several roles of human team members, such as an operator for giving commands
to the robot, a supervisor for being aware of the current situation and coordinating the team,
a mechanic for making physical adjustments at the robot, and a bystander as external agent
interacting with the robot. In the given scenario of rescue robotics, these roles are typically re-
duced to only having a supervisor and an operator, since physical access to the robot is often not
available when executing the task. Both roles can be represented by the same person, but the
characteristics of each role stay the same and the effectiveness of the system can be evaluated
by metrics as presented in [40].

Although it is possible to use a single operator for controlling the robot, depending on the
complexity of the system, it might be advantageous to utilize the capabilities of multiple opera-
tors. During the DRC Trials, the interaction approaches of eight different teams were evaluated
and are presented in [43]. Although the exact operator roles in each team varied, an approach
involving multiple operators has been chosen by almost all of the teams and the roles could
roughly be divided into operators and supervisors, corresponding to the definitions above. This
also corresponds to the results of [29].

In conclusion, when thinking about how to realize operator interaction with the behavior
system, it is important to provide a good understanding of what the robot plans to do. This task
can then be assigned to a dedicated high-level supervising operator who can then take decisions
and give commands to either the robot by providing the possibility to send abstract high-level
commands to the robot which can reliably be executed autonomously, or by giving instructions
to an operator in order to specify low-level commands when interventions are required.
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Figure 2.3: Four of the multi-operator approaches at the DRC Trials, illustrated by [43].

2.1.3 Cooperative Behaviors

It is the big advantage of runtime modifications to behaviors that the human ability of reacting
flexible to unforeseen situations can be leveraged in order to optimally support the robot by
choosing the right means for solving the task. Therefore, expertise on the field of human robot
cooperation is the most important factor when thinking about the best way of how operators can
use their cognition to alter existing behaviors based on the current situation or faced difficulties.

Combining approaches for autonomous behaviors with human robot interaction helps to re-
alize such cooperative behaviors. However, this combination is not equally promising for all
individual approaches. Almost always, it is possible for the human to replace certain sensory
inputs of the robot by providing user-defined data in order to influence the actions of the robot
while the robot follows a pre-defined, autonomous behavior. But this type of co-working is not
very cooperative and not sufficient in advanced scenarios. A solid basis for good cooperation
is, for example, provided by behaviors based on state machines. Since execution is divided into
single, discrete steps, there are points for coordination. The operator cannot only adapt his be-
havior to optimally support the robot, but the robot as well can react more sophisticated to the
operator. In addition, this approach can take temporal aspects into account, such as discussed
by [4].

A more fundamental concept is presented by Johnson et al. in [17] and [16]. In their work,
they point out that most of the approaches of human robot collaboration have been focused
on shifting as much autonomy as possible towards the robot without respecting the interde-
pendency between both team members. But with too much autonomy of the robot it is harder
to recover from failure, which typically involves close teamwork. Autonomous behavior of the
robot also implies that it has information which may not have been shared with the operator,
and that it is not able to consider all information available to the operator in its own decisions.
As an alternative, they present an approach called Coactive Design.
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This design approach not only shifts the focus towards the joint nature of cooperative tasks, it
also adds the requirement of being able to provide feedback regarding the own actions instead
of just being able to perform them. In [19], Johnson summarizes this with the keywords ob-
servability, predictability, and directability. Each of these aspects should be seen in an active and
a passive way. Observability describes the capability of being able to observe the actions of the
team member as well as providing sufficient information to be observed as well. Predictability
refers to not only making observations, but also predictions regarding actions in the near future.
Finally, directability refers to the ability of being able to give instructions as well as receiving
them.

In [39], Shah et al. present Chaski, the realization of a task-level executive. This is not only
about letting the robot decide which action it should take when working together with a hu-
man, but also to consider which idle time of the human is caused by each action in order to
minimize it, and thus improve overall task performance. This framework has been evaluated by
conducting a user study where a human and a robot had to assemble three defined structures
with the robot able to support the human by collecting the next relevant parts. The results show
that, when being able to cooperate instead of being instructed step-by-step, not only the objec-
tive task performance is increased, but also the perceived quality of teamwork is significantly
improved.

Another existing approach for addressing cooperative behaviors is the Robot Task Commander
(RTC) as presented in [14]. This framework combines scripts called process nodes with state

Figure 2.4: The system model of Coactive Design as proposed in [19].
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machines, and targets not only expert users to compose behaviors, but also non-experts by
providing a visual programming language for specifying the composition of state machines.
For expert developers, a comprehensive integrated development environment (IDE) is offered.
Behaviors are implemented in Python and communication between the user interface and the
robot is done using ROS or ZeroMQ2. As stated in [34], RTC is part of the approach of team
NASA/JSC to the DARPA Robotics Challenge.

2.2 Behavior Verification

Verifying of defined behaviors is a very important aspect of making changes to a behavior during
runtime. Since practically testing of a specification before applying it to the robot is not possible
in this scenario since the robot is already in the field and thus not accessible, the operator needs
to be sure that applied changes to a behavior do not lead to task failure because of insufficient
specification or even consistency issues.

As discussed by [12], there are several categories of verifying a robot behavior, such as logical
or temporal verification. But in general, two distinct aspects have to be taken into account.
On the one hand, obviously, behavior verification has to ensure that the implemented behavior
meets the specification and executes exactly what is intended by the developer. On the other
hand, a meaningful verification algorithm also has to check if the specifications themselves are
actually reasonable in order to achieve the desired goal of the behavior.

Extensive research has already been done regarding the first aspect, implementation verifica-
tion. Given a specification model, for example in UML3 as covered by [21], software tools can
reliably generate code out of it. A summary of available work on this topic is given by [11].
Therefore, automatically generating code from a specification is not expected to be a problem,
even if a custom implementation is required depending on the exact way of specifying and ex-
ecuting a behavior. Using code generation for this step of realizing behaviors not only makes it
more efficient, but also guarantees that the implementation meets the specification.

The second aspect, however, targeting specification verification is far more complicated to
realize. In order to be able to verify that a specification can achieve the desired goal, not only the
specification has to be modeled, but also the goal and relevant constraints. In addition, formally
modeling the goal typically involves reducing the goal to a certain domain, such as a pose or
configuration to be reached. Modeling the goal in an abstract way, without already implicitly
involving the specification itself, is much more complicated. Furthermore, the constraints, which
need to be considered in order to verify that they have been met, have multiple sources such as
the physical properties of the robot, but also the environment. Since the available data regarding
modeling these aspects of a task is typically very limited in the assumed scenarios relevant to
this thesis, comprehensive verification regarding the correctness of the specification itself is not
approached.

However, a partial verification of the behavior specification might be feasible. Reducing the
demand of making sure a specification is correct to the demand of making sure that a specifica-
tion meets a set of defined criteria, makes it possible to provide at least some sanity checks, and
2 http://zeromq.org/ (03/31/2015)
3 http://www.uml.org/ (03/31/2015)
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thus eliminate known, well-defined sources of common errors. A way to realize this approach
is the definition of state constraints, as discussed in chapter 3.5.

2.2.1 Behavior Synthesis

Thinking about modeling certain aspects of constraints applied on a specification finally leads to
synthesizing behaviors. Instead of modeling the specification of a behavior manually, followed
by a check if all constraints are respected, the specification is automatically generated from the
given constraints. This process is similar to generating code for a specification, but one level
higher regarding abstraction. In contrast to explicitly specifying which steps the robot should
take in order to achieve a goal, you would just specify the goal itself and applicable constraints.

Although a full synthesis of behaviors is not easy to realize in the given scenario as discussed
above, at least a partial synthesis, matching the capabilities of the partial verification, would be
highly desirable in the context of runtime modifications to behaviors. When making changes
during execution, the operator combines his own role with the role of a developer since he
starts modifying the specifications of a behavior. By assisting the involved tasks required by
the operator with a certain level of synthesis, changing the specification rather means giving
high-level commands to the synthesizer instead of doing basic development, and thus becomes
more suitable for being done by the operator.

Automatically composing certain available basic functionality in order to achieve a given goal,
while respecting composition constraints, is, for example, targeted in [7]. By respecting the
given constraints, local policies are selected in order to converge to the given goal. Furthermore,
Linear Temporal Logic (LTL) [36] provides a tool for specifying certain constraints with respect to
logical and temporal conditions. It can be indicated whether the specifications are synthesizable
or not [35] and they can also be given in natural language using LTLMoP. Although going
beyond the scope of this thesis, these aspects are considered. As soon as they will be available
and integrated into the project, it will be possible to incorporate them into the framework
developed in this thesis.

(a) Composing single policies [7]. (b) Synthesized automaton from LTL specification

Figure 2.5: Examples for possible ways to automatically compose behaviors.
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2.3 Runtime Modifications

Runtime modifications can be achieved in basically two different ways. Each approach has its
own benefits which will be discussed in this section. One way is to directly modify the executed
source code while it is running. The capability of the used programming language to account
for such on-the-fly modifications is the prerequisite for this solution. This is typically the case for
scripting languages. In contrast, languages which need to be compiled before execution won’t
be applicable.

The other way is to specify behaviors by using an intermediate description language and
parsing it for execution. Parsing can be done step-by-step whenever the next instruction or, in
the case of state machines, state is required. Therefore, the description can be modified in parts
which are currently not active, and these parts will be parsed later regardless of having changed
since the start of execution. However, this approach is not as flexible as the first one and implies
some limitations.

Since this thesis is meant to be integrated into a ROS-based project, implementation is prefer-
ably done in either C++ or Python, the two programming languages natively supported by
ROS. Although there are attempts to enable a compilation-independent usage of C++ like the
approach described in [3], Python is an interpreted language and does not need to be compiled.
Although the currently executed code itself cannot directly be modified, modules can easily be
imported during runtime and, in the case of changes, reloaded again.

Appropriate choices for an intermediate description language (IDL) are for example markup
languages like XML, YAML, or JSON. In such an approach, states are implemented in any pro-
gramming language without requiring this language to enable runtime modifications itself. The
behavior engine then parses an IDL description which refers to the single states and defines
how they are composed to form a high-level behavior. This approach of composing behaviors by
using XML as IDL is for example chosen in [28]. As stated above, modifications to the IDL file
could be made independently from parsing it for execution in order to achieve runtime modifi-
cations. Thus, instead of parsing the IDL as a whole, the behavior engine in this case just uses
the IDL specification to look up the next state when the current one has finished. This is a very
flexible way of modifying the behavior, but it also comes along with some problems.

For using an IDL this way, it is an implicitly defined prerequisite that the set of state imple-
mentations is fixed and the states itself are only functional. Each transition execution includes
instantiating a new object which means that states are limited in their functionality in a way
that, for example, the properties of a state object have to be constant. Nonetheless, instantiation
during runtime is an additional source of error. Finally, it is the most significant problem of this
approach that behaviors cannot be verified regarding consistency when parsing them on-the-fly.

In contrast, specifying behaviors as Python module is not only an approach which can benefit
from the amount of available libraries and the flexibility of Python. It also enables to instantiate
all states required during the execution of a behavior when it is started, since the state machine
specification is part of the class description.
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2.4 Existing Behavior Frameworks

After having discussed the most relevant approaches in general, this section will now focus on
selected work which comes into consideration as a foundation for the approach developed in
this thesis. This implies certain demands on the existing frameworks, derived from the concepts
discussed in the previous sections of this chapter.

Since the main contribution of this thesis is the ability to modify currently executed behaviors,
being able to extend the regarding framework by one of the two ways discussed in section 2.3
is an important criterion. This means that implementation has to be possible by either using a
scripting language like Python, or by providing behavior definition in an intermediate format
such as XML. For the reasons discussed in this section, it is favorable to not need to rely on
an intermediate description language in order to improve robustness and provide flexibility for
developing single states. However, both approaches are possible and if the framework offers
functionality for addressing these issues, it is also a valid choice.

Its provided degree of operator interaction is another relevant factor for choosing the right
framework as basis. Ideally, the framework already provides means to monitor the current
state of execution at a remote operating station, and allows for adjustments by the operator
influencing runtime parameters or at least pausing behavior execution at certain points in time.
Pausing execution is a helpful prerequisite for modifying behavior during runtime because it
allows to ensure consistency of changes. On the other hand, changing the behavior should not
prevent the robot from taking actions in the meantime. This is discussed in detail in chapter
3.3.

In addition to the mentioned requirements, there are some advantageous aspects a chosen
approach may support in order to facilitate development of advanced features. These aspects
mostly result from the fact that behaviors will be modified during runtime which requires effi-
cient and intuitive specification of behaviors. Furthermore, the behaviors have to be robust in
order to prevent failure during execution. For this reason, the framework ideally incorporates
consistency checks and some sort of behavior verification. An appropriate user interface would
also be a plus. Last but not least, it must be possible to integrate the system into the rest of the
project by relying on ROS.

2.4.1 XABSL

Providing a high-level specification language for robot agent behaviors is the goal of XABSL.
It has been developed by Lötzsch et al. in context of the RoboCup as described in [42] and
extended in [9]. Behaviors can be specified by composing basic behaviors, referring to simple
actions, and behavior modules called options. Options can refer to other options and thus form
a hierarchy, the so-called option graph. Internally, options are modeled as state machines where
each state contains a decision tree to determine the next transition.

XABSL relies on XML as an intermediate description language. Although initially develop-
ment has been done by writing the XML description manually, XABSL has been extended to use
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Figure 2.6: An example option definition in XABSL, taken from [9].

a dedicated programming language which is compiled into XML. In order to improve the ver-
satility of developed behaviors concurrent execution of actions has been added later as well as
coordination between multiple agents.

Considering the given requirements, XABSL may not be the ideal choice. Although the concept
appears to be generally applicable, significant effort would be required to integrate operator
interaction into the decision tree of a state and allow for remote monitoring during runtime.
The need to compile the XABSL programming language is not ideal as well, and a step back to
using pure XML would be required. Finally, XABSL is not integrated into ROS.

2.4.2 RoboCup Frameworks

Besides XABSL, several other behavior frameworks have been developed along with the RoboCup
competitions. Since these competitions, such as robot soccer or service robotics, require a
significant amount of autonomous capabilities and strategic reasoning, behavior frameworks
developed in this context are likely able to provide a good basis for further extensions.

b-script has been developed by de Haas et al. and is presented in [8]. This approach is not
based on an intermediate description language for defining behaviors. Instead, b-script itself is
a scripting language based on the programming concept of generators, and combines aspects
of Python, such as its scripting nature, with aspects of C++, e.g., its strong type system. Since
the goal of b-script is providing behaviors which can be executed when facing limited hardware
performance, it can also be compiled to C++. Behaviors developed with b-script have been
applied in the RoboCup Standard Plattform League by the teams RoboEireann and B-Human.

The Lua-based Behavior Engine [31] developed in conjunction with the Fawkes Robot Software
Framework by the RoboCup team AllemaniaACs is another example for such a behavior frame-
work. Although primarily developed for the use with Fawkes and the Nao robot plattform, it has
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been ported to ROS later and is based on the lightweight scripting language Lua. This engine
assumes three behavior levels, namely Control Loops, Skills, and Agent. Using this behavior en-
gine, skills can be defined in order to incorporate basic robot capabilities. An external behavior
executive is then required to compose and execute these defined skills.

Although these frameworks provide good ways for defining autonomous behaviors and es-
pecially multi-agent interaction, they are hardly applicable for scenarios such as disaster mit-
igation. One important problem is the limited incorporation of operator involvement during
runtime, mainly supporting passive monitoring for debugging, but no cooperation in order to
fulfill a task. Furthermore, their main application are robots with very limited hardware re-
sources, operating in a well-defined and structured environment, such as a soccer field. This
is very different from what this thesis is targeting, impeding to utilize some of the underlying
concepts of these behavior frameworks.

2.4.3 SMACH

Developed by Boren et al. in [5], SMACH offers a Python API for defining executable state
machines. States are realized as classes which can implement the execute function to perform
blocking actions and return an outcome based on the result in order to determine a transition.
The transitions are defined by the state machine and state machines can be used as states as well
in order to define a hierarchical composition. In SMACH, states can not only return transitions,
but also arbitrary data to be passed between states, the so-called userdata. SMACH comes along
with a user interface for locally monitoring the execution of a state machine by displaying its
structure and indicating which state is currently active, as shown by figure 2.7.

Figure 2.7: The SMACH Viewer while monitoring execution of a behavior defined by Team ViGIR for the
Virtual Robotics Challenge.
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Although being a standalone library in its core, SMACH is integrated into ROS and works well
in this combination for coordination between external ROS nodes. It has proven its applicability
in several projects along with the PR24 and other robots and is for example combined with a
decision making tool in [13].

In general, SMACH is applicable as basis for the behavior framework since it is easily extensible
and well integrated into ROS and Python. It also offers a basic form for monitoring the execution
of a state machine. However, it does not incorporate the operator into its concept and thus needs
to be extended with cooperation principles and the ability to give user commands to behaviors.

2.4.4 Flor Behavior Engine

The Flor Behavior Engine (FlorBE) is a previous work of the author of this thesis. It has been
developed in the context of Team ViGIR’s previous participation at the DARPA Robotics Challenge
and is presented in [37]. Main goal of this behavior engine is to better integrate the operator
into behaviors, allowing for cooperative approaches to tasks and compensation of missing au-
tonomous capabilities of the robot, while taking as much workload as possible away from the
operator considering the respective scenario.

FlorBE is based on SMACH to utilize its flexibility and extends several aspects, mainly regard-
ing communication with a remote operator. For this reason, it comes along with a very simple
user interface for triggering transitions and displaying transition intents of the behavior to the
operator. This user interface is intended to be integrated into an existing system for monitoring
the physical and internal state of the robot, but based upon the existing communication protocol
between robot and operator, a more advanced user interface can be added.

The introduction of a coordination mechanism, the Autonomy Level is a further extension to
SMACH. This mechanism helps the operator to flexibly reduce the autonomy of the robot and
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Figure 2.8: Example actions of different Autonomy Levels as defined in [37].

4 https://www.willowgarage.com/pages/pr2/overview (03/31/2015)
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thus prevents it from making decisions on its own. As a result, behaviors are able to deal with
changing uncertainty in scenarios while using the same state machine for implementation of the
actions to be taken.

This combination of SMACH and approaches for coordination between operator and robot is
a good basis to build upon. For this reason, more details regarding FlorBE are given in chapter
4.1. However, behavior development is very tedious when implementing complex behaviors and
especially when defining the transitions between states the current way is prone to consistency
errors. Therefore, improving the development process to a level at which behaviors can easily
and safely be defined while executing a task will be a very important extension to FlorBE. Fur-
thermore, the capabilities of Python will be used for importing behaviors during runtime and
thus for being more flexible regarding custom behavior changes.
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3 Concepts

The onboard behavior engine part of the approach developed in this thesis builds upon previous
work of the author, and therefore extends FlorBE which has been briefly described in the previ-
ous section and will be discussed in detail in chapter 4.1. This chapter discusses the available
basis and required extensions in a formal way to provide a basis for implementation and further
development. Additionally, the requirements of the given scenario, which have been presented
in chapter 1.1, are taken into consideration by the concepts of this chapter.

Most of the concepts presented in sections 3.1 and 4.1.2 are based on the existing imple-
mentations of SMACH and FlorBE. However, they are summarized in a formal way and have
been extended to support the newly added concepts. Also, providing arbitrary data has been a
problem in FlorBE and section 3.2.2 provides a concept for solving this issue.

Subsequently, section 3.3 presents the overall concept of runtime modifications to behaviors
and discusses aspects such as consistency. Further, Section 3.4 targets on how to assist devel-
opment of behaviors and to specify changes, providing a basis for the newly developed user
interface. Finally, section 3.5 discusses a formal approach on guaranteeing successful behavior
execution already when defining a specification by introducing state constraints.

3.1 Definitions

In order to enable discussion of the underlying concepts of this thesis, it is important to exactly
define the used terms and relate them to each other. The goal of this thesis is the development
of a flexible high-level behavior engine, thus we assume that the basic capabilities of the robot
are already available and provided externally.

Definition: Primitive. A primitive p ∈ P is any atomic capability of the robot which converts a
set of input data Di into a set of output data Do in order to fulfill a specified goal Gp.

These primitives, in general referenced as actions, are typically not instantaneous and side-
effects may change the physical state of the robot such as moving its joints. For example, there
can be a grasping primitive which provides a way to close the fingers of the robot. Input data
can be a specification of how much the fingers should be closed or maybe which force should be
applied to the grasped object. The output data then can indicate the sensed force to the fingers
and the closing state. A second example for a primitive is a state which plans a certain motion,
getting a target endeffector pose as input and generating a joint configuration which can be
used for reaching this pose. This primitive would have no side-effects since it only plans the
motion, but does not execute it. A third primitive could then provide a way to execute a certain
joint configuration.

Execution of a primitive can fail which means that a subset of the output data doesn’t meet
the goal specification. Related to the example of motion planning, this could mean that the
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specified target pose is not reachable. Primitives are not explicitly defined for behaviors and can
be provided in any format. Thus, for making them usable to behaviors, there is a way required
for interfacing them.

Definition: State. A state s ∈ S interfaces functionality with behaviors, where the set of all
state implementations S includes states based on primitives Sp ⊆ S. Each state defines outcomes sOc
and execution of a state is terminated by returning one outcome matching the result of execution
oc ∈ sOc.

States based on primitives form the majority of all types of states. They evaluate the data
returned by their respective primitive in order to decide about which outcome to trigger. For
this purpose, each sp ∈ Sp defines an evaluation function e : DO −→ sOc which maps the output
data of its primitive to one of the declared outcomes of the state. Assuming for example the
grasping primitive described above, a grasping state could specify three outcomes: grasped,
failed_to_close, failed_to_grasp. The outcome grasped is only returned if the fingers are actually
closed and a force to the finger sensors indicates that the object is inside. It would return
failed_to_close if it is unable to close the fingers and failed_to_grasp if the fingers are closed, but
there is no object inside.

In special cases, states can also invoke multiple primitives and combine their single results,
but in favor of simplicity and modularity, this is a rather exceptional case. Besides referring to
a primitive, states can also be implemented in an arbitrary way depending on the purpose they
should provide to their containing state machine.

Definition: State Machine. A state machine SM composes a set of states SSM where each state
s(i) ∈ SSM is the instantiation of a state implementation s ∈ S. When a state returns a specific
outcome oc(i) ∈ s(i)Oc, the transition function tSM : SSM , sOc −→ SSM ∪ SMOc defines which state is
executed next.

The transition function tSM assigns each pair of a state and one of its outcomes (s(i), oc(i))
to its successor. This successor can either be the next state to be executed s(i+1), or one of the
outcomes oc(SM) ∈ SMOc of the state machine itself which means that finishing execution of this
state will also finish execution of the whole state machine.

State machines are states themselves and thus provide a way for representing hierarchical
state machines. The purpose of a state machine is to define the control flow of a behavior,
i.e. the sequence in which states are executed depending on their result, using the specified
transition function.

In addition to the control flow, states need a way to pass data to each other. For example,
there can be a state which provides perception data by using an object recognition primitive
and returns a pose of interest. Another state may now plan footsteps to a target pose for letting
the robot walk and thus needs a way to get the pose generated by the perception state.

Definition: Userdata. Each state machine SM defines userdata DSM , represented by a set of
key-value pairs where f : KD,SM −→ VD,SM maps each specific key k ∈ KD,SM to its respective value.
States define userdata keys they need, sI , and provide, sO.
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Passing data from state A to state B with s(A), s(B) ∈ SSM is thus defined as f (kI ,sB) | kI ,sB = kO,sA

where kI ,sB ∈ s(B)I is an input key of s(B) and kO,sA ∈ s(A)O is an output key of s(A).

Using the concept of userdata as provided by SMACH [5] gives an easy and flexible way of
passing arbitrary data between states. As mentioned above, there can be one state for generating
a certain joint trajectory and a second state for executing any joint trajectory. The concept of
userdata allows the planning state to specify an output key for holding the generated trajectory
after the state has finished execution and the executing state to specify an input key for providing
the joint trajectory to be executed. This not only allows for easy combination of these two states,
but this one execution state can also be used along with any other state which generates a joint
trajectory or even accept manually defined trajectories.

Definition: Behavior. A behavior B is implemented by its state machine BSM . Furthermore,
each behavior defines a set of parameters BP where each p ∈ BP is chosen when starting a behavior.
Behaviors can be used as states of other behaviors.

Figure 3.1: Composition diagram of the concepts presented in this section, tSM is implicitly defined by
the solid arrows inside BSM . In this example, s1 is a state implementation based on the
primitive p1 and may execute an action generating data while s2 performs branching based
on its input data.
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While the implementation of a behavior is given by its state machine, the interface of a behav-
ior is defined by its behavior manifest. The manifest contains meta information such as the name
of the behavior and the author, but also important interface specifications e.g., which other be-
havior is included in this one. Including a behavior into another means the included behavior is
instantiated along with all the states of the outer behavior’s state machine and embedded into
this state machine as one of the states. This enables the creation of behaviors in certain layers of
abstraction. Some lower level behaviors, for example, may be constructed by combining only a
few states based on primitives and then being composed by a complex task-level behavior. The
number of layers of abstraction depends on the complexity of available primitives as well as of
the tasks to be solved.

A concept introduced by the Flor Behavior Engine in [37] is the Autonomy Level. It regulates
the control flow of a state machine by stopping certain transitions when the operator declares
that they are not reliable enough with respect to the current situation.

Definition: Autonomy Level. In a state machine SM , each outcome of a state oc(i) ∈ s(i)Oc
defines a minimum autonomy level a(i)oc which will block the corresponding transition toc,i :=
tSM(s(i), oc(i)). During execution, the current autonomy level is determined by aSM , thus only
allowing the execution of toc,i | a(i)oc < aSM .

All transitions which are not allowed to be triggered autonomously are suggested to the op-
erator and require explicit manual confirmation to be executed. This mechanism ensures that
transitions are only executed when their required outcome is reliably detectable. The Autonomy
Level aSM can be changed at any time during behavior execution, enabling a way of small ad-
justments regarding the control flow of the behavior. However, the changes are very limited and
in order to provide the flexibility required by the scenarios described in chapter 1.1, additional
ways of making changes to a behavior need to be added.

3.2 Operator Interaction

In order to facilitate a close teamwork between robot and operator, the behavior framework
supports a built-in interaction protocol. Following this protocol, a running behavior can be
monitored and several commands can influence execution of the behavior. Basic monitoring
of the current state is supported by the Behavior Mirror, a concept targeting at robustness and
reduction of required bandwidth, which will be explained later in this section.

Based on the previously defined Autonomy Level, the behavior will not always be allowed to
actually trigger its desired outcome. In this case, the operator should be notified that a certain
transition may be ready to be taken. Afterwards, it is up to the operator to verify or falsify this
suggestion. In order to reduce bandwidth usage and prevent redundant messages, all suggested
outcomes oc(i) are added to a set Ri of sent requests. Thus, a request is only sent if oc(i) /∈ Ri.

While rejecting a suggested outcome is easily achieved by ignoring the respective suggestion,
verifying it needs a command for triggering an outcome. Actually, the taken approach does not
distinguish between outcomes triggered as a reaction on a suggestion or triggered on purpose
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of the operator. However, when the operator commands a certain outcome, the currently active
state is forced to return this specified outcome regardless of the result of its own evaluation
function.

In addition to its regular outcomes, each state instantiation has a special implicit outcome
oc(i)p ∈ s(i)Oc. The purpose of this outcome is to preempt the current execution and to offer the
operator the possibility to completely stop a behavior at any point in time. For this reason,
the outcome oc(i)p of any state inside a state machine s(i) ∈ SSM fulfills the following condi-

tion: tSM(s(i), oc(i)p ) = ocSM
p . This means, a preempting outcome is always propagated to the

hierarchy’s root and thus causes the whole behavior to be preempted, not only the current state.

Another command available to the operator is locking a behavior in its currently active state.
This command is newly added and has not been available in FlorBE. If a behavior is locked in
a certain state, it means that this state will still be executed in the usual way. But in case the
state would return any outcome, this outcome is temporarily stored, but not returned. This is
expressed by the following condition: ∀oc(i) ∈ s(i)Oc,l : tSM ,l(s

(i)
l , oc(i)) := s(i)l where the subscript

l indicates that the referred state is locked. The regular transition function tSM is temporarily
replaced by a special transition function for locking tSM ,l . After a state has been unlocked again,
it will return its stored outcome, if any.

3.2.1 Behavior Mirror

The Behavior Mirror allows for easy and efficient monitoring of the current state of execution
of any active behavior. It is supposed to mirror the remotely running state machine in order to
provide a local, easily accessible representation. All tools which require access to the behavior in
order to monitor its execution, can instead use the Behavior Mirror. Since a mirrored behavior is
intended to completely remove the need for further remote behavior access, the Behavior Mirror
has to make sure the mirrored behavior correctly reflects the actual behavior’s structure at any
time.

Definition: Mirrored Behavior. A behavior Bm is called a mirrored behavior of B whenever the
structure of its state machine BSM ,m is isomorphic to BSM and s(i)a,m ∈ SSM ,m is determined by ϕ(s(i)a ),
where ϕ is the isomorphic transformation ϕ : SSM −→ SSM ,m.

Note that ϕ is bijective, meaning that it is always possible to know s(i)a when having access
to s(i)a,m. Furthermore, the definition does not include any requirements regarding the actual
functionality of a state, meaning the state implementation of s(i) and its mirrored counterpart
s(i)m may differ. This is a rather essential requirement since it is not desirable to actually execute a
behavior in order to mirror it. Instead, the Behavior Mirror provides a separate implementation
for mirrored states which does not execute anything state-specific and just updates monitoring
information.

This concept enables to have minimal updates regarding mirror synchronization while always
knowing the currently active state of the remote behavior. Prerequisite is a once synchronized
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state, which trivially is the case when starting a behavior. Afterwards, when executing a tran-
sition, it is sufficient to notify the Behavior Mirror about which of the available transitions has
been taken. Since the number of available outcomes is naturally rather small, there is not much
data to be sent.

In addition to synchronizing the currently active state while a behavior is running, the Behav-
ior Mirror also has to be aware of when a behavior is running. For example, still publishing the
last active state when the behavior has already stopped execution is not desired and, of course,
the Behavior Mirror has to be notified whenever a new behavior starts. In the past, FlorBE
achieved this by sending separate start messages and relying on the preempting capability of
the mirrored behavior. However, this is not the most robust solution and therefore, this ap-
proach has been changed in FlexBE. The new approach uses a dedicated onboard engine status
message in order to notify the mirror and any other related component about behavior starts
and finishes. Furthermore, it defines error codes and allows for more detailed runtime status
updates in addition to starts and finishes.

3.2.2 Behavior Input

Another important part of operator interaction is the ability to exchange arbitrary data. For
example, a behavior could ask for operator assistance in order to identify a certain pose. Thus,
the operator needs a way to provide the pose data, which is available at the control station, to
the remote robot. This type of data is different compared to the previously treated kind of data.
Until now, only data regarding the control flow of a behavior has been addressed.

In contrast to data regarding the control flow, the kind of task-specific data required during
execution cannot be determined beforehand. However, in order to realize a modular and re-
usable approach, it is no solution to specify each type of data request independently. Instead, a
general way to provide data, no matter of which type, is preferred when being able to have a
special communication channel especially dedicated to handling these data requests. This can
be achieved by converting the data to be sent to the behavior into a common format. For this rea-
son, there is the Behavior Input component which uses serialization in order to achieve this goal.
In addition to just converting the data of any type into a common, serialized representation, this
component can also apply compression of the sent data.

Definition: Behavior Input. Providing data to a behavior is modeled as a special primitive pI D.
Input data Di of pI D specifies the required type of data while Do provides the serialized result. This
result is evaluated by esI D and the deserialized data provided as output userdata kO,sI D.

As depicted in figure 3.2, the whole process of input data transfer is done in an event-based
fashion. Whenever the behavior needs some data, it will send a certain input request indicating
the operator which type of data is needed and for which purpose. The operator is then able
to process this request in an arbitrary way depending on how the operator control station is
implemented by the respective system. After he is done, the Behavior Input component of the
control station receives the data and can then send the data back to the robot using a dedicated
communication channel where arbitrary data is serialized and can be compressed as described
in the previous paragraph.
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Figure 3.2: Process of sending input data to any remotely executed behavior.

3.3 Runtime Modifications

The ability to perform runtime modifications is the most complex command available in FlexBE.
It enables the operator to make arbitrary changes to the structure of a behavior without the
need for stopping, compiling and re-starting it. Although this capability is very helpful regard-
ing adaptability to unexpected situations, it also introduces some challenges which had been
discussed in 1.1. For this reason, the next section will present approaches to avoid failures re-
lated to runtime modifications and defines constraints to preserve consistency across versions of
a behavior. But at first, it is necessary to define what exactly is considered as a modification.

Definition: Behavior Modification. Modifying a behavior B and its state machine BSM corre-
sponds to adding or removing elements to or from SSM , changing the properties of any s(i) ∈ SSM ,
or changing the transition function tSM .

It is important to notice that this definition refers to the state instantiations s(i) specific to the
behavior state machine BSM . The state implementations themselves, s ∈ S, are not included in
this definition and are thus not part of a behavior modification. Therefore, the set of state im-
plementations S remains the same across behavior modifications, thus building a constant base
to which behaviors can refer. This is especially important since different behaviors can instanti-
ate states of the same implementation. If it was possible to also alter the state implementation
when modifying a behavior, this modification would also implicitly affect other behaviors.

Properties of a state are for example the Autonomy Levels of its outcomes, since a(i)oc is a
value specified for each state instantiation s(i). In contrast to this, the outcome itself cannot
be changed, since the set of outcomes sOc is defined by the state implementation s ∈ S and is
therefore independent from a specific state machine. However, the outcomes of an inner state
machine are not given by its implementation and thus can be changed.

Another property of a state is its given name inside a state machine, which also fulfills the
purpose as an identifier for the transition function tSM . In order to define tSM , each state
instantiation specifies its successors depending on the returned outcome by using its unique
name. When now a name is changed, for example the name of s(i), tSM has to be updated as
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well by also adapting the name change to the successor specification of each state s( j) ∈ P(i)

where P(i) is defined as P(i) := {∀s( j) ∈ SSM | ∃oc( j) ∈ s( j)Oc : tSM(s( j), oc( j))
!
= s(i))} which precedes

s(i).

An even more powerful modification can be done by changing the parameter values of a
certain state instantiation. For example, one of the state implementations offers to perform an
arbitrary calculation which is specified by a function provided as parameter of this state. When
now changing the parameter value of instantiations of this state, one actually changes parts of
its implementation.

Changing the userdata of a state machine is rather complicated. The problem is that it not only
specifies available keys for accessing arbitrary data, but also has to provide this data depending
on what results occurred during the past execution. For example, if a new state s(A) is added
such that s(A) ∈ P(B) precedes the currently active state s(B)a and there is an kO,sA ∈ s(A)O which
corresponds to one of the input keys kI ,sB ∈ s(B)I , s(B)a would still refer to its own value passed to
kI ,sB when the state has been entered. This resulting inconsistency can probably lead to failure
of behavior execution. It is not possible to update kI ,sB to the value which would have been
provided by kO,sA because the state s(A) has just been added during the modification and not
been executed before, thus kO,sA would be undefined.

However, there is a second way of how to add userdata to a state machine. Each behavior
has a set of pre-defined userdata keys which also assigns a default value to each of the specified
keys. Adding keys to this set is a safe way of adding userdata to a running state machine and
thus is allowed as part of a behavior modification.

3.3.1 Consistency

In order to define constraints with the purpose of providing consistency across behavior modifi-
cations, it has to be defined first how a modification can be realized. As already defined in the
previous section, a behavior modification can consist of changes to SSM and tSM . Nonetheless,
a modification should not always be applied immediately. For example, consider a case where a
state s(A) is removed from SSM . If also removing the reference to it in tSM from all s(i) ∈ P(A) is not
an atomic modification, the state machine would be in an inconsistent state. Furthermore, also
if it is atomic, the state machine is inconsistent as well because all outcomes which previously
pointed to s(A) are now unspecified. So, before wanting to apply this modification, a consistent
state has to be ensured. This can be achieved by using an explicit version update when having
reached a correct and consistent new behavior version, which will also help to reduce the risk
of failure and improve communication efficiency.

Definition: Version Update. Modifying a behavior B is realized as an update from B to its more
recent version B′ where both, B and B′ are consistent behavior specifications.

Each version update requires a pivot state which defines how to map the current state of
execution to the new version. To be more precise, the pivot state is the state which is currently
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active before performing the behavior update and is supposed to be still active when the update
has finished.

Definition: Pivot State. When performing a version update, exactly one state s(i)a = s(i)piv is called

the pivot state of this particular update. s(i)piv is immutable during the update and has to be element
of SSM ∪ SSM ′.

In order to provide consistency, the pivot state has to be locked during the whole process
of behavior modification: s(i)piv ⇒ s(i)l . This ensures that the pivot state stays active during the
update process. Furthermore, locking the pivot state before actually starting to modify the
behavior ensures the required immutability during the modifications. Since state machines
are also states themselves, the pivot state can be a state machine as well. In this case, the
immutability requirement implies that the inner state machine of the pivot state remains the
same which means that no type of change is allowed to any of the inner states or the inner
transition function.

If the behavior would not be locked during a modification, the active state is likely to change
in the meantime because specifying the desired modifications requires some time. Even if the
amount of required time is very small and the expected execution time of the action requested
by the active state is sufficiently high, events might always occur which can trigger a transition
by letting the state return one of its outcomes oc(i). This means the onboard behavior would
transition to a different state s(i+1)

a := tSM(s(i), oc(i)). Propagating this transition to the version
currently being modified by the operator is not possible, since it is not guaranteed that still
s(i+1) ∈ SSM because this state could have been deleted along with the modifications made to

Figure 3.3: Example version update where the active state, s(3)piv , has to stay active and unchanged during
the whole process. However, the targets of its transitions can be changed.
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the behavior. As a result, this would violate the condition that the pivot state stays active during
a version update, as required by the definition of the pivot state, because s(i)piv 6= s(i+1)

a . For this
reason, behavior modifications are only possible if a behavior is locked. This also ensures that
the robot executes no unexpected actions while the operator might be distracted by modifying
the behavior, as already discussed in chapter 1.1.

3.3.2 Behavior Update

When commanding a behavior version update, the operator needs a way to either send the new
behavior version or send an indication of all modifications which can then be applied to the
already known and running version to construct the new one. In order to keep the required
amount of data low, it is favorable to just send a minimal summary of applied modifications
instead of the whole new version, since the part of which a behavior changes is typically much
less than the part which stays the same. This minimal summary of modifications is called patch
and applying a patch to the appropriate previous version of a behavior will create a new behavior
containing exactly the changes for which the patch has been created.

Definition: Behavior Patch. ∆ is a function in the behavior space and called the patch of a
version update B −→ B′ if it fulfills the condition ∆B→B′(B) = B′.

Besides transmitting minimal data by relying on ∆B→B′ instead of B′, given the case that B is
known to the onboard engine, it is also important that performing a behavior modification does
not negatively affect task performance. Although the approach of how to perform a behavior
update cannot guarantee that the execution of B′ itself is not a source of failure, which is
targeted in the next section, it has to ensure that the progress of switching from B to B′ is
only taking place when it will be successful. This involves a number of verification checks
referring to the properties discussed in the previous section regarding consistency.

In summary, the workflow of performing a behavior update includes several steps, while it is
an important aspect of these steps that they happen in parallel to the execution of the old behav-
ior and, if the behavior update fails, the old behavior can keep executing without interruption.
So, as a first step, B′ has to be generated from ∆B→B′ and the condition ∆B→B′(B) = B′ has to
be verified. Afterwards, it has to be verified that B′ itself is a consistent behavior and that the
modifications are according the definition in section 3.3. Finally, the pivot state s(i)piv has to be
determined and the conditions discussed in 3.3.1 have to be checked. Only if all of these steps
have been successful, B is interrupted and substituted by B′.

3.4 Behavior Development

The process of development is an important factor when designing the behavior framework, but
it is even more crucial when speaking of runtime modifications. When making modifications to
an executed behavior, parts of the development process are mixed with execution. This has to
be taken into account at a very early stage of designing the concept of the system because some
of the design goals are opposed. For example, while controlling a behavior at runtime requires
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focus on the current state of execution, behavior development requires a complete overview
over the whole structure of the state machine, regardless of the currently active state.

For this reason, two different views on a behavior are provided to the operator by the user
interface. One view is focused on the currently active state and augmented with recent feed-
back of the executed behavior. It also provides an interface for sending the above mentioned
commands to the behavior. The second view displays the whole state machine and enables
modification of its structure and of the properties of each state. During execution, modification
is not allowed if the above mentioned consistency requirements are not fulfilled. However, this
view can always be used for getting an overview.

One implication of runtime modification is that in most of the cases, the operator also has
to fulfill the role of a developer. Ideally, during execution, there is a person available who has
experience with developing behaviors so that this person can take the part of implementing the
desired changes. But this should not be required and thus development of behaviors or changes
must be very easy. Furthermore, in order to avoid errors and to be efficient, since time is a critical
factor during task execution, the development process has to be aided and automated as much
as possible while still providing a high level of flexibility and allowing custom modifications.

In order to provide this required way of easy development, the user interface allows for model-
ing state machines and setting the properties of each state. On saving, source code is generated
for whole model which can then be executed by the behavior engine based on FlorBE and
SMACH. In addition, manual extensions of the generated code can be made and enable great
flexibility for behavior development, especially when the development takes place before exe-
cution.

Required robustness regarding specification errors is another important aspect of modifying
behaviors during execution. It is not sufficient to only have a behavior executive which can han-
dle failure of a behavior without further negative consequences. The development of behavior
modifications has to take into account possible sources of errors as well and to offer functionality
for detecting and correcting them. Thus, a consistency check of a whole behavior is performed
at least before it is saved, and partial checks, such as the validity of given parameter values, are
performed as soon as possible.

3.5 State Constraints

Constraining state execution is a very helpful mechanism for making sure that a state is less
prone to failure during its execution. Conditions, such as having certain data available or being
in a stable pose for manipulation, can make sure that the prerequisites for primitives used by
a state are fulfilled. In order to specify such conditions, each state implementation defines an
individual set of preconditions, depending on the primitives it refers to or the functionality it
offers.

Definition: Precondition. Each state implementation defines a set of preconditions sΦ. In order
to enter a state s(i) ∈ SSM during execution, each precondition φ ∈ s(i)Φ has to evaluate to true.
φ : Σ −→ {true,false} is a function applied to the current situation of the robot σ.
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In addition to the conditions under which a state can be executed, state constraints can be
used as well in order to guarantee certain properties when a state finishes its execution. This
extends the conditions required to be fulfilled for returning a specific outcome in a way that
better takes into account the meaning expressed by the conditions instead of just checking
specific values. Referring again to the example of grasping an object by closing the fingers of
the robot, the conditions for triggering the outcome that indicates success consist of checking
the value of how much the fingers are closed and which force is applied to the sensors. This
is very specific to the way grasping is implemented. When using a different approach, such as
a pneumatic gripper, in a second state, these conditions may be different, but their meaning is
still the same. This meaning can be expressed using postconditions, stating that the object of
interest is now attached to the hand, which is the same for both states.

Definition: Postcondition. Each state implementation defines a set of postconditions sΨ,Oc. On
returning one of its outcomes oc(i) ∈ s(i)Oc, a state has to ensure that each postcondition ψoc ∈ s(i)Ψ,Oc
corresponding to the respective outcome is fulfilled. ψoc is a function with the same properties as
φ.

Based on these two definitions, a critical factor for being able to make use of the conditions is
to find a way how to represent the current situation of the robot σ. σ needs to be represented
in an abstract way, applicable for all different types of states and building a common basis to
which states can refer. This includes choosing a suitable level of abstraction as well as having a
way to measure the current value of each property included in σ. One way to get these values is
relying on postconditions, since they define in which situation, regarding some properties, the
robot is after returning a specific outcome. But these properties of the robot are only a subset of
σ and may also, obviously, not only be defined by states, but by external events as well.

Although a complete definition of σ is not yet available, it can already be defined partially.
One aspect taken into consideration when verifying the composition of states is availability of
userdata. Defining the input keys s(i)I of a state thus implicitly adds a set of preconditions to
the state, expressing that all used keys have to be defined when possibly entering the state:
φk(σ = DSM) = ∃kO,sX ∈ DSM | kI ,s

!
= kO,sX . In this case, σ is defined by the available userdata

keys DSM and s(X ) ∈ P+(i)r refers to previous states where P+(i)r is the transitive closure of P(i)r , all
recursively defined predecessors of s(i). Available keys are defined by the implicit postconditions
of the previous states, as well as a set of default userdata of the state machine.
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4 Behavior Engine

The implementation of FlexBE is based on ROS and split into several ROS packages, according to
the functionality of each component. An overview of the resulting structure is given in figure 4.1.
Beneath the user interface, two more nodes are executed at the operator control station (OCS).
flexbe_mirror corresponds to the concept discussed in chapter 3.2.1 and flexbe_input to the
concepts of chapter 3.2.2. flexbe_core contains the core functionality of the FlexBE behavior
engine. Communication between the OCS and the onboard engine uses ROS topics, transmitted
via a communication bridge to connect the two remote systems. Implementation of the remote
communication is not part of this thesis, however, minimal but sufficient data exchange is an
important requirement for the engine.

As depicted in figure 4.1, flexbe_behaviors is also considered as an external node. This
node basically connects the engine with available behaviors and thus needs to be defined along
with the system for which FlexBE is used, depending on which behaviors are actually defined.
flexbe_atlas_states, however, is not required and, in this system, extends the collection of
common states in flexbe_states with robot-specific states.

The first part of this chapter provides a more detailed description of the relevant capabilities
and implementation details of FlorBE, and discusses how they can be extended to realize the
requirements of the new runtime-modifiable behavior engine. Subsequently, the overall imple-
mentation of the onboard behavior engine is presented, including the extensions made to the
SMACH state machine interface. Finally, three aspects of the implementation are discussed in
detail, such as how switching a behavior during runtime is implemented based on the concepts
of chapter 3.3. The operator interface, although a very important aspect of the behavior engine,
is not part of this chapter and, due to its complexity, discussed instead in the next chapter.

Figure 4.1: Component interaction in FlexBE. Italic font indicates external nodes, nodes with a bold
border are executed as an own process each. Bold arrows refer to ROS topic-based commu-
nication, thin arrows are internal references.
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4.1 Foundations

FlorBE [37] as a basis for the new behavior framework already provides a solid set of fea-
tures and certain specific extension points. The concept of behavior specification, as defined by
FlorBE, is also applicable for the newly developed framework and will therefore be presented
in this section. Also, operator interaction with the behavior is done by relying on FlorBE. How-
ever, some specifics of operator interaction have to be extended or modified in order to enable
more capable commands such as behavior modification. Furthermore, a new user interface
will replace the behavior control widget and will extend the existing communication protocol,
especially regarding robustness and feedback.

4.1.1 Behavior Specification

In FlorBE, behaviors are specified by two documents. The first one is the so-called Behavior
Manifest. This manifest is represented by an XML document as shown in listing 4.1. and contains
all meta information about the respective behavior, such as its unique name, its author, and the
date of its creation. Furthermore, the manifest defines the interface of the respective behavior.
The interface consists of two parts. The first part are the behavior parameters. Each parameter
has a certain type, for example text, numeric, or boolean, and can be referenced by using its
unique name. The values of parameters are chosen by the operator each time a behavior is
started and then remain constant during execution. The second part is the declaration which
other behaviors are included in the current behavior. For this purpose, their unique names are
listed and, when starting a behavior, their respective parameters are loaded as well.

Finally, the manifest points to the corresponding behavior implementation, which is the sec-
ond document. The behavior implementation is a Python class inheriting from the behavior
superclass provided by FlorBE and can be located in an arbitrary Python module. Typically, each

1 <?xml ve r s ion=" 1.0 " encoding="UTF−8" ?>
2
3 <behavior name=" Get Up">
4 <executable package_path=" f lo r_behav io r_ge t_up . get_up_sm " c lass="GetUpSM" />
5 <author>Philipp Schillinger</author>
6 <descr ipt ion>
7 A behavior that lets the robot stand up when lying on the ground .
8 </ descr ipt ion>
9

10 <params>
11 <param type=" numeric " name=" t ime fa c to r " default=" 1.0 " labe l=" Timefactor ( m u l t i p l i e r ) " hint=

"How f a s t a motion i s executed . ">
12 <min value=" 0.1 " />
13 <max value=" 5.0 " />
14 </param>
15 </params>
16
17 </ behavior>

Listing 4.1: Example for a behavior manifest as used in FlorBE.
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behavior implementation is placed in a separate ROS package. However, it is also possible to
group multiple behaviors and only use a single ROS package for this group.

When selecting a behavior to be executed, the onboard engine will receive a message repre-
senting a start request and specifying the target behavior. This specification is done by providing
the reference to the behavior implementation as given by the above mentioned manifest. The
respective class is then imported, instantiated and executed. In addition, each start request de-
fines values for the behavior parameters which then are used for execution. The core part of
each behavior implementation is its state machine. Built upon SMACH [5], this state machine
works according to the definitions made in section 3.1 and supports userdata for data exchange
between single states as well as the Autonomy Level for regulating autonomous execution.

SMACH is extended to support all required features by an inheritance chain where each class
of the chain adds a new basic feature to custom states and state machines, respectively. An
overview of the old inheritance chain, as provided by FlorBE is given, in figure 4.4. This inheri-
tance has been significantly extended, as presented in section 4.2.1. Also, although the concept
of behavior specification is still applicable, creating and modifying these two documents man-
ually does not meet the defined requirements of intuitive behavior definition and will thus be
generated automatically from a model definition in FlexBE.

4.1.2 Operator Interaction

Operator interaction in FlorBE relied on a minimal widget for sending simple commands, such
as forcing a transition or changing the Autonomy Level. It has mainly been created for expert
users and provided no support to the operator for making the correct decisions. A screenshot of
this behavior control widget is given in figure 4.2. What has proven to be helpful in the way this
widget is realized is that it is highly context-aware when executing a behavior and only provides
interaction options which are actually executable in the current situation.

Communication between the OCS and the onboard engine in order to send commands from
the behavior control widget to the executed behaviors, was realized using ROS topics. Also,
monitoring of the current state of the behavior has been realized this way, using a simple ver-
sion of the Behavior Mirror, of which an improved version is presented later in this chapter.
However, FlorBE did not enable to get direct feedback regarding the execution status of an is-
sued command back to the operator control widget. This is an important aspect which has to be
added in the improved version of the operator interface.

Figure 4.2: The simple behavior control widget of FlorBE.
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4.2 Onboard Executive

Based on the foundations provided by FlorBE, the onboard behavior executive is responsible for
realizing all commands sent by the operator. Most important, on receiving a start command, it
will prepare the specified behavior and start its execution. While most parts of the basic onboard
executive can be used as available in FlorBE, this particular part of starting new behaviors has
to be almost completely reworked. The reason for this is that now, behavior execution should
not block all starting requests received in the meantime, but check instead if a switch to the
newly received behavior is possible and perform this switch. In addition, robustness has been
increased along with these extensions and more precise feedback during the whole process of
behavior preparation is now available.

As depicted in figure 4.3, starting a new behavior is divided into several steps. Each step is
contained in a try/catch block to detect and handle possible failure. Furthermore, each start
request is processed in a separate background worker thread. In the worst case, this thread
will fail to execute and thus simply drop the start request. The stability of the system, espe-
cially of other components, is not at all affected. The same subsequently applies for behavior
execution itself, which is performed in the same background thread as starting. This approach
provides more robustness against failure of behavior execution and has been added as part of
the extensions to FlorBE for this thesis.

When a starting message is received, it will specify which behavior should be started and,
if required, indicate changes to the available version of this behavior. Thus, the first step of
processing a start request is to load the source code corresponding to the specified behavior,
generate the code to be executed from the probably indicated changes, and store it in a tempo-
rary file where it incorporates a conventional class implementation. This Python class is then
imported and instantiated in the second step. Since behaviors can also include other behav-
iors, the third step consists of importing all embedded behaviors and instantiating them as well.
Fourth, the behavior parameters are set to their specified values for this execution. Finally, all
states used by this behavior are instantiated and the behavior state machine is composed. Af-
ter completion, the behavior is ready for execution and will be started if no other behavior is

Figure 4.3: Process of starting a new behavior as specified by receiving a BehaviorSelection message.
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1 package = __import__ ( " tmp_%d " % msg . behavior_id , fromlist=[" tmp_%d " % msg . behavior_id ])
2 clsmembers = inspect . getmembers (package ,
3 lambda member : inspect . isclass (member ) and member . __module__ == package . __name__ )
4 beclass = clsmembers [0][1]
5 be = beclass ()
6
7 # . . . e x e c u t e behav io r . . .
8
9 del (sys . modules [ " tmp_%d " % be_id ])

Listing 4.2: Runtime import of a behavior by the onboard engine as executed in step two of starting a
new behavior.

currently running. What happens if there already is another behavior running is described in
section 4.4.

Importing source code at runtime has already been discussed in chapter 2.3. Python enables
this functionality by providing the command __import__ to import a specific module when re-
quired. As shown in listing 7.1, a behavior is imported by providing a reference to the generated
temporary source code file and can be instantiated afterwards. After having finished execution
of a behavior, it is important to remove the imported module. Otherwise, Python would remem-
ber this module and would not execute the import command next time, while just using the
remembered version and thus the old source code.

Regarding the previously described fourth step, setting the parameters of a behavior includes
setting the parameters of all embedded behaviors as well. In order to avoid ambiguous pa-
rameter keys, the keys of embedded behaviors have their own namespace which corresponds
to the path of the respective behavior inside the state machine of the top-level behavior. In
the aforementioned third step of starting a behavior, a dictionary of all embedded behaviors is
created. This dictionary maps the respective state path, and thus the parameter namespace to
a certain behavior instantiation. Subsequently, in the fourth step, the key specification is split
into the key name and its namespace. On this basis, the corresponding behavior instantiation is
selected from the dictionary and its respective parameter, as referred by the key name, is set. If
no namespace is specified for a key, it refers to a parameter of the top-level behavior.

A further extension provided by this thesis is a more precise and helpful operator feedback.
The feedback has been improved in three ways. First, a status message always holds the current
state of execution such as running, finished, or failed. This enables all related components such
as the Behavior Mirror or the user interface to always reliably know if a remote behavior is
running and adapt accordingly. Second, a heartbeat signal has been added to the onboard
executive. This heartbeat enables to detect if a connection to the robot has been lost and will
warn the operator in this case. Third, a new behavior logger will not only handle all logging
which has to be done onboard, but also makes sure that the logged messages are transferred
to the operator control station and will be displayed in the runtime control part of the user
interface. As a result, the operator is immediately and precisely informed about any detected
errors and also will have access to warning messages and more specific feedback than only state
updates.
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4.2.1 Inheritance Chain

Providing functionality to states is solved similar to FlorBE by using an inheritance chain for
the state class. In order to implement the desired features according to the concept of this
thesis, FlexBE extends the inheritance chain by adding new classes. Furthermore, the existing
classes have been modified to give more precise feedback and to improve their modularity. In
this regard, the most significant change is that previously, a state machine subscribed to all
command topics such as the topic to preempt a state or manually trigger a transition, and when
receiving a message on one of these topics, it has called the corresponding function of the state.
This led to the drawback that a state could only provide its functionality if its containing state
machine also knew about it and supported it. In the new approach, each state itself subscribes
to its respectively required topic, using a cached proxy subscriber, and waits for commands
independently. As a result, it is completely transparent to the state machine which functionality
is offered by its states.

Figure 4.4 shows the previous execution flow of the old inheritance chain used by FlorBE. In
contrast, 4.5 gives an overview of the new inheritance chain implemented for FlexBE. In the
following, each of the classes in the inheritance chain is briefly described and its functionality is
presented. Overall, the order of the states in the chain has been changed to better reflect the fact
that a manually triggered transition rather substitutes the result of the user-defined condition
checking, whereas a triggered preemption is a more important command and should be checked
earlier. Improved modularity is another extension which applies to all states in general. The
idea behind is that it should not make a difference to the state in which type of state machine
they are embedded. In FlorBE, the states only had an interface for triggering their functionality
via function calls, which needed to be coordinated by the parent state machine. Now, in FlexBE,
states themselves listen to ROS topics matching their offered commands.

EventState

The EventState offers the ability to implement certain events during execution of state. Each
state can specify code to be executed for example when a state is entered from another state by
using the on_enter event. The EventState has already been existing in FlorBE. However, FlexBE
offers the new events on_start and on_stop, which are executed respectively every time the
complete behavior is started or stopped. Especially the on_stop event is helpful for making sure
that all processes triggered by a certain state are correctly terminated, no matter how a behavior
has been stopped. This helps for example in cases where one state starts a logging process while
relying on the fact that a second state will stop it before the behavior finishes. But when the
behavior is ended manually, the stop state may not be reached and therefore the starting state
can now use the on_stop event to stop the logging process.

OperatableState

The OperatableState has been the most important state extension in FlorBE. It uses the concept
of an Autonomy Level to decide if a transition is safe to be executed and, if not, prevents its
execution. It also interfaces with the OperatableStateMachine for monitoring the state execution,
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Figure 4.4: Flowchart of a state execution in FlorBE
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Figure 4.5: Flowchart of a state execution in FlexBE
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although due to the modifications along with FlexBE, independent usage is possible. For this
reason, the OperatableState offers an interface to generate an abstract definition of its properties
in order to enable the OperatableStateMachine to generate a behavior description.

PreemptableState

The PreemptableState enables to preempt the currently executed state and, if combined with
the PreemptableStateMachine, also the preemption of the whole behavior state machine. Pre-
empting a state means that it will no longer check its conditions and if preempting a behavior,
no new commands will be sent by this behavior. Execution of external components, which al-
ready has been triggered by the active state, cannot be canceled automatically when preempting
a state. However, using the new on_stop event offered by the EventState in FlexBE, the devel-
oper of a state can ensure that also these actions are stopped, depending on the interface offered
by the respective external component.

LoopbackState

The LoopbackState has been added by FlexBE to create a clean basis for using the typical
pattern for defining states. In contrast to SMACH, state execution is non-blocking in FlorBE and
FlexBE. After using FlorBE some time, an implementation pattern emerged where states typically
command actions in their on_enter event and check if these have been finished in the periodical
execution of the state afterwards, while always returning a special outcome when no condition
was met. Using the new LoopbackState, states can just check for their outcome conditions and
do not have to return any outcome if the state stays active. Also, the LoopbackState enables state
condition checks to be executed with a certain defined rate.

LockableState

The LockableState is the most important state extension in FlexBE. It realizes the concept
of locking a state, referring to the fact that this state still keeps executing, but is not able to
transition to the next state if it has finished execution. If an outcome has been returned while
being locked, the outcome is stored and will be returned as soon as the state is no longer
being locked. Also, if used in combination with the LockableStateMachine, state machines can
be locked as well. Since state machines are only containers and not executed themselves, the
LockableState not only locks its container if required, it also makes sure that in this case no
outcome is returned, which will lead to an outcome of its locked container, while outcomes
which only lead to transitions inside the container are still allowed. This concept is visualized
in figure 4.6.

ManuallyTransitionableState

The ManuallyTransitionableState enables to force particular outcomes of a state while it is be-
ing executed and waiting for its corresponding actions to complete or the required conditions to
be fulfilled. This can be seen complimentary to the functionality offered by the OperatableState.
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Figure 4.6: Example of allowed transitions inside a locked state machine as defined by the LockableState.

While the latter can block particular outcomes if their required autonomy is too high for the
current level of autonomy of the robot, meaning the behavior wants to execute them but the
operator does not, the ManuallyTransitionableState can trigger outcomes if the operator wants
to execute them but the behavior does not.

MonitoringState

The MonitoringState has been added in FlexBE in order to increase the robustness of defined
behaviors and to enable immediate reaction to external failure before it negatively influences
execution. For this purpose, the MonitoringState defines a list of possible sources of failure which
are monitored by an external health monitor based on the diagnostics component of ROS. Each
state can then define the specific sources of failure which can influence its execution and as
soon as one of these criteria reaches a critical level, the state will react to it by returning either
an explicitly defined failure outcome, or one generated by the MonitoringState for this specific
source of failure.

4.2.2 State Implementation

State implementation is realized using a certain pattern, mainly relying on the events offered by
the EventState and the functionality added by the LoopbackState. In general, each state requires
the implementation of two parts defining its execution and typically includes at least one more
part. The first part is implemented in the constructor of a state. In this step of execution,
all components and references later required for the actual state execution are created. This
especially refers to required topic subscribers or actionlib1 action clients. The second part is
the periodic condition checking in the execute function of the state. In this part, typically no
actions are executed or commands sent. Instead, it is determined if one of the outcomes of this
state can be returned and, if applicable, output userdata of this state is written.

1 http://wiki.ros.org/actionlib (03/31/2015)
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Most of the implemented states trigger a certain action which is executed while the state is
active. Commanding this action is done in an optional part, relying on the on_enter event
defined by the EventState. This function is executed once when the state is entered and can be
used for sending commands in order to start execution of the desired actions. Further available
events can be used depending on the required functionality of the state. However, a developer
should always keep in mind that a behavior can be preempted at any time and also outcomes,
forcing the state to transition, can be commanded externally by the operator. Therefore, it is a
good practice to consider using the events on_exit and on_stop for making sure to clean up
after execution. An example state implementation is given in the appendix of this thesis.

Along with the development of the behavior engine itself, several states have been developed
as well in order to offer solutions for common aspects of behavior creation and to extend the
functionality offered by the pure engine. Such states include executing an arbitrary function
callback as state, in order to convert certain input data to the required type of output data for
future usage inside the behavior state machine. Function callbacks can also be used to check
simple, very behavior specific conditions and trigger the corresponding outcome based on the
result of this function. Additionally, simple but useful functionality such as waiting for a certain
amount of time or sending a log message to the operator using the integrated Behavior Logger
is available as state.

The InputState is a special state of the offered standard state implementations. This state is
the counterpart to the flexbe_input node as presented in chapter 3.2.2. In its on_enter event,
this state sends an input request to the operator specifying which type of input data is required
by the behavior. Afterwards, it periodically checks if the operator has provided this required
data, retrieves it from the serialized content of the message, and passes it as output userdata to
the next states. The ConcurrentState is another special state. This state can be used to execute
a set of states simultaneously and return an outcome based on their result and according to a
specified evaluation rule.

4.3 Code Transfer

In FlorBE, specification of the behavior to start with has been realized by sending the unique
name of a behavior within a start message. This allows for compact messages, but has the
significant disadvantage that behaviors have to be known by the onboard engine. Therefore,
only selected behaviors, which have been defined and implemented prior to starting a task and
are therefore present onboard, could be selected. Since this thesis targets runtime modifications,
it cannot necessarily be assumed that the implementation of a behavior is known in advance.
However, it is also not desirable to transfer the full implementation of a behavior during runtime
while probably being restricted to a slow communication channel.

When deploying the robot for starting to solve a task, the available behaviors can be syn-
chronized between the onboard and control station. This provides a good basis, since changes
made during runtime are typically rather small compared to the behaviors itself, which have
been developed over a longer period of time with the available pre-knowledge of the task. If a
behavior has not been modified since the last synchronization, it can still be referred instead of
sending the full specification for starting it. Furthermore, when changes have been made, it is
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not necessary to transmit the whole new version. The changes only can be sent instead, and the
new version can be constructed onboard based on the changes. For this reason, it is important
for the control station to not only store the latest version of each behavior, but also to keep track
of the version available onboard.

In order to provide the required source code for executing a behavior, the FlexBE Editor user
interface generates it based on the created model. Details regarding this code generation process
are presented in chapter 5.2.3. The generated code is then compared to the version of the
respective behavior known to onboard and a patch according to chapter 3.3.2 is calculated for
generating the new version by transmitting minimal data. The differences to be addressed by
the patch are determined by using difflib2, a standard Python library for comparing text. Based
on this result, each difference is considered as a replacement, and the position, represented by
the starting and the ending index, is used along with the content which is supposed to replace
the previous content at this position. The patch is unidirectional, but it provides all information
required in this context and contains no redundancy which would require additional bandwidth.
In order to make sure that the correct version is constructed from the patch, a checksum of the
initially generated source code is calculated and transmitted along with the patch.

When the behavior specification is received by the onboard engine, the onboard engine will
load the referred stored behavior, apply the changes defined by the provided patch, and verify
that the resulting behavior specification matches the desired one by calculating its checksum
and comparing it with the one received. If these checksums match, the code transfer has been
successful.

4.4 Behavior Switch

Switching a behavior is implemented very similar to starting one. As already mentioned in
section 4.2, each behavior is executed in its own background worker thread. Thus, the intention
to switch the currently running behavior to a new version, is indicated by just sending a start
request containing the modifications to be applied. The way how a start request is realized and
how the modifications are specified, has been discussed in the previous section. In case of a
behavior switch the same format is sent, while the fact that the specified behavior matches the
currently running behavior indicates that a switch will be performed.

When a start request for a new behavior version is received, the first steps of preparing the
behavior are the same as described in section 4.2. They are completely independent from the
currently running behavior. Once a behavior is ready to be started, which means all of its states
have been instantiated and the state machine is composed, it checks if a behavior is already
running. If there is one, the actual behavior switch is induced.

As shown by figure 4.7, a series of checks is performed first in order to verify if switching
is possible. For example, it might be the case that the preempt command message sent to the
previous behavior has been lost for some reason and the received behavior is actually not a new
version of the running behavior, but a completely different one instead. In practice, the operator
would not have received a confirmation for successful execution of the preempt command, and
2 https://docs.python.org/2/library/difflib.html (03/31/2015)
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Figure 4.7: Process of switching to a new behavior. The old behavior keeps running independently until
the new one can be reliably executed.

thus would have known that the message has been lost or at least not yet received. Further-
more, the user interface would not have allowed to start a new behavior while another one is
still running. But however, things can always happen which require verification checks to be
completely safe.

In order to decide whether the received behavior is actually a new version, the name of the
specified behavior is checked first. The name of a behavior is unique, thus a specification using
the same name has to be one for the same behavior. But describing the same behavior does not
necessarily mean that a switch is possible. As discussed in chapter 3.3.1 regarding consistency,
a behavior always has to be locked in its pivot state in order to allow for a switch. Therefore,
the second check verifies that the behavior is actually locked, while the third check consists of
finding the pivot state specified by state of the active behavior which is locked in the new version
and checking if the requirement of immutability is fulfilled. Finally the version ID, representing
a checksum of the source code, is compared to detect if the version is actually different.

After having passed all checks, the new behavior is ready to be started. In order to ensure
a seamless switch, the pivot state of the switching process is integrated into the new version
by replacing its corresponding state there. As a result, as soon as the pivot state is unlocked
and takes one of the transitions, it will no longer transition inside the old behavior, but use the
transition function of the new version instead and continue with one of the states of the new
behavior. Finally, the old behavior is preempted. At this point, the behavior switch gets actually
executed, because now the old version is not available anymore. Beforehand, if any step had
failed, the new worker thread would just have been stopped and the old behavior would have
kept executing. But as soon as the old behavior is preempted, the new version is ready to be
unlocked and then able to continue execution of the task.
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4.5 Monitoring

In order to provide comprehensive feedback about the current status of behavior execution, the
onboard engine sends messages to the operator station whenever the active state of the behavior
state machine changes. But instead of sending extensive messages containing information such
as the active state, a Behavior Mirror is used for basically two purposes. First, it reduces the
amount of data to be sent during execution to a minimum since it is able to apply knowledge
regarding the structure of the behavior and to relay the update information by augmenting it
with data regarding the name of the active state and available outcomes. Second, it allows for
abstraction regarding the communication channel due to the fact that the mirror is executed
at the operator control station, and thus enables other monitoring tools to directly connect to
behavior status updates sent by the mirror. Further background regarding the concepts of the
Behavior Mirror is provided in chapter 3.2.1.

The first information the mirror needs is the structure of the executed behavior. Therefore,
when the user interface commands to start a new behavior at the robot and generates the code
for execution, it also generates the structure for the Behavior Mirror in a special format which
can directly be used to mirror the structure of the commanded onboard behavior. The structural
data is provided as a list of state specifications, each containing the absolute path to this state
inside the behavior, its outcomes, transitions, Autonomy Level and, in case the state is a state
machine, its child states. Neither the class of a state nor its userdata keys have to be included,
as they only refer to data processing and do not contribute to the structure. When receiving this
structural message, the Behavior Mirror builds a state machine based on the provided structure.

Figure 4.8: Simplified implementation overview of the Behavior Mirror: The mirror will be built after
receiving a structural message and is executed when being notified that behavior is running.
During execution, the single state instantiations trigger transitions based on updates and
send OCS updates themselves.
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All states are instantiations of a special mirror state implementation. As a result, they will send
updates for monitoring instead of executing specific functionality.

In order to make sure that a structure actually corresponds to the executed behavior, the struc-
tural message as well contains the ID of the behavior as checksum. If the Behavior Mirror detects
a difference between the ID used to create the structure and the ID corresponding the execution,
it will drop its current structure and request a matching structure directly from onboard. This
makes sure that a match is achieved. However, since requesting the structure from onboard has
to use the possibly degraded communication channel to the robot, this is only a backup solution
in case of a mismatch.

As depicted in figure 4.8, after receiving the structure of the target behavior from the control
station (1) and being notified by the onboard engine that the matching behavior has been started
(2), the Behavior Mirror starts execution of its internal state machine, representing the behavior
structure, as well. Afterwards, during the whole behavior execution, updates are directly re-
ceived by the single states of the mirrored state machine. Updates are in fact notifications about
the index of the chosen outcome and are sent whenever an outcome is triggered at the topic
/flexbe/mirror/outcome. In response, the states generate a specific update message and send
it via the topic /flexbe/mirror_update to all monitoring tools. This solution is very efficient
because update messages not only require knowledge about the current state, but also regarding
its available outcomes and further specific information such as the Autonomy Levels. Handling
these updates locally in corresponding states thus reduces complexity significantly.
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5 Behavior Operation

The user interface of FlexBE is a very important part of the behavior framework. Not only does
it allow to start and stop behavior execution, it also significantly facilitates development of new
behaviors and provides access to all features offered by the onboard engine. In contrast to the
previously described behavior engine, the software components presented in this section run
at the operator control station (OCS). This includes the user interface, an input manager for
providing specific data, and the already mentioned Behavior Mirror for monitoring.

The main focus of this chapter is the user interface and its capabilities to not only operate
behaviors, but also to define them. Having these two capabilities realized in one single user
interface is rather complex compared to having two independent interfaces. However, since
the framework enables runtime modifications, having independent interfaces is not sufficient
anymore. During execution, there are several restrictions regarding when and how a behavior
can be modified. These restrictions ensure consistency and have already been discussed in
chapter 3.3.1. Therefore, combining both aspects in one single user interface guarantees that
all conditions for editing a behavior are met.

In this chapter, an overview of the approach of the user interface and its basis is given at first.
Subsequently, the second section focuses on defining new and modifying existing behaviors and
presents how these behaviors are provided to the onboard engine. This section is followed by
a section focused on operating behaviors during runtime. Finally, new concepts that support
communication with the onboard engine in addition to the Behavior Mirror are introduced.

5.1 Approach

The main purpose of the user interface is to provide the functionality offered by the onboard part
of FlexBE to the operator in a user-friendly way. Since the concept of FlexBE relies on having
the robot and the operator work together as a team, not only the robot has to be perfectly
integrated into the system, but also the operator. Especially mechanisms to reduce the cognitive
load the operator has to take when executing a behavior, and even more a developer has to
take when specifying behaviors, are an important focus of the chosen approach for the user
interface. For this reason, not only are state machines drawn in an intuitive way to quickly
provide an overview of their structure, but also has a number of usability features been added
such as visualizing the userdata dataflow inside a state machine, offering completion suggestions
when entering parameter values or userdata keys, providing detailed documentation whenever
possibly of advantage, or indicating errors as soon as they are made.

Although the whole system is based on ROS, the user interface itself is realized as a Google
Chrome App. Main reason for this decision is the great flexibility to design an intuitive and
useful interface for operating behaviors. The combination of HTML, CSS, and JavaScript allows
to easily specify each single aspect of the user interface. In order to connect the user interface
to ROS, Rosbridge1 is used to communicate to the other ROS nodes and RoslibJS2 provides a
1 http://wiki.ros.org/rosbridge_suite (03/31/2015)
2 http://wiki.ros.org/roslibjs (03/31/2015)
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ROS interface to JavaScript. Furthermore, the framework RaphaëlJS3 is used for drawing state
machines.

5.1.1 Infrastructure

As being mainly a scripting language for augmenting websites with client-side functionality,
JavaScript is not an intuitive choice for a large project like this. In order to enable development
of software consisting of more than 10,000 lines of code, it is required to have a good infras-
tructure regarding abstraction and a clean interface to allow each component to interact with
each other without being too specific.

One important concept missing in JavaScript is the ability to define classes. An object-oriented
approach significantly reduces the complexity of large projects and therefore is desirable. But
although JavaScript is based on functions instead of classes, it is possible to resemble classes.
As shown by the example in listing 5.1, a state is defined as being a function itself. Private
variables are simply variables inside the scope of this function while functions are one specific
type of variables and can be locally defined in the same way as assigning a simple value to a
variable. JavaScript allows to instantiate functions as objects by using the new keyword. In this
context, the given function can be seen as a constructor for the new object. Having this in mind,
public functions can be provided by extending the instantiated object. This is done by adding
new attributes to the object using the this keyword. Again, there is no difference between
having a simple variable or a function as attribute.

One thing to be noted in listing 5.1 is the second line. In JavaScript, the this keyword does
not necessarily refer to the object of which a function is called. Instead, in most constellations,
it rather refers to the calling context. For this reason, the second line is added as a convention
to provide the functionality known from this by using the newly introduced keyword that for
storing a reference to the object itself.

Inheritance in JavaScript is realized by a concept called Prototyping. Each object has a prop-
erty called protoype which refers to another object. This other object basically represents the
properties of the first object given by its superclass while the superclass is implicitly defined by
the prototype object. As already mentioned, there are in fact no classes in JavaScript. For this
reason, the prototype of an object is an object itself, not a class. However, when instantiating

1 State = function (name ) {
2 var that = th i s ;
3 var state_name = name ;
4
5 th i s . getName = function () {
6 return state_name ;
7 }
8 }

Listing 5.1: Example for a simple class definition in JavaScript.

3 http://raphaeljs.com/ (03/31/2015)
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1 Statemachine = function (name ) {
2 State . apply ( this , [name ]) ;
3 var that = th i s ;
4 var states = [ ] ;
5
6 th i s . addState = function ( new_state ) {
7 return states . push ( new_state ) ;
8 }
9 }

10 Statemachine . p r o t o t y p e = Ob j e c t . create ( State . p r o t o t y p e ) ;

Listing 5.2: Simple example for class inheritance in JavaScript.

a new object, the prototype of the constructor function is automatically copied as prototype of
the new object.

An example for this process is given in listing 5.2. In line two, the properties of the prototype
of the new object are set. This basically corresponds to calling the constructor of the superclass
in conventional class-based inheritance. In addition, the prototype of the function Statema-
chine, which represents the class of all state machine objects in this example, has to be set to a
new instance of the State prototype. This makes sure that each new state machine object will
receive a state prototype.

In summary, applying the concept of object orientation to JavaScript is not always intuitive and
sometimes hard to understand. But it is possible and when being used to it, the same patterns
as in object-oriented programming can be realized in a similar way. Further explanations and
details can be found at [41].

In addition to having a basis for implementing the desired concepts in JavaScript, it is required
to split the whole user interface into separated blocks of functionality, but also to combine HTML
and CSS with JavaScript as tools for specifying layout structure and appearance. All static parts
of the user interface are defined in HTML, while there is a container with a unique ID for each
spot where dynamic content has to be added later using JavaScript. In addition, CSS definitions
specify the visual properties of all displayed objects and also provide pre-defined style classes
for objects later created dynamically. Furthermore, a dedicated event coordinator realized in
JavaScript directs events occurring at the static components defined in HTML to the modules
implementing the respective functionality in JavaScript. The JavaScript part itself is split into
several modules in order to reduce complexity and provide abstraction. In the following, each
module is briefly described.

User Interface (UI)

This module is responsible for realizing the dynamic part of the user interface which cannot
be defined in HTML. Its structure is closely oriented on the visual components. Each of the
main views, which are described in detail in the next section, is represented by an own class.
Additional panels, such as a panel for displaying the properties of a state, are realized in an
additional sub-module.
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Figure 5.1: Component overview of the user interface of FlexBE.

Drawable

This module abstracts from the used external library for creating SVG drawings, RaphaëlJS,
in order to provide drawable representations of objects. Using this module enables drawing a
state or a transition instead of needing to compose rectangles, lines, and text boxes manually.
In addition, it contains a helper class for providing ways of interaction to all drawn objects and
offering features such as placing an object as close as possible to its target position without
overlapping any other objects.

Input/Output (IO)

This module handles and abstracts access to the file system and offers functionality to load or
save a whole behavior. In addition, only parts of a behavior, such as its manifest for accessing
its interface, can be loaded using this module without the need for loading the whole behavior.

Statelib

This module handles parsing of single state implementations and generates abstract defini-
tions for them. It manages all state definitions and provides functionality for accessing these, as
well as accessing the definitions of behaviors when wanting to embed a behavior as state. The
features of this module are presented in-depth in section 5.2.2.

Model

This module contains all classes used for modeling a behavior, such as State, StateMachine,
and Transition. Having a model of the behavior represented by objects of these classes pro-
vides a lot of functions for accessing specific parts or getting certain information about it. One
feature offered by a StateMachine object, for example, is generating a data flow graph for its
content. Information on what exactly a data flow graph is, will be given in section 5.2.1.
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Runtime Control (RC)

This module interfaces ROS by using RoslibJS and offers functionality to send and receive ROS
messages. Furthermore, it contains the runtime controller class for managing the runtime state
and deciding which actions are allowed with respect to a possibly running onboard behavior.
Details to this module are given in all parts of section 5.3.

Finally, some top-level classes such as the previously mentioned event coordinator are con-
tained in the root module, and further auxiliary modules containing CSS definitions, images and
JavaScript code for testing, are available as well.

5.1.2 Operator Views

The user interface itself is separated into four different sections, called views. Each view has a
clearly defined purpose and allows for concentrating on one specific aspect. The operator can
switch between these views at any time using one of the four view buttons in the menu bar. In
addition to the view buttons, the menu bar always indicates the connection status to the robot
and contains further buttons defined by each of the views which are only displayed when the
respective view is active.

The first view is the Behavior Dashboard. Its purpose is to give a high-level overview of the
behavior and foremost define its interface. Thus, the view provided by the Behavior Dashboard
can be seen as an outer view or black box view onto the behavior. Although not strictly divided

Figure 5.2: The four views of the FlexBE user interface.

5.1 Approach 55



regarding this aspect, the dashboard loosely corresponds to the Behavior Manifest document.
Meta-data such as the name of the behavior and its author are specified here, as well as the
parameters of the behavior. As depicted in figure 5.3, defining parameters for the behavior
is assisted by a specific Behavior Parameters panel. Further panels at the dashboard help to
add private variables, which can be seen as a persistent configuration of the behavior, default
userdata and private functions. Also, the interface of this behavior, when embedded in another
behavior, can be defined here.

The next two views, the Statemachine Editor and the Runtime Control, are presented in-depth
in the next two sections. Roughly speaking, the Statemachine Editor complements the Behavior
Dashboard when defining a behavior. But while the dashboard provides an outer view focused
on the interface, the editor provides an inner view and defines the implementation of a behavior
as given by its state machine. The Runtime Control on the other hand concentrates on providing
a good monitoring of behavior execution and enables the operator to send commands to the
executed behavior.

Finally, the fourth view offers the possibility to configure the FlexBE user interface itself. Set-
tings and references to the file system can be specified here and are stored when closing the user
interface. For example, the communication with Rosbridge can be configured here and folders
for importing available state definitions can be chosen.

In addition to the views, there is a terminal panel, providing detailed feedback to the operator
whenever commanded actions cannot be executed or relevant information is available. This
terminal is hidden most of the time and only automatically displayed if required. Another
addition is the Tool Overlay. As shown in figure 5.4, a set of commands is directly accessible
using this overlay. This overlay can be displayed by pressing the Control and the Space keys.
Moving the cursor across one of the commands before releasing the keys again will immediately
trigger this command. Otherwise, the overlay stays displayed until a command is selected or
it is hidden again. Besides accessing the most frequently used commands, this overlay lists all
past modifications to the behavior and allows to jump back and forth in time to any of the
listed versions. A command line input at the bottom also enables execution of more advanced
commands.

Figure 5.3: Configuring the properties of a behavior parameter.
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Figure 5.4: The Tool Overlay appears around the cursor position and offers quick commands.

5.2 Statemachine Editor

The Statemachine Editor view is a powerful tool for developing new behaviors or getting an
overview of existing ones. It consists of a large drawing area where all states of the state
machine are visualized as boxes and are connected by labeled arrows indicating existing tran-
sitions between them. The label of a transition corresponds to one of the outcomes of the
outgoing state. When this state returns the specified outcome, this transition is taken and exe-
cution is continued with the state to which the transition arrow points. In addition, the arrows
are colored corresponding to their required Autonomy Level. The outcomes of the containing
state machine are drawn as terminating dots, labeled with their respective outcome. States as
well can connect their outcomes to those dots which will make the state machine terminate
when one of these outcomes is returned.

Figure 5.5 shows an example for a state machine visualized by the Statemachine Editor. As
depicted, for each one of the yellow states, its state instantiation name and the name of the
class of its state implementation is given. The white state is a state machine itself and contains
three inner states. Although not shown in this simple example, whole behaviors as well can be
embedded into a state machine as states, which is indicated by a purple state box giving the
name of the respective behavior instead of the state implementation class.

Being able to develop behaviors in such an intuitive way without the need to specify each
single state by writing Python code, and especially having an overview of the whole behavior
state machine at any time during development, are important prerequisites for modifying be-
haviors during runtime. As stated in chapter 1.1, this feature implies strict requirements for the
development of behaviors. Not only must the operator be able to make small modifications on
its own without being a developer himself or being able to write Python code, but also the de-
velopment of behavior modifications must be guided and supervised by auxiliary tools to verify
the correctness of made changes.
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Figure 5.5: Example for a state machine visualized in the editor.

The Statemachine Editor enables to model the purpose of a behavior while the actual be-
havior implementation is generated automatically in the background according to the given
specification. This guarantees the syntactical correctness of behaviors. However, the semantical
correctness of a behavior as well is important, as, for example, requesting a wrong action at
a time when it cannot be executed successfully might lead to task failure and should be pre-
vented. As already discussed in chapter 2.2, verifying abstract high-level behaviors semantically
is a very complex task and a large field of research itself. Nevertheless, some semantical verifi-
cation checks are included as well in the editor in order to reduce the possible points of failure,
but these are not yet sufficient to account for all possible sources of failure.

One semantical aspect which is checked, for example, is the availability of userdata. In the
past, behaviors often failed in early testing runs because states referred to userdata keys which
have not been initialized. This is likely to happen if there are different paths in a state machine
and not all paths set the same userdata. This problem is now solved by verifying that no such
path exists for any key.

A further aspect provided by the Statemachine Editor in addition to the robustness of devel-
oped behaviors is the efficiency of the development process. Modeling behaviors by using this
editor is much faster and easier than writing code manually. Thus, development of new be-
haviors is not only significantly facilitated, but it is also ensured that required modifications
during runtime can quickly be applied. This eliminates the need to interrupt the task execution
too long, if at all, and reduces the risk of incidents while being busy with specifying behavior
modifications during runtime, as discussed in chapter 1.1.

5.2.1 User Interaction

Intuitive user interaction is an important aspect of the Statemachine Editor. As already emp-
hazised at the beginning of this section, state machines are visualized as a composition of state
boxes and transition arrows. States can easily be moved and arranged in custom patterns by
dragging them on the icon at their top right corner. Transitions can be set by clicking on them
once to make them follow the cursor and then clicking on any possible target to connect them.
When a state is newly added, it has no transitions. However, the possible outcomes of the states
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which are not yet connected by a transition, are displayed inside the state box. Clicking on one
of these outcomes also triggers the process of connecting a transition.

Since state machines itself and other behaviors, which consist of at least one top-level state
machine, can be used as states as well, they enable the specification of hierarchical state ma-
chines. In order to navigate this hierarchy, these states can be double-clicked to enter them.
Entering means that now, their content is displayed in the editor drawing area. At the top of
the drawing area is a navigation bar which allows to go up again in the hierarchy. While the
content of an embedded state machine can be arbitrarily modified, embedded behaviors are
read-only because they are not specified as part of the top-level behavior, but by their own
behavior definition instead.

Furthermore, each state has specific properties, such as parameters. Single-clicking on a
state opens the property panel of this state, displayed at the right side of the window. This
panel enables the developer to change the name of a state and provides specific information
by displaying the state documentation. Also, all properties of the selected state are listed and
can be changed. This includes setting the parameters of this state as well as selecting the
appropriate Autonomy Levels of all outcomes. Furthermore, the userdata keys used by this state
can be remapped in order to match available keys of the state machine. This remapping allows
to connect userdata of different states regardless of their internal key name. For state machines,
also the available userdata keys and outcomes can be defined since they are not given by a fixed
state implementation.

An example of how the properties panel looks like is given by figure 5.6. While, for example,
entering the value of a parameter, as shown in this figure, the documentation of this specific
parameter is displayed and also suggestions for possible values to be entered are provided,
depending on available global variables, functions, and state specific data such as class variables
of this state implementation. Providing this information is not only a convenience feature, it is
an important part of the concept of facilitating the development as much as possible and of
preventing the developer from entering wrong values. If, for example, a string was given as
parameter value and the developer forgot to close the quotes, the input field would immediately
turn red, indicating an error at this position.

(a) Documentation tooltip (b) Autocompletion

Figure 5.6: Documentation assists the developer by providing the correct values.
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Adding a new state opens a panel similar to the state property panel. In this panel, the desired
name of the new state can be given as well as the class name of the state implementation. In
order to select the correct class and, at the same time, to get an overview of available choices,
a list of all known state implementations is displayed in this panel. Each entry in this list
not only contains the class name of this implementation, but also its respective summarized
documentation. Selecting the right implementation from this list can take some time, therefore
an input field for filtering the list is provided. When starting to type a desired class name into
this field, only classes containing the entered text as part of their name are listed, while classes
of which the name starts with the entered text are listed at the top. This enables a quick selection
of the desired class, which is completed by clicking on the corresponding list entry in order to
use this class. In case only a single list entry is left due to the entered filter, this class is selected
automatically.

The data flow graph is an additional tool for supporting the development of new behaviors and
especially helping to quickly understand what is happening in a state machine. When activating
it, the data flow of the state machine’s userdata is displayed instead of the labeled and colored
transitions between the states. The data flow graph consists of directed edges between all pairs
of states where the first state has an output key and the second one the corresponding input key.
Or, practically speaking, it visualizes the flow of data from being written by one state to being
read by another state. For the data flow graph, all possible paths are taken into consideration.
If a userdata key is not defined by any state before being used as input key, an edge is added
from the starting point of the state machine indicating that this data has to be provided by the
state machine as an input key. Similarly, output keys of the state machine create data edges to
the terminating dots representing the outcomes of this outer state machine.

Finally, also tools such as copy and paste of states and groups of states are provided. Selecting
multiple states can be achieved by dragging a selection rectangle across all of them. When copy-
ing a group of states, internal transitions, which means that both end points of the respective
transitions are contained in the selected group, are copied as well. All actions performed by
the user are stored in an activity history, allowing to undo certain actions or redo them again.
Furthermore, as presented in section 5.1.2, a Tool Overlay not only makes these actions more
accessible, but also provides an overview of the whole activity history.

5.2.2 Integration of States

As already mentioned, a list of available state implementations is offered to the developer when
adding a new state. In order to generate this list, the user can provide folders in the Configura-
tion view which are then parsed for available state implementations. This seamless integration
of the user interface into the development process is an important factor for enabling use in
practice. It would be very cumbersome if a developer was required to provide information re-
garding an implemented state definition manually each time a new one is added. On the other
hand, being able to parse available state implementations allows the developer to just open the
editor and use all defined states without any intermediate step.

Parsing of state implementations is done by the Statelib component of the user interface. The
LibParser recursively traverses all folders specified in the Configuration view and detects files
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1 c lass CalculationState ( EventState ) :
2 ’ ’ ’
3 Implements a s t a t e tha t can perform a c a l c u l a t i o n based on userdata .
4 c a l c u l a t i o n i s a func t ion which takes e x a c t l y one parameter , input_va lue from userdata ,
5 and i t s re turn value i s s to red in output_value a f t e r l eav ing the s t a t e .
6
7 −− c a l c u l a t i o n func t ion The func t ion tha t performs the des i red c a l c u l a t i o n .
8 You can provide e i t h e r the re f e rence to a func t ion
9 or an anonymous func t ion denoted by a lambda expres s ion .

10
11 ># input_va lue o b j e c t Input to the c a l c u l a t i o n func t ion .
12
13 #> output_value o b j e c t The r e s u l t of the c a l c u l a t i o n .
14
15 <= done I n d i c a t e s complet ion of the c a l c u l a t i o n .
16
17 ’ ’ ’

Listing 5.3: Documentation pattern of a parsed state.

containing class definition which specify states. Theses classes are detected by checking if the
class inherits from EventState, the endpoint of FlexBE’s inheritance chain. Subsequently, the
source code of the class is parsed in order to retrieve the relevant specification details of the
state such as its outcomes, userdata keys, and parameters. Parsing is mostly done using regular
expressions. However, in some cases where values need to be interpreted similarly as done by
Python, the used regular expressions are supported by helper methods for interpretation. One
example is a parameter with a given default value as string while the string contains a closing
parenthesis. This parenthesis does not end the specification of parameters at this point and has
to be ignored since it is only contained in a string and not considered by Python.

As already mentioned, detailed documentation of states as well as of their outcomes, userdata
keys, and parameters plays an important role for supporting the developer with all required
information. For this reason, a documentation scheme is introduced in order to provide this
information. Listing 5.3 contains an example for such a documentation. At the beginning, an
overview of the functionality and the purpose of the state itself is given. The first sentence is
supposed to summarize it, the rest of this section should give details. Subsequently, outcomes,
userdata keys, and parameters are documented in any order. Each line starts with one symbol,
where -- indicates a parameter, ># an input key, #> an output key, and <= an outcome. Separated
by at least one whitespace character follows the name to which the documentation refers, the
expected type of data, and finally a detailed description which can consist of multiple lines. In
the case of an outcome, the data type entry is skipped because outcomes do not contain any
data. Empty lines, no matter where, are ignored.

When parsing a state, the LibParser not only stores information regarding the interface of
the state, but also how to access the class which contains the state implementation. This in-
formation can be used later for generating required imports in the source code. Finally, all
information regarding a state implementation is combined by creating one StateDefinition
object for each state which manages access to all required information regarding this state. The
classes StatemachineDefition and BehaviorStateDefinition extend the simple StateDef-
inition to provide additional information regarding embedded state machines and behaviors.
However, state machine definitions are specified independently for each state machine and are
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not retrieved by parsing any source code. Nevertheless, in order to create the behavior state
definitions, all available behaviors have to be parsed as well, including their manifest files.
The single definition objects are then organized by the Statelib and the Behaviorlib class,
respectively, where they can be accessed in order to instantiate states in the model.

5.2.3 Code Generation

When saving a behavior, source code is generated to represent an executable Python class imple-
menting the modeled behavior. In order to only generate correct behaviors, a set of verification
checks is executed before the code generation itself is started. These checks include simple facts
such as if the name of the behavior is set or if all specified parameter names match the required
Python syntax, and more advanced correlations, such as the behavior may only declare userdata
input keys if they are also given a default value and thus are represented in the set of default
userdata keys of this behavior. Also the state machine is verified which includes, for example,
verifying that all outcomes of each state are connected to a valid target and that the local user-
data keys of each state have a valid mapping. If the modeled behavior passes all verification
checks, its source code can be generated.

The structure of a behavior class is very simple and structured since all of the common func-
tionality is already offered by the Behavior super class. When a behavior is executed, the
onboard engine calls the required methods of the Behavior class which then uses its cre-
ate method to create the state machine. This create method is empty per default and can
be overwritten by inheriting behaviors to specify their state machine. Furthermore, additional
methods of the Behavior class can be called in the constructor method of the behavior for
further configuration such as using behavior parameters and setting its name.

Inside the create method, states are declared by adding them to their containing state ma-
chine. Listing 5.4 gives an example for such a state declaration. The first argument is the
state name, the second is the actual state object, being an instantiation of one of the available
state implementation classes. Typically, states are not instantiated before passing them to this
method call. This helps to have everything regarding a certain state in one place, as the ar-
guments passed to the constructor call of the state class are the parameters of this state. The
next three arguments embed the state into the state machine. The transition dictionary maps
the outcome of the state to their corresponding targets. Each target has to be either the name
of another state or one of the outcomes of the containing state machine. This dictionary is a
typical source of failure when implementing behaviors manually, but since they are generated
in FlexBE, this dictionary is verifiable correct. Next, the autonomy dictionary is similar to the

1 OperatableStateMachine . add ( ’ Check_Control_Mode_Stand ’ ,
2 CheckCurrentControlModeState ( target_mode=CheckCurrentControlModeState . STAND , wait=F a l s e ) ,
3 t r a n s i t i o n s={ ’ c o r r e c t ’ : ’ S tar t_Logg ing ’ , ’ i n c o r r e c t ’ : ’ Set_Control_Mode_To_Stand ’ } ,
4 autonomy={ ’ c o r r e c t ’ : Autonomy . High , ’ i n c o r r e c t ’ : Autonomy . Low } ,
5 remapping={ ’ control_mode ’ : ’ control_mode ’ })

Listing 5.4: Declaration of a state inside a behavior definition.
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transition dictionary but with the difference that an Autonomy Level for each outcome is given.
Finally, the remapping dictionary maps internal userdata keys to external ones.

In order to generate the code, which is a sequential representation of the behavior state
machine, the state machine has to be traversed in a certain order. Adding embedded state
machines in the source code works similar to adding a normal state, but instead of providing a
state instantiation, a reference to the embedded state machine is given. Thus, when traversing
the hierarchy of state machines, the resulting order has to guarantee that a state machine is
always at a position behind all of its embedded state machines, since Python would not know
the reference to the respective state machine otherwise. For the states itself, no special order is
required, since the transition function is given as a mapping of strings. Only exception is the fact
that SMACH requires the initial state to be the first state added to a state machine per default.
This constraint is also respected by the code generation process. In addition to generating the
code to represent the behavior state machines, the imports for all used states are generated as
well as declaring which external behaviors are contained.

The reduced flexibility constrained by the fixed pattern of generation typically is a significant
drawback of code generation. However, this flexibility is often required for solving more com-
plex tasks. Purpose of the code generation process is not enforcing a fixed structure of behaviors
while restricting the developer to a certain pattern of implementation, but instead, supporting
the developer by automatically providing certain parts of the implementation. Therefore, in ad-
dition to the generated code, the developer has the option to edit certain parts of the generated
source code manually. These sections are explicitly declared in the generated code and when
overwriting an implementation by a newly generated version, the manual sections will not get
lost. This also includes the case where code in the manual sections is modified after a behavior
has been loaded by the editor, thus allowing even parallel modification of source code in both,
the user interface and manually.

There are four manual sections in each behavior. The first one, Manual_Import, is provided
prior to the class definition of the behavior and is meant to be used for additional imports
required by the other manual sections. The Manual_Init section is contained in the constructor
of the behavior class and can be used for initialization code and declaring private class variables.
The Manual_Create section is located inside the create method between the declaration of all
private variables, as entered at the Behavior Dashboard, and starting to build the state machine.
Thus, this section can be used for advanced calculation of private variables to be used by the
state machine or to be passed as parameters to certain states. Finally, the Manual_Functions
section can be used for manually defining additional helper functions which can be used in the
other sections or passed to states.

Generating the source code of a behavior class is definitely the most complex part of the
generation process, but not the only one. Each behavior implementation is represented by a
ROS package and, in addition, needs to have a manifest located inside the behaviors folder
of the ROS package flexbe_behaviors, while this package needs to have a dependency on the
behavior package. All of these requirements are checked by FlexBE when generating a behavior
and, if missing, are generated as well. This is not only convenient and makes creating new
behaviors faster by being able to just click one single save button instead of creating all required
files and entries additionally, it also ensures consistency and verifies that declarations regarding
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parameters and contained behaviors match each other in the source code and the behavior
manifest.

Unfortunately, arbitrary file system access is not provided for Google Chrome Apps in order to
provide security against malicious apps. Instead, the app has to make an explicit request for each
single file it wants to read or write, where the user has to specify the path, and will then provide
an Entry object representing this file, but not offering much functionality. This limitation would
completely inhibit the features described in the previous paragraph. However, the problem can
be solved by using two additional aspects. First, as also used by the Configuration view, a Chrome
App can store persistent data, which means that also the previously mentioned Entry objects can
be stored in this way by converting them to a unique ID. Getting back an Entry object from such
an ID does not require user interaction anymore. Thus, having once received permission for a
specific file, omits the need for asking again for the same one. But the user would still need
to specify each single file of the ROS package by himself and therefore would have to know
the correct structure and provide it accurately. This problem is solved by the second aspect.
Independently from Chrome, HTML5 offers some functionality for accessing files and is able to
handle Entry objects as provided by Chrome. This functionality includes getting a list of all
contained files if the provided entry represents a folder, which allows to access subfolders and
contained files. In combination, these aspects enable the user to only need a specification of a
top-level folder once, referred to as the workspace, and being able to then read and write files
inside this workspace afterwards automatically.

Although generating the files required for execution of the behavior by the onboard engine,
no additional files for saving are generated. In order to load behaviors again, their manifest and
source code are parsed to retrieve the structure and generate the model. This approach not only
prevents redundancy, and thus has no problems with possible inconsistency of saved files and
generated source code, but also allows to load manually written behavior code if it respects the
structure pattern. However, strictly respecting this structure is not required. For example, when
starting development of FlexBE and not yet having generated behaviors available, the behaviors
which have been previously developed manually by using FlorBE have been loaded successfully.

5.3 Runtime Control

The Runtime Control view is the interface to the onboard executive of FlexBE while a behavior
is running. It informs the operator about the current state of execution and enables to give
commands to the remote behavior. In addition, the quality of synchronization is monitored
at all times using the component RC.Sync, which is described in detail in section 5.3.2, and
documentation of the active state is provided. When no behavior is running but the executive is
ready to start one, this view lets the operator specify the parameters for execution and start the
selected behavior. However, when no connection to the robot is available or the conditions for
being able to start a behavior are not met, this view displays details regarding possible sources
and suggests ways how to solve the problem, as shown in figure 5.7.

In order to provide this context-based user interaction, Runtime Control runs the component
RC.Controller in the background which contains an event-based reactive state machine for
keeping track of the connection status. As already discussed in chapter 2.1.1, there are two
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(a) No ROS connection (b) No behavior selected

Figure 5.7: No behavior can be started right now.

different approaches of how actions can be integrated into state machines. In contrast to the
robot behaviors, which use a state-based action execution paradigm, the RC.Controller state
machine executes its actions when doing the corresponding transitions. This is due to the fact
that the actions triggered by this internal state machines are internal itself and not as likely
to failure as physical actions performed by the robot. Furthermore, being able to transition to
another state at any time a state is active, instead of waiting for a certain action to be completed
as it would be required when a state corresponds to the action execution itself, enables to create
reactive state machines of which the transitions can be triggered based on the occurrence of
certain external events.

The structure of the internal RC.Controller state machine is depicted by figure 5.8. The
upper four states represent that no behavior is running, or at least not known to be running.
Requirements for being able to configure a behavior, and thus for being able to start its exe-
cution, are a connection to the robot and a saved, non-modified version of a behavior loaded.
Only if both requirements are met, the operator is able to issue a start command. The lower
four states correspond to the state of execution while a behavior is running. The states LOCKED
and NEW_VERSION are very similar regarding the interaction they allow. But the difference be-
tween these two states is that taking the transition unlocked from state LOCKED simply results in
unlocking the currently locked state, while taking this transition from NEW_VERSION includes
performing a behavior switch.

The realization of this state machine is done in three parts. The first part consists of defining
the states including the actions which have to be executed when transitioning from or to the
respective state. Although the actions are specified at each state, they actually correspond to
transitions since no actions are performed while a state is active. Typical actions executed in
these functions would, for example, change the displayed content of the user interface. In the
second part, transitions are specified as reactions to events. The signal connected, for example,
will cause the state machine to transition to NO_BEHAVIOR when currently in state NOTHING or
to transition to CONFIGURATION when currently in state OFFLINE. Signals are given as public
functions and can be called by any other component being able to notice the corresponding
event. Third, boolean expressions are used to evaluate the output of the state machine, which
are functions of the status of the states. Short examples for each part are given in listing 5.5.
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Figure 5.8: Overall structure of the RC.Controller state machine.
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1 var STATE_NO_BEHAVIOR = { . . . } ;
2 var STATE_CONFIGURATION = {
3 onEnter : function () { . . . } ,
4 onExit : function () { . . . } ,
5 isActive : fa lse ,
6 label : "STATE_CONFIGURATION"
7 } ;
8 var STATE_STARTING = { . . . } ;
9

10 [ . . . ]
11
12 th i s . signalConnected = function () {
13 hasTransition (STATE_NOTHING , STATE_NO_BEHAVIOR ) ;
14 hasTransition (STATE_OFFLINE , STATE_CONFIGURATION ) ;
15 }
16 th i s . signalStarted = function () {
17 hasTransition ( STATE_CONFIGURATION , STATE_STARTING ) ;
18 }
19
20 [ . . . ]
21
22 th i s . isConnected = function () {
23 return ! STATE_OFFLINE . isActive && ! STATE_NOTHING . isActive ;
24 }
25 th i s . isReadonly = function () {
26 return STATE_ACTIVE . isActive || STATE_STARTING . isActive ;
27 }
28 th i s . isRunning = function () { . . . }

Listing 5.5: Excerpts of the RC.Controller state machine definition.

5.3.1 Control Interface

The interface for controlling a behavior during runtime consists of four different panels, an
example is given with figure 5.9. The main panel always displays the currently active state
in its center. If the active state is contained in an embedded state machine, the operator can
switch to any state in the hierarchy path, enabling to choose between detailed and rather high-
level feedback. Also, the mapping of userdata keys is given in order to let the operator know
depending on which data this state executes. The way the states are displayed is the same as in
the Statemachine Editor. Only difference is that the currently active state has a blue background.
However, when switching to the editor during behavior execution, the currently active state is
highlighted in blue as well.

To the left, the previous state is displayed including the transition that has been taken to
reach the current state. To the right, the possible next states are given, again including the
transitions that lead to them, labeled with the respective outcomes of the current state and
colored regarding their required Autonomy Level. The operator can click one of the transitions
in order to force it, causing the active state to being preempted and returning the regarding
outcome. When the behavior tries to take a transition while being on an Autonomy Level, which
is too low and therefore cannot execute it, the control interface will indicate this by highlighting
the regarding transition and displaying a corresponding text information.

Below the main panel is the Behavior Feedback panel. This panel provides textual feedback
given by the behavior engine. Single states can also utilize it for giving detailed feedback re-
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Figure 5.9: Monitoring behavior execution in Runtime Control.

garding their execution by using the Behavior Logger. This logger not only prints the logged
messages to the local terminal, but also sends it to the operator control station where they can
be displayed at this panel. There are four different severity levels offered by the logger. The
information level is meant to give general, rather positive, feedback. The warning level informs
about possible problems which, however, appear to not directly influence the desired path of
execution. In contrast, the error level gives feedback in case of failure. Typically, the error level
should be mostly used by the behavior engine itself and not by states. Failing inside a state will
return one of its outcomes such as failed or anything similar matching the failure. This does
not necessarily imply failure of the behavior, thus a warning-level message is the most suitable
way of informing the operator. The fourth level is the hint level, a special level of the Behavior
Logger. This level is meant to give explicit textual requests to the operator, telling him what to
do if the behavior expects a certain action done by him.

Next to the feedback panel is the documentation panel. It provides implicit information about
the currently active state, such as its documentation for helping the operator to understand
what exactly is supposed to happen when this state is executed. This supports the operator to
determine himself if a state is executing correctly or likely to fail by supervising the robot. This
panel also lists the specified parameter values of this state giving even more specific information
regarding execution.

Finally, the control panel offers the operator to give commands affecting the behavior execu-
tion as a whole. For example, the operator can set the desired Autonomy Level for the behavior
here. Also, execution of the behavior can be completely stopped in case something went wrong
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or the operator wants to switch to manual control from now on. However, stopping a behavior
will completely end it, offering no way to resume execution at this point. When just wanting
to pause behavior execution, the operator can lock the behavior instead. This will prevent the
currently active state from transitioning, regardless of the Autonomy Level. Locking can not only
be done at the state level, but also at any other level in the hierarchy. When locking a state
machine, this means that the state machine itself keeps executing internally, but it will stop as
soon as it is finished and will not return an outcome. Details regarding locking a state have been
discussed in chapter 3.2.

While behavior execution is locked, the operator may modify the current behavior state ma-
chine. This can be done by switching to the Statemachine Editor view. Normally, when executing
a behavior, the editor is in read-only mode, giving the operator an overview of the currently ex-
ecuted behavior, but not allowing him to perform any modifications. However, while a behavior
is locked, its state machine and the properties of all of its states can be modified as if it was
not running. As the only limitation, the locked state or state machine cannot be modified. After
changing and saving the behavior, the operator can unlock execution again. In this case, unlock-
ing will trigger the process of switching to the new version of this behavior. Details regarding
this process have been explained in chapter 4.4.

In addition to offering the operator to give commands, the control panel also provides feed-
back regarding the quality of synchronization between the user interface and the onboard be-
havior executive. This synchronization is determined by the RC.Sync component of the user
interface and affected by all commands given by the operator. The next section explains how

Figure 5.10: Behavior is running, but currently locked in the inner state machine Perform Checks.
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RC.Sync exactly works. However, it finally provides a synchronization bar for the control panel
which visually presents the quality of synchronization by being more or less filled.

5.3.2 Communication

As already stated at the beginning of this chapter, communication with the onboard engine is
done by using ROS. The class RC.PubSub interfaces with RoslibJS in order to send and receive
messages on certain ROS topics. To the rest of the JavaScript code, it provides the function-
ality to send various commands. Also, when receiving certain messages, it calls the regarding
functions, for example of the RC.Controller in order to signal events.

Reliability of the connection is an important factor for communication. In order to monitor
the connection status, the onboard engine periodically sends a heartbeat message. RC.PubSub
not only subscribes to this heartbeat topic in order to check if it can receive the messages, it also
monitors the delay with which the single messages arrive. Based on these delays, the jitter of the
connection can be calculated as an indicator for the connection reliability. In order to calculate
latency, the heartbeat messages would need to have a timestamp of when they have been sent,
and the clocks of both, the onboard executive and the operator control station, would need to
be synchronized. If the connection reliability drops below a certain threshold and a disconnect
is likely to happen, the operator will be warned in advance.

In addition to sending commands to the onboard engine, a communication protocol as well
as evaluating feedback received from the onboard engine is used to determine if the command
has been executed successfully, and to calculate the quality of synchronization between what
is displayed in the user interface and what is actually happening onboard. For this purpose,
RC.Sync offers functionality to register processes and keep track of their individual execution.
Furthermore, it can be used to monitor the overall synchronization and status of the system by
combining the corresponding values of the individual processes.

When a new process is registered to RC.Sync, it is given a unique key and a value spec-
ifying the impact of this process on the overall system. System synchronization is given in
percent, so a value of 100 corresponds to full synchronization while 0 means a complete loss
of synchronization. The impact of a process is thus given as any number between 0 and 100
corresponding to how much of the system’s synchronization is lost while this process is not yet
executed. The progress of this process is given as value between 0 (not started) to 1 (completed)
and can be updated by any of the other components of the user interface such as RC.PubSub
or RC.Controller. In addition, each process has a status which is able to indicate failure or
certain problems.

The status of the system is given as the worst status of its set of processes. Calculating the
overall system’s synchronization is done by reducing the synchronization for the percentage of
which each of its processes is not finished, weighted by their impact on the system. The summed
impact of the set of processes does not have to equal 100. If the calculated synchronization value
falls below zero, it is capped at zero. However, in order to achieve a synchronization above zero,
the progress of all processes has to be high enough to be above zero. For example, two processes
can be registered there. One having an impact value of 80 and a completion of 0 and another
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(a) Successful execution of the transition.

(b) Failure due to external state change.

Figure 5.11: Communication sequence when executing a transition command. The progress bar at the
top indicates the completion status of the corresponding RC.Sync process based on the
received messages.

having an impact value of 60 and a completion of 0.5. Even though the second process is
already completed half, the system’s synchronization is calculated as -10 and thus set to 0.
When the second process is completed, the system reaches a synchronization of 20, according
to the calculation rule given above.

The output of RC.Sync is displayed in the control panel of the Runtime Control view of the
user interface. This includes the synchronization value and status of the overall system as well
as a list of the values of all registered individual processes, if desired. If, for example, the
operator forces a transition manually, a new process corresponding this command is registered
at RC.Sync and gives the operator feedback regarding its execution. After issuing the command,
the synchronization bar will drop significantly because the commanded transition is not yet
executed. But it fills again piecewise as soon as the command message is created and sent to
the onboard engine, when the confirmation from the onboard engine that the command will
be executed is received by RC.PubSub, and the process will finally be completed as soon as the
resulting state is actually entered. In contrast, if the command fails to execute, for example due
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to the onboard engine already having executed a different transition and thus not being able to
force the specified one, the status of the transition process of RC.Sync will be set accordingly
and the process is completed unsuccessfully.

In order to keep RC.Sync updated accurately, a communication protocol is used for sending
commands to the onboard engine, which requires the engine to acknowledge at least the receipt
of the command and to indicate if there are any problems preventing the command from be-
ing executed. Depending on the command, intermediate feedback can be given regarding the
progress of completion. This is especially helpful for more complex commands such as applying
behavior modifications. All the feedback is sent on a dedicated command feedback topic and
messages of this topic contain a specification regarding which command they provide feedback.
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6 Evaluation

After having discussed the concept behind FlexBE and presented its implementation regarding
both its onboard behavior engine and its user interface, this chapter now evaluates the results
of this thesis. Since this is a valuable source of improving the initial concepts and potentially
identify weaknesses of the current implementation, considerable effort has been taken to get
helpful feedback and results.

Corresponding to the implementation being split into behavior execution and operator in-
teraction, the evaluation as well has to consider both aspects. A good onboard engine is the
prerequisite for efficiently executing behaviors, but without good operator integration and be-
havior modeling, the overall system performance will not pass a certain point. Similarly, good
feedback to the operator and intuitive interaction with running behaviors is not sufficient if
the engine is not robust enough to handle behavior failure or requires too much bandwidth in
communication between robot and operator.

For this reason, the first section of this chapter will focus on evaluation regarding operator
interaction based on practical experience using an early development version of FlexBE to de-
velop and execute behaviors. The next section will then investigate behavior execution by using
a dedicated test behavior suitable for measuring performance indicators. In the third section,
the practical use of FlexBE in preparation for the DARPA Robotics Challenge is presented in order
to give application examples. Finally, possible further work is discussed.

6.1 Operator Experience

Experience and feedback from the operator is an important source of evaluation. Since FlexBE
has been designed with the intention to provide the operator an intuitive and easy-to-use high-
level interface to the robot, a meaningful evaluation needs to involve the operator. A lot of
research has already been done regarding how to evaluate human robot interaction. Steinfeld
et al. give a broad overview in [40] and define several metrics while splitting the field of human
robot interaction into five task categories. For the evaluation of this thesis, mainly navigation,
perception, and manipulation are of interest.

In general, results of evaluating the user interface already in early stages of development
showed that mainly two aspects of the concept positively shaped the experience of the users,
both operators and developers. First, abstracting the robot’s behavior by modeling it as state
machines, where each state corresponds to a certain action of the robot and transitions refer to
its results, turned out to be a very intuitive and broadly applicable concept. On the one hand,
during execution, a operator always had a good insight of what a state means and what needed
to be fulfilled in order to proceed. On the other hand, a developer could effectively compose a
variety of actions and abstract from certain sequences of action by embedding sub-statemachines
or other behaviors. Second, users said that the interface was easy to use and abstracted well
from the complexity involved in each of the single actions. The next two sections provide a
more detailed discussion of the early operator feedback.
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6.1.1 Behavior Development

One main focus of the development of the Statemachine Editor was its usability. As a tool for
creating high-level control, it should allow to work on top of an abstract basis and efficiently
re-arrange the composition of low level components. Especially the Tool Overlay feature with
its commands, such as copy and paste of whole groups of states including their intermediate
connections, or access to the command history listing all past modifications to the behavior, has
proven to be helpful for facilitating quick development and extension of state machines.

Furthermore, assistance to the developer while specifying the properties of a state instanti-
ation, is important. The developer of a state implementation and the developer of a behavior
using this state is typically not the same person. Therefore, in order to let the behavior developer
specify the correct parameters and provide a suitable data format for the required userdata, good
documentation of the interface is fundamental. The approach of FlexBE to closely integrate this
documentation in the user interface and to display for the developer exactly the information he
needs at each point in time, has turned out to be a crucial aspect for improving the specification
of new behaviors. Also, suggestion of possible and available values for parameters and userdata
keys helps a lot for passing the desired data to a state.

Checking if provided data, such as parameter values, is syntactically correct, is another helpful
aspect of specifying the properties of a state. Instead of just checking the syntax of given values
when finally generating code, checking the syntax as soon as a value is entered helps a lot
because it allows the developer to immediately correct the mistake. In addition, the explicit
verification of the whole behavior regarding consistency and correctness of the state composition
has proven to be a helpful tool as well. This verification including some level of semantical
verification in order to determine whether the developed specifications make sense. It not only
improves the robustness of specified behaviors, but even more increases operator’s confidence
in new behaviors.

One aspect which may need improvement, is the specification of complex custom data struc-
tures as private variables and userdata. Passing a predefined data structure, such as a whole
trajectory definition, is no problem since these structures can be described using ROS messages
and are a common interface. But if the data structure is very specific to a single kind of appli-
cation, custom Python dictionaries were often used in practical development in order to specify
the structure, while afterwards certain states have been added to decompose the dictionary and
extract the respective data to be passed to the states which execute actions. This approach is not
very scalable because it is hard for the developer, and even harder for the operator, to under-
stand which data is passed. However, the manual sections for combining the power of modeling
behaviors with still being able to manually add parts of Python code, have proven themselves
as a very useful concept. While the structural and compositional part of behavior specification
was done by using the modeling tools provided by FlexBE’s Statemachine Editor, the manual
sections were solely used for defining very specific data and there was no overhead related to
the structure of behavior execution.

6.1 Operator Experience 74



6.1.2 Behavior Execution

As shown by previous practical experience, a focus on the currently active state is very important
when monitoring the execution of a behavior. For quickly understanding what the robot is
currently doing, it is not sufficient to have a complete overview of the structure of the behavior
state machine only, even when knowing which of the states is the active one. For this reason, the
FlexBE has a special view, the Runtime Control, for monitoring behaviors during their execution.
Similar to the previous user interface, the behavior control widget of FlorBE, the active state
and its outcomes are displayed. One problematic aspect of the previous user interface, however,
was the limited amount of provided context, such as the previous state or consequences of each
displayed outcome. The new Runtime Control addresses this issue, as depicted in figure 6.1.
This new approach has proven useful, along with the possibility to navigate in the hierarchy of
the active state in order to view the current state of execution in different levels of abstraction.

The purpose of monitoring behavior execution is to give the operator the best possible esti-
mation of what currently happens to the robot and what influences its next actions. Thus, it is
not enough to just monitor the currently active state in a behavior. However, since a behavior
relies on existing low-level components for realizing the commanded actions, it turned out to be
a scalable approach to rely on these external components to define their own way of monitor-
ing, instead of trying to integrate everything, regardless of what is actually used by a particular
behavior. As a result, it is the goal of the behavior monitor to specifically monitor the control
flow of a behavior, providing insights on which components are currently relevant and how they
interact with each other.

The commands which are sent by the operator are also closely tied to the control flow of
a behavior. Considering the circumstances of execution, especially the limited bandwidth and
delays causing a highly constrained communication, commands cannot be executed by the robot
immediately when commanded. Therefore, it is important that the operator is exactly aware of
which commands are currently pending and whether they can be executed as desired. This

(a) FlorBE

(b) FlexBE

Figure 6.1: Comparison of displaying the active state.
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issue is explicitly addressed by the RC.Snyc component of the Runtime Control in FlexBE. This
approach has proven as very effective for allowing comprehensive execution of commands.

Parametrization of behaviors and choosing appropriate values when starting one, is also a
helpful concept of behavior execution. But since behavior development is now much more
integrated in FlexBE, a second way for configuring a behavior for execution has emerged. Instead
of using the behavior parameters for setting certain values, they were just provided as private
configuration variables and submitted as changes to the behavior source code. This is completely
possible, however, it is not the desired and modular way for providing these values. It turned
out that the reason for using the private configuration was to allow the entered values to be
saved, and thus not need to set them again for each execution. Instead, behavior parameters
currently have their default value for each execution unless changed. This shows that it will
be advantageous to save the last provided value to a parameter and to suggest it for the next
execution instead of the default value. In addition, the operator can choose to go back to the
default value at any time.

6.2 Behavior Performance

In order to evaluate the performance of behaviors as such, a State Logger has been implemented.
This logger is integrated into the behavior engine and automatically logs each run of a behav-
ior. During execution, one log entry is created each time the state machine takes a transition.
The point in time of this transition and information on which outcome of which state has been
returned are logged, as well as the implementation class of a state and if the transition has been
triggered autonomously or if it has been blocked. These log files can be evaluated afterwards
regarding different indicators, in order to measure the performance of various aspects of behav-
ior execution. The user can specify a set of properties to be calculated, and regarding which
criteria these properties should be accumulated.

An overview of available keys for properties and criteria is given in the appendix. This concept
of decoupled data recording and evaluation enables detailed information regarding multiple
aspects of behavior performance even if these have not been specified before execution. For
example, the accuracy with which the robot had correctly chosen a certain transition can be
calculated, as well as the number of required operator interventions at a certain point in the
behavior, or the amount of time spent in a certain class of states.

Quantitative performance of behavior execution can be measured regarding efficiency and
effectiveness. Both aspects have been investigated by using a relatively simple and thus com-
prehensible demo behavior inspired by the following scenario: A robot, in this case a simulated
ATLAS v5 robot using Gazebo1, has the task to collect data regarding the environment in a dis-
aster scenario. Its behavior is designed to iteratively walk a short distance and then take a
camera image and send this data to the remote operator. However, during its mission, the robot
enters a damaged building where the available light is insufficient for taking useful camera im-
ages. At this point, the operator decides to modify the behavior during a walking phase of the
robot in order to collect LIDAR scan data instead of camera images. The implementation of this
exploration behavior is given in the appendix.
1 http://gazebosim.org/ (03/31/2015)
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State Visits Intv Waiting Active

Init Radius 22 0 0.000 0.510

Calculate Next Pose 22 0 0.000 1.053

Determine Waypoint Valid 22 0 0.000 0.447

Plan To Waypoint 22 0 0.000 0.441

Perform Walking 22 1 0.000 561.672

Take Camera Image 16 0 0.000 1.443

Take Laser Scan 6 0 0.000 0.846

Send Image To Operator 22 0 0.000 11.530

Check Finished 22 1 2.316 3.901

Figure 6.2: Evaluation of the State Logger log file of the exploration behavior.

An evaluation of this demo mission is provided in figure 6.2. For each state, the amount
of state executions (Visits), the amount of interventions (Intv), the time in seconds spent with
waiting for the operator (Waiting), and the total time in seconds this state has been the active
state during execution (Active), is listed. The intervention and waiting time in the Check Finished
state results from ending the behavior. In order to keep the behavior from taking another
iteration, the operator lowered the Autonomy Level and rejected the suggested transition while
instead forcing the transition to return the finished outcome of the behavior.

As indicated by the amount of state visits, 22 iterations have been executed. After taking 16
camera images, the behavior has been modified by the operator and the Take Camera Image
state has been replaced by the Take Laser Scan for the remaining six iterations. Although this
is the log file for a single behavior execution, both, the camera image and the laser scan state,
are listed although they only existed in different versions of this behavior. This way of modify-
ing the behavior during its execution without the need for restarting it has proven to be very
efficient. Restarting the behavior would have required significantly more time, especially when
considering that specifying this modification could have taken much more time without use of a
behavior framework built for making quick and safe changes, and that the new behavior would
have needed to be somehow transfered to the remote robot.

Regarding efficiency it is even more remarkable that the behavior modification did not at all
cause the robot to wait for the operator and pause its own execution. As indicated by the log
file, the modification has taken place while the robot was walking to its next position. Since this
state has been active for most of the time anyway, it is a good point in execution to be locked
in order to allow runtime modifications. While the state was locked, the robot kept walking.
But in case that specifying the modifications would have taken longer than the robot walks, the
robot would have waited before continuing its behavior execution.

Furthermore, the available partial semantic verification of behavior specifications has proven
useful as well to prevent task failure in this context. When the operator removed the Take Cam-
era Image state and added the Take Laser Scan state, he forgot that the Send Image To Operator
state still referred to the userdata key provided by the camera state. After the verification check
displayed an error message in order to tell the operator that the expected camera userdata is
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Figure 6.3: Simulating the evaluation scenario while supervising the behavior using FlexBE.

not available, the operator was able to quickly change the reference to point to the laser scan.
This process happened before even transferring the new behavior version to the robot.

During behavior execution, network usage has been measured by using nethogs2 in order to
determine the bandwidth efficiency of the behavior engine. Since an absolute measurement of
the required bandwidth was technically not possible, several five minute runs of the behavior
have been conducted. One part was executing the behavior engine as normal, while message
transmission of the behavior engine was disabled for the other part. Runs with enabled message
transmission accumulated a total amount 9.464 kB sent data during the five minutes, runs
without sending messages accumulated 7.323 kB on average. This yields a bandwidth increase
of 2.141 kB caused by the behavior engine, which equals an average data rate of only 7.14 B/sec
including logged messages sent to the operator for detailed feedback regarding execution.

Furthermore, the effectiveness of this mission has to be evaluated. The goal was to collect
data regarding the environment and during a mission time of slightly less than ten minutes.
The presented approach of using FlexBE in this scenario resulted in a total of 16 camera images
and 6 LIDAR scans. Effectiveness of this approach can be compared to three other possible
approaches.

First, the operator could have just let the robot keep executing its initial behavior. In this case,
22 camera images would have been available after execution, but only 16 of them containing
usable information. Second, the operator could have stopped the behavior as soon as it was not
able to provide useful data anymore, and he could have continued the mission by teleoperation.
Without considering that the available bandwidth might not have been sufficient for this ap-
proach and that the operator might not have had enough data for finding a viable next position
for the robot to walk to, this approach would have been much slower. As given by the behavior
log data, commanding to record one LIDAR scan took around 140 ms and execution of all states
required to start walking only 111 ms on average. Third, the operator could have stopped the
behavior as in the previous approach, but instead of continuing execution by relying on tele-
operation, specify a new version of the behavior manually, transfer it to the robot, and execute
it, considering a system flexible enough to handle initially unknown behaviors. However, this

2 http://nethogs.sourceforge.net/ (03/31/2015)
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approach would have required much more time until the new behavior would have been able
to start execution and thus, it is not really applicable in such a short mission.

In summary, the novel approach taken in the given scenario, now available due to the work
presented in this thesis, showed a good task performance and allowed for interruption-free task
execution although a significant and unforeseen disturbance regarding the expected circum-
stances occurred. Considering a more complex scenario than the one chosen for a meaningful
evaluation, as well as highly limited communication and further restrictions in direct control
of the robot, modifying a behavior in the way developed in this thesis and provided by FlexBE
might be, so far, the only option to prevent task failure.

6.3 DARPA Robotics Challenge

Main purpose of this thesis and the development of the FlexBE behavior framework is its ap-
plication in the DARPA Robotics Challenge, in order to provide the robot the ability to semi-
autonomously make decisions and to autonomously execute high-level commands. In prepara-
tion for the DRC Finals, a lot of states and a set of behaviors have been developed using FlexBE.
The developed states interface with the rest of the team’s software and include states for foot-
step planning and execution, endeffector motions, grasping, and changing internal parameters.
A full list of states is provided in the appendix.

Until the submission date of this thesis, the team’s ATLAS robot had some technical issues
preventing it from executing complex actions. For this reason, testing of developed behaviors
mostly took place in simulation. Nevertheless, behaviors have been developed and prepared
for execution. An excerpt of a developed behavior is given in figures 6.4 and 6.5. In this part,
the robot is supposed to walk near an object of interest which should be grasped afterwards.
The object is specified by the operator, based on the perception of the robot, as a template.
Thereafter, the robot is able to extract several data, such as a viable position to stand in order
to grasp the specified object, from this template by leveraging the template server. Based on

Figure 6.4: Behavior to walk near an object of interest.
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Figure 6.5: Dataflow graph overlay of the same behavior indicating which data keys are passed between
the states.

this retrieved stand pose, a footstep plan is generated and executed. Considering that the robot
might be able to collect more accurate perception data when having approached the object,
the operator is able to command the robot afterwards to improve its position by adjusting the
template and commanding another iteration.

Despite the technical issues, some behaviors have also been executed directly on the ATLAS
robot, mainly focused on supporting development of specific basic system components and low-
level robot control. Hence, the usage of this robot in the context of behaviors is presented in
the next section. Furthermore, also Team Hector uses FlexBE for controlling their THOR-MANG
robot in the DRC Finals. This robot is presented in the section afterwards.

Figure 6.6: New version of the ATLAS robot, developed by Boston Dynamics.1

1 http://www.darpa.mil/NewsEvents/Releases/2015/01/20.aspx (03/27/2015)
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6.3.1 ATLAS

The ATLAS robot has been developed by Boston Dynamics and funded by DARPA. Figure 6.6
shows the latest currently available version of the robot. Compared to the previous version of
this robot, around 75% of the parts are exchanged or improved in the new ATLAS v5. Deviant
from figure 6.6, the final ATLAS v5 includes electric forearms, containing an additional joint.
Thus, the arms of ATLAS v5 have seven degrees of freedom each, providing much better manip-
ulation capabilities. All in all, the robot now has 30 joints, most of these hydraulically actuated,
a size of 1.88 meters, and a weight of 157 kilograms.

Main goal of the upgrades to ATLAS was to remove the need for a wired connection to the
robot. Instead of relying on an external pump for actuating the hydraulic joints, the robot
now has an energy-efficient and quiet variable pressure pump built-in. Furthermore, a wireless
router integrated in the head of the robot supersedes the need for wired communication and a
battery with a capacity of 3.7 kilowatt hours provides enough energy for roughly one hour of
mixed operation, including walking and manipulation.

During the development phase prior to the competition, main focus of behaviors was to sup-
port the development of different parts of the system, foremost by automating tests in order to
determine specific properties of the robot. For this purpose, a system identification behavior has
been implemented. This behavior loads defined trajectories, coordinates and automates their
execution, and records all required data such as commanded and actual joint values including
video recordings of all experiments. During an experiment, the operator always has the possi-
bility to let the behavior run in full autonomy, or to reduce the Autonomy Level at certain points
when executing rather risky trajectories or parameter settings.

(a) (b)

Figure 6.7: Testing with the robot: (a) ready for system identification, (b) testing simple grasping.
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In total, several hours of pure execution time of this system identification behavior accumu-
lated, testing more than one hundred single trajectories with different settings and proving the
robustness and applicability of FlexBE along with such a complex system as the ATLAS robot.
Furthermore, development and operation of the resulting behavior have been made by differ-
ent persons, providing a great opportunity for evaluation of FlexBE and for improving certain
aspects.

Another behavior executed on the robot is the so-called Praying Mantis behavior. This be-
havior commands the joints to go near their respective limits and then commands the low-level
controller of each joint to carefully push beyond these limits while monitoring the actual joint
positions. This allows to determine joint offsets of the robot and to calibrate the joints for more
reliable execution of motions afterwards. Executing this behavior in full autonomy each time
the robot is started provides an easy and effective way for always having a calibrated robot
without the need for manual calibration and for defining static offsets in a configuration file.

6.3.2 THOR-MANG

The THOR-MANG is a humanoid robot platform developed in a collaboration between Robotis3,
Virginia Tech4, the University of Pennsylvania5, and Harris Corporation6. The robot consists of
30 electrically actuated joints based on Robotis’ Dynamixel PRO servomotors, is 1.47 meters tall
and weighs 49 kilograms. This robot is used by a cooperation between Team Hector and Team
ViGIR to demonstrate the applicability of the software developed by Team ViGIR not only for an
ATLAS robot, but also for further robots such as THOR-MANG.

(a) (b) (c)

Figure 6.8: THOR-MANG robot platform, (a) and (b) taken from [27].

3 http://www.robotis.com/ (03/31/2015)
4 http://www.romela.org/ (03/31/2015)
5 https://www.grasp.upenn.edu/ (03/31/2015)
6 http://harris.com/ (03/31/2015)
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6.4 Future Work

Based on the results of evaluation and the overall capabilities of the chosen approach, further
work can be conducted in order to improve the behavior framework FlexBE and its user interface.
This section lists some considerations regarding main improvements based on observations and
discusses how currently open problems can be solved in the future. This is intended to provide
a basis for further development of FlexBE. Until the DRC Finals, development will definitely be
continued by Team ViGIR. Afterwards, it is planned to publicly release FlexBE and thus to make
it available for a broad field of applications in order to effectively support the development of
high-level behaviors and more intelligent and flexible robot applications.

6.4.1 Synthesis Integration

As already discussed in chapter 2.2.1, an integration of synthesis into the process of runtime
modifications to behaviors has the potential to create powerful synergy effects. Obviously, it
will make it much easier for the operator to specify runtime changes since he only has to give
high level commands to the synthesizer instead of completely modeling the changes by himself.
But in addition, it enables incorporation of even more powerful autonomous adaptation. It may
not be applicable in the field of rescue robotics, but in scenarios where the environment can be
much better perceived by the robot and the consequences of failure are considerably low, using
a combination of behavior synthesis and runtime modifications will allow the robot to change
its own behavior during execution depending on how the environment changes.

Considering having the synthesizer available as a primitive invocable by a state, one could
define a sub-behavior which at first locks execution in its parent container, invokes the synthe-
sizer to generate a new version of the top-level behavior, applies it using FlexBE’s capability

Figure 6.9: System concept for requesting behavior synthesis from FlexBE’s user interface.
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for runtime modifications, and finally continues execution by now using the new version. This
sub-behavior can be embedded into any other behavior, and be invoked as soon as a difference
in the environment is detected. Synthesis of the new behavior will not be restricted in any way
since the new version will still contain the synthesis sub-behavior which is the pivot state of this
switch. This whole process can finally be combined with approaches on machine learning in
order to optimize situational adaption of robot behaviors.

While this way of combining synthesis and runtime modifications is rather a long-term objec-
tive, supporting operator and developer by using synthesis for more efficient behavior definition
is really a practical extension to the framework as it is now. It is currently developed together
with the Verifiable Robotics Research Group at Cornell University. It is planned that the developer
will not have to start with an empty state machine when starting to create a new behavior or
new parts of an existing behavior. Instead, he can provide a set of high-level initial conditions
and goals to be achieved by this part of the behavior. Behavior synthesis will then draft a first
version of a possible behavior to achieve these goals, which can be modified and extended by
the developer afterwards.

This development can be seen as a first step towards combining FlexBE with behavior synthe-
sis. More advanced integration can then actively assist the developer when specifying behaviors
manually by relying on the state constraints defined in chapter 3.5. For example, when the
developer adds a new state to the behavior and connects it in a way that its preconditions are
not fulfilled, required intermediate states can be synthesized and automatically added, instead
of just displaying an error message.

6.4.2 Web-based Solution

FlexBE not only incorporates a flexible behavior engine, but also a very flexible user interface
by relying on HTML and JavaScript. In general, it would be possible to run the user interface as
a web app, removing the need for installing any software locally and being platform indepen-
dent. This means, that the operator would actually be able to control the robot even with his
smartphone or a tablet. However, there are currently two aspects limiting this form of usage.

First, the user interface requires native file system access for parsing available states and
behaviors, as well as generating source code and creating ROS packages for new behaviors.
This is currently realized by implementing the user interface as a Google Chrome App, depending
on Google Chrome to be available and requiring the user to install the app. Second, for actually
executing behaviors, a connection to ROS is required. While this is possible without using Google
Chrome, it is inevitable to have Rosbridge running on a Linux machine. Eliminating both of these
two needs is the prerequisite for designing a web-based solution.

One feasible approach would be to rely on a central server. A simple development server sim-
ilar to using common repositories for software development would already eliminate the need
for depending on Google Chrome and would enable to develop behaviors in any web browser
without installing any software. The development server would store all developed states and
behaviors, and instead of accessing the local file system, the user interface client would just
communicate with the server. However, this solution would still require a Linux-based operat-
ing system running ROS and Rosbridge to create a connection with the ROS network.
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(a) Web client connected to the robot (b) Remote web client

Figure 6.10: Possible concepts for server integration.

Instead of just having a remote server as development repository for defined states and be-
haviors, it is also possible to have a server with access to the ROS network of the robot. This
server could even be executed as a local ROS node when working on a Linux machine. Instead
of communicating directly with ROS from the user interface based on Rosbridge, the user inter-
face would communicate instead with the server, which is then able to send and receive local
messages in the ROS network of the robot. This would eliminate all dependencies on Linux and
even Rosbridge and thus enable a completely remote operation from any device, possibly even
via the internet.

6.4.3 Parallel Execution

Right now, FlexBE is designed to support only one active state at a given point in time. This state
is centered in the Runtime Control view and the operator can send commands directly influenc-
ing its execution. However, in some cases, being able to execute multiple states at the same time
would be helpful. In order to provide a first solution for these scenarios, the ConcurrentState
has been added, allowing parallel execution of states. While this adds everything required from
an execution-point of view, it does not provide the same operator integration as known from
FlexBE.

The ConcurrentState is just a common state and thus, its internal functionality is transparent
to FlexBE. When this state is executed, it is displayed as the sole currently active state, no matter
which states or even state machines are executed internally. For this reason, further work can
be done to better integrate concurrency and parallel execution into the user interface and the
communication protocol of FlexBE. However, this will require some fundamental changes of the
concept since there will be for example no single pivot state. Also verification will be much
more complex when having to account for interdependencies between possibly simultaneously
running states.

6.4 Future Work 85



6.4.4 Multiple Robots

In future, more advanced robotic rescue missions will most likely involve multiple robots. In
this context, it is important to note that FlexBE itself is not limited to controlling a single robot.
It rather can be seen in a way that FlexBE is controlling a system. In current applications, as
presented in the previous part of this chapter, the system relies on a single robot to execute the
specified actions. But there is no restriction that the system cannot utilize the capabilities of two
or more robots as well in order to execute the commanded actions.

Nevertheless, practical applications in multi-robot systems will likely need some additional
features. The most important feature in this context, for sure, is the ability to execute states in
parallel when sticking to the approach of central coordination of the agents of this system. If
choosing an approach where each agent forms a sub-system and is controlled decentralized by
running its own instance of FlexBE, it should be possible to use different ROS namespaces to
independently control each robot. However, each robot would have its own user interface this
way. This may be intended in some cases, but may not in other cases. A solution to control
multiple instances of onboard behavior engines with a single, central instance of FlexBE would
be a helpful feature in this context.
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7 Conclusion

This thesis presents an approach for realizing modifications to high-level behavior control even
while the robot is running, controlled by this behavior itself. Furthermore, the operator is con-
sidered as an important factor for both, monitoring behavior execution and specifying required
modifications, and thus, is tightly integrated in the system. This approach enables application
of the developed system in a variety of scenarios, even without detailed knowledge in advance
about the environment and how the desired goal can be achieved.

Main focus of this thesis is the application in the field of rescue robotics, using advanced hu-
manoid robots for combining capabilities such as dexterous manipulation and navigation across
rough terrain. Efficient performance of robots is considerably impeded by the unstructured
environment in typical disaster mitigation scenarios. Designing a complete, specific high-level
behavior control approach in advance is not possible, considering the limited a priori knowledge
and the rather complex system. Furthermore, the ability to communicate with the remote robot
is severely limited and failure of task execution has to be considered very carefully.

The presented approach models behaviors as hierarchical state machines. Single states corre-
spond to actions that are performed by the robot in order to get one step closer to the desired
task goal. Transitions to next states are taken depending on the result of execution, allowing
to create robust behaviors accounting for various kinds of failure. This approach abstracts very
well from task-specific details and provides a widely applicable basis for high-level decisions
and coordination between multiple, otherwise independent components of complex systems.
Behavior modifications can be realized on the level of state composition, enabling to clearly
identify parts which are safe to be modified and to apply verification checks to greatly reduce
the risk of runtime failure.

Furthermore, this thesis includes implementation of the developed concepts. The resulting be-
havior engine, FlexBE, not only targets execution of behaviors based on the discussed concepts,
but rather incorporates a fully practically applicable software environment for developing, exe-
cuting, monitoring, and modifying behaviors. Worth mentioning is the included user interface,
carefully designed for both expert and non-expert users and allowing to effectively abstract from
low-level details while giving accurate feedback on behavior execution. By utilizing powerful
synchronization concepts such as mirroring behaviors, bandwidth usage is still kept very low.

In summary, this thesis contributes to the development of more intelligent and complex robots,
especially in an unstructured and hardly accessible environment. This is done by providing the
capability to flexibly adapt the high-level behavior of the remote robot and effectively integrating
cooperation with the operator. Specification of new behaviors and behavior modifications are
assisted by an editor which also includes partial semantic behavior verification and guarantees
generation of a syntactically correct implementation of the specification.

Finally, the results of this thesis are applied by Team ViGIR and Team Hector in the interna-
tional DARPA Robotics Challenge, competing along with some of the most recent and advanced
rescue robotics research efforts. FlexBE has already been used by Team ViGIR for running system
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identification tests, calibration behaviors, and automated component tests on the ATLAS robot
during development of the basic system capabilities. More complex behaviors have also been
developed by using the state machine editor as well as testing it with a simulated version of the
system both in order to evaluate the results of this thesis and in order to solve the tasks of the
DRC Finals, involving multiple members of the team using FlexBE.

Although developed in the context of the DARPA Robotics Challenge, the behavior framework
FlexBE itself is not limited to a specific system and widely applicable for a broad variety of
different systems and tasks. The concepts of abstraction used by FlexBE allow for use in any
context, as long as the basic capabilities of the system can be accessed by a high-level controller
as presented in this thesis. It is planned to publicly release the implemented behavior engine
after the DRC Finals and thus support future research efforts in robotics by providing a flexible
basis for system integration.
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A.1 List of Developed States

The following tables list all state implementations currently available in FlexBE. The states are
split into different packages regarding the system they can be used with. All states with no
external dependencies are part of the flexbe_states package and can be used along with
any system. Further states have been developed to be used with ATLAS and the Team ViGIR
software, these are listed in the flexbe_atlas_states. However, although developed to be
used with ATLAS, they can also be used with THOR-MANG in conjuction with the Team ViGIR
software. A more detailed documentation including the interface of each state is available in
the FlexBE Statemachine Editor or in the source code of each state.

A.1.1 flexbe_states

State Class Description

CalculationState Implements a state that can perform a calculation based on
userdata. The calculation is a function which takes exactly one
parameter, input_value from userdata, and its return value is
stored in output_value after leaving the state.

CheckConditionState Checks if the given condition is true and returns the corre-
sponding outcome. This state can be used if the further control
flow of the behavior depends on a simple condition.

ConcurrentState Implements concurrent execution of states. Depending on the
outcomes of the single states, the outcome of this state is de-
termined according to the given set of rules.

DecisionState Evaluates a condition function in order to return one of the
specified outcomes. This state can be used if the further con-
trol flow of the behavior depends on an advanced condition.

FlexibleCalculationState Implements a state that can perform a calculation based on
multiple userdata inputs provided as a list to the calculation
function.

InputState Implements a state where the state machine needs an input
from the operator. Requests of different types, such as request-
ing a waypoint, a template, or a pose, can be specified.

LogState A state that can log a predefined message to precisely inform
the operator about what happened to the behavior.

OperatorDecisionState Implements a state where the operator has to choose an out-
come manually. Autonomy Level of all outcomes should be set
to Full, since this state is not able to choose an outcome on
its own. Only exception is the suggested outcome, which will
be returned immediately by default. This state can be used to
create alternative execution paths by setting the suggestion to
High autonomy instead of Full.
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StartRecordLogsState A state that records the contents of the specified ROS topics
in a bag file. Logging is done by creating a rosbag sub-
process which is afterwards accessible using the output key
rosbag_process. This state is typically combined with a Sto-
pRecordLogsState which gets the subprocess in order to stop
logging.

StopRecordLogsStates A state that records the contents of the specified ROS topics in
a bag file.

WaitState Implements a state that can be used to wait on timed process.

A.1.2 flexbe_atlas_states

State Class Description

ChangeControlModeActionState Implements a state where the robot changes its con-
trol mode using the action.

CheckCurrentControlModeState Implements a state where the robot checks its cur-
rent control mode.

CurrentJointPositionsState Retrieves the current positions of the joints of the
specified planning group.

ExecuteStepPlanActionState Implements a state to execute a step plan of the foot-
step planner. This state will change the control mode
of the robot to STEP during execution and expects to
be in STAND when entered.

ExecuteTrajectoryBothArmsState Executes trajectory(ies) passed from userdata.

ExecuteTrajectoryMsgState Executes a given joint trajectory message.

ExecuteTrajectoryState Executes a custom trajectory.

FootstepPlanRealignCenterState Implements a state where the robot plans to centers
its feet.

FootstepPlanRelativeState Implements a state where the robot plans a relative
motion, e.g., 2m to the left. Please note that the dis-
tance is only approximate, actual distance depends
on exact step alignment.

FootstepPlanTurnState Implements a state where the robot plans a motion to
turn in place, e.g. 90 degree to the left. Please note
that the angle is only approximate, actual distance
depends on exact step alignment.

FootstepPlanWideStanceState Implements a state where the robot plans to move
into wide stance.

GetCameraImageState Grabs the most recent camera image.

GetLaserscanState Grabs the most recent laserscan data.

GetTemplateGraspState Requests a grasp for a template from the template
server.

95



GetTemplatePoseState Requests the pose of a template from the template
server.

GetTemplatePregraspState Requests pregrasp information for a template from
the template server.

GetTemplateStandPoseState Requests the pose where to stand in front of a tem-
plate from the template server.

HandTrajectoryState Executes a given hand trajectory, i.e., a request to
open or close the fingers.

LoadTrajectoryFromBagfileState Implements a state that loads (arm) trajectories
stored in a bagfile.

LocomotionPosePerceptionState Extracts a pose of interest to walk to from environ-
ment data.

MotionServiceState Implements a state where a certain motion is per-
formed. This state can be used to execute motions
created by the motion editor.

MoveitCommanderMoveGroupState Uses moveit commander to plan to the given joint
configuration and execute the resulting trajctory.

MoveItMoveGroupPlanState Employs moveit Move Group to get a plan to a goal
configuration, but does not execute it.

MoveitMoveGroupState Uses moveit to plan to the given joint configuration
and executes the resulting trajctory.

MoveitStartingPointState Uses moveit to plan and move to the first point of a
given arm trajectory.

PickupObjectState Uses moveit to perform a pickup action.

PlanEndeffectorCartesianState Plans a cartesian endeffector trajectory passing all
given waypoints.

PlanEndeffectorCircularState Plans a circular motion of the endeffector.

PlanEndeffectorPoseState Plans to reach the given pose with the specified end-
effector.

PlanFootstepsState Creates a footstep plan to reach the specified way-
point from the current position.

ReadDynamicParameterState Reads a given trajectory controller parameter set.

SendToOperatorState Sends the provided data to the operator using a
generic serialized topic.

UpdateDynamicParameterState Updates a given trajectory controller parameter set.

UpdateJointCalibrationState Updates the calibration offsets for the given joints.

VideoLoggingState A state that controls video logging.
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A.2 Evaluation of Behavior Logfiles

Each behavior execution automatically creates a new log file. Default location for these files
is the logs folder inside the home folder. Independently from executing a behavior, these log
files can be evaluated in order to derive information about execution performance regarding
various aspects. An example evaluation is given in chapter 6.2. The evaluation script can be
executed by running:

rosrun flexbe_widget evaluate_logs [logfile] [key] [value1, value2, ...]

[logfile] can be used to specify any log file. It can also be set to an empty string which will
result in using the most recent log file in the default folder.

[key] refers to one of the choices listed in the table below and is used to accumulate the data
of the single log entries in order to evaluate regarding specific categories.

Keys for Accumulation

total Accumulates all entries.

state_path Uses the unique path of a state.

state_name The name of each state is the keys, can be ambiguous.

state_class Accumulate entries according to their implementation.

transition Each transition is evaluated separately.

[value1, value2, ...] is any combination of the available indicators as listed below. Each
of these indicators can be derived from the logged data and will be accumulated according
to the specified key.

Available Performance Indicators

count_interventions Amount of manual interaction by the operator.

count_wait How often execution has been stopped at this point.

time Total time spent at this entry.

time_wait Amount of time spent on waiting for the operator.

time_run Effective amount of execution time.

wrong_decisions How often the suggested outcome was declined by the operator.

right_decisions How often the correct outcome has been taken.

approved_decisions How often the suggested outcome was approved by the operator.

visits Amount of visits of this entry.
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A.3 Example State Implementation

1 #!/ usr / bin / env python
2
3 import actionlib
4 import rospy
5
6 from vigir_be_core import EventState , Logger
7 from vigir_be_core . proxy import ProxyServiceCaller , ProxyActionClient
8
9 from vigir_footstep_planning_msgs . msg import *

10 from vigir_footstep_planning_msgs . srv import *
11 from std_msgs . msg import *
12
13 ’ ’ ’
14 Created on 10/22/2014
15
16 @author : P h i l i p p S c h i l l i n g e r
17 ’ ’ ’
18
19 c lass PlanFootstepsState ( EventState ) :
20 ’ ’ ’
21 Creates a f o o t s t e p plan to reach the s p e c i f i e d waypoint from the cur ren t p o s i t i o n .
22
23 −− mode s t r i n g One of the a v a i l a b l e planning modes ( c l a s s cons tan t s ) .
24 −− p o s e _ i s _ p e l v i s boolean Set t h i s to True i f the waypoint i s given
25 as p e l v i s pose and not on the ground .
26
27 ># targe t_pose PoseStamped Waypoint to which the robot should walk .
28
29 #> foo t s t ep_p lan StepPlan Foots tep plan to reach the waypoint .
30
31 <= planned S u c c e s s f u l l y c rea ted a plan .
32 <= f a i l e d Fa i l ed to c rea t e a plan .
33
34 ’ ’ ’
35
36 MODE_STEP_2D = ’ drc_step_2D ’
37 MODE_STEP_3D = ’ drc_step_3D ’
38 MODE_STEP_NO_COLLISION = ’ d r c _ s t e p _ n o _ c o l l i s i o n ’
39 MODE_WALK = ’ drc_walk ’
40
41
42 def __init__ ( s e l f , mode , pose_is_pelvis = F a l s e ) :
43 ’ ’ ’
44 Cons t ruc tor
45 ’ ’ ’
46 super ( PlanFootstepsState , s e l f ) . __init__ ( outcomes=[ ’ planned ’ , ’ f a i l e d ’ ] ,
47 input_keys=[ ’ t a rge t_pose ’ ] ,
48 output_keys=[ ’ f oo t s t ep_p lan ’ ] )
49
50 s e l f . _action_topic = " / v i g i r / foo t s t ep_p lann ing / s tep_p lan_reques t "
51 s e l f . _feet_pose_srv = " / v i g i r / foo t s t ep_p lann ing / genera te_ fee t_pose "
52
53 s e l f . _client = ProxyActionClient ({ s e l f . _action_topic : StepPlanRequestAction })
54
55 s e l f . _srv = ProxyServiceCaller ({ s e l f . _feet_pose_srv : GenerateFeetPoseService })
56
57 s e l f . _failed = F a l s e
58 s e l f . _mode = mode

59 s e l f . _pose_is_pelvis = pose_is_pelvis

60
61
62
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63 def execute ( s e l f , userdata ) :
64 ’ ’ ’
65 Execute t h i s s t a t e
66 ’ ’ ’
67 i f s e l f . _failed :
68 userdata . footstep_plan = None
69 return ’ f a i l e d ’
70
71 i f s e l f . _client . has_result ( s e l f . _action_topic ) :
72 result = s e l f . _client . get_result ( s e l f . _action_topic )
73 i f result . status . warning != 0:
74 Logger . logwarn ( ’ Planning f o o t s t e p s warning :\ n%s ’ % result . status . warning_msg )
75
76 i f result . status . error == 0:
77 userdata . footstep_plan = result . step_plan
78 return ’ planned ’
79 else :
80 userdata . footstep_plan = None
81 Logger . logerr ( ’ Planning f o o t s t e p s f a i l e d : \ n%s ’ % result . status . error_msg )
82 return ’ f a i l e d ’
83
84
85 def on_enter ( s e l f , userdata ) :
86 s e l f . _failed = F a l s e
87
88 current_feet = None
89 target_feet = None
90
91 # g e t s t a r t
92 t ry :
93 msg_start = FeetPoseRequest (flags=FeetPoseRequest . FLAG_CURRENT )
94 msg_start . header = Header ( frame_id= ’ /world ’ )
95 current_feet = s e l f . _srv . call ( s e l f . _feet_pose_srv , msg_start )
96 except Exception as e :
97 Logger . logwarn ( ’ Fa i l ed to get cur ren t f e e t poses : \ n%s ’ % s t r (e ) )
98 s e l f . _failed = True
99 return

100
101 # g e t goa l
102 t ry :
103 header_value = userdata . target_pose . header
104 pose_value = userdata . target_pose . pose
105 flags_value = FeetPoseRequest . FLAG_PELVIS_FRAME i f s e l f . _pose_is_pelvis else 0
106 msg_goal = FeetPoseRequest (header=header_value , pose=pose_value , flags=flags_value )
107 target_feet = s e l f . _srv . call ( s e l f . _feet_pose_srv , msg_goal )
108 except Exception as e :
109 Logger . logwarn ( ’ Fa i l ed to get t a r g e t f e e t poses : \ n%s ’ % s t r (e ) )
110 s e l f . _failed = True
111 return
112
113 # c r e a t e a c t i o n goa l msg
114 action_goal = StepPlanRequestGoal ()
115 request_msg = StepPlanRequest ()
116 request_msg . start = current_feet . feet
117 request_msg . goal = target_feet . feet
118 request_msg . parameter_set_name = String ( s e l f . _mode )
119 request_msg . header = Header ( frame_id= ’ /world ’ )
120 action_goal . plan_request = request_msg

121
122 t ry :
123 s e l f . _client . send_goal ( s e l f . _action_topic , action_goal )
124 except Exception as e :
125 Logger . logwarn ( ’Was unable to c rea t e f o o t s t e p planner plan reques t : \ n%s ’ % s t r (e ) )
126 s e l f . _failed = True

Listing 7.1: Implementation of the state to plan footsteps using Team ViGIR’s footstep planner.
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A.4 Exploration Demo Behavior

The Exploration Demo behavior including its two inner state machines as displayed in FlexBE.
This is the original version where the robot would take camera images and send these to the
operator. During execution in the scenario as described in chapter 6.2, the operator replaced
the Take_Camera_Image state by a state to record a LIDAR scan.
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A.5 Communication Channel Topics

The following figure gives an overview of all ROS topics involved in communicating between
the onboard behavior engine and the ROS nodes running at the operator control station.

The following command and mirror topics are in use:

/flexbe/command/* /flexbe/mirror/*

autonomy outcome

lock preempt

preempt structure

transition sync

unlock

/flexbe/heartbeat is the only topic which is published at a certain rate. One empty message
per second is sent in order to let the operator know that the behavior engine is still running.
All other topics are only used if a command is sent (/flexbe/command/*), a message is logged
onboard and should be displayed to the operator (/flexbe/log), the behavior starts, finishes,
or fails (/flexbe/status), or a transition is executed (/flexbe/mirror/outcome), to list the
most common ones. Each sent data only contains minimal information. A transition notification
for example only provides the index (uint8) of the returned outcome. This information can
be interpreted by the Behavior Mirror in order to provide context information. The command
messages, to give another example, only need to contain their required arguments. The type of
command is implicitly specified by using separate topics.
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A.6 FlexBE Tutorials

The following sections contain basic tutorials for getting started with using the FlexBE user
interface. As soon as FlexBE is publicly released, it is planned to add more detailed and in-depth
tutorials to the FlexBE website, as well as an online sandbox version of the user interface to
play around with. However, since the FlexBE user interface is designed to be usable for both,
non-expert developers and operators, exploring further features of FlexBE after completion of
the given basic tutorials is a viable option.

Installation: Behavior Engine

In order to install the ROS packages forming the behavior engine, create a new folder inside
your ROS workspace and clone the FlexBE repository to this folder. Next, you need to cre-
ate at least one additional ROS package and most likely more. It is recommended, although
not required, to create a second folder next to the folder containing the content of the FlexBE
repository and make it a repository on its own.

Now create a new ROS package called flexbe_behaviors and add two folders. The first
folder is called behaviors and will later contain all behavior manifests, the second folder is
called config and is the recommended location for storing configuration files.

In addition, you can create further ROS packages containing newly developed states. The
naming convention for these packages is flexbe_custom_states where custom is replaced by
your system identifier, e.g., the robot type or required software.

Finally, it is recommended to add a folder to your repository where you can later store all ROS
packages implementing behaviors.

Installation: FlexBE Chrome App

Make sure you have rosbridge installed and install the FlexBE Chrome App just like any other
Chrome App1. If you use the app in development mode instead of the compiled version, make
sure to add export FLEXBE_ID="[app_id]" to your .bashrc file and substitute [app_id] with
the unique ID assigned to this app by Chrome as displayed in the Extensions page in Chrome.

When you use the app for the first time, you need to configure your working environment.
Navigate to the Configuration view and set the workspace references in the Workspace panel.
The entry Behaviors folder should point to the folder where you want to store all ROS packages
implementing behaviors. The entry flexbe_behaviors folder should point to your newly created
flexbe_behaviors ROS package.

Furthermore, add folders to the state library of the editor by clicking Add Folder in the panel
State Library. You may want to add at least the folder inside the flexbe_states package con-
taining all the generic states. Make sure to add the folder which contains the states, not the
ROS package itself.
1 https://support.google.com/chrome_webstore/answer/1053369?hl=en (04/08/2015)
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A.6.1 Creating a New Behavior

In this tutorial, and in the next one, we will create a very simple demo behavior to demonstrate
the steps required for behavior creation.

Launch the FlexBE Chrome App and start with giving your new behavior a name, describe it,
and enter your own name as author.

We would like our new behavior to print a "Hello World!"message when executing it. In the
Private Configuration section of the dashboard, constant values of the behaviors can be defined.
This serves as a single point of change for any value required by the behavior. So let’s define a
new string named hello for our message.

Add the new string by clicking the Add button. We will use it later.

Also, we want our behavior to wait some time before printing the message. However, the time
to wait should not be constant. Instead, we want the operator to select a value when he starts
execution of the behavior. For this purpose, Behavior Parameters are available. Select Numeric
as type of the new parameter and name it waiting_time.

103



Add the parameter and edit its properties by clicking on the pencil icon.

You can now enter reasonable values for the waiting time as shown below. Unit is seconds,
because we will use this value later to pass it to a state which waits for the given amount of
seconds.

To leave the property view of the parameter and have the list of all parameters displayed
again, click on the arrow icon at the top of this box.
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We started creating our new behavior by defining some values (one constant, one variable)
and can now proceed to define the state machine of the behavior. Your Behavior Dashboard
should now look like shown below. Click Statemachine Editor at the top to switch to the editor
and continue with the next tutorial.
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A.6.2 Using the Statemachine Editor

Start implementing the behavior by adding its first state. As written in the first tutorial, we want
our behavior to wait for some time and then print a message. So our first state will be a state
which waits a given amount of seconds.

Click Add State at the top, enter a name for the new state and select WaitState from the list
below. Entering something like "wait" in the class filter will help to quickly find the state and
would also help if we didn’t know the exact name and just need any state for waiting.

Now click Add to add the new state to the behavior state machine.

The properties of the newly added state will pop up. This panel can also be displayed by
clicking on the state. Since we already defined a parameter for the waiting time, we can use
it now. References to parameters always start with a self. in front of the parameter name.
This helps to distinguish between parameters and constants. However, you can just start typing
waiting_time and let autocompletion do the rest.
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Click Apply to make this change permanent.

Next, we add our second state the same way. This time, it’s a LogState as shown below
because now we want to print our message.
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This state has two parameters which we can now edit in the properties panel.

The first one is the text to be printed. As we did for the waiting state, we won’t enter an
explicit value, but instead refer to one of our already defined values. So, just enter the name of
our message string, hello, as value of the text parameter. As soon as you click Apply, you will
also see its value as tooltip when hovering over the text field.

The second parameter defines the type of the message such as error or warning. The default
value should be fine this time. Normally, behavior hints are used to give explicit instructions or
reminders to the operator when he is expected to do something.

This time, we will also change the required level of autonomy of this state’s outcome. Select
High and apply the change. The meaning of this Autonomy Level is explained in the next tutorial.

Now connect the added states.

Start with setting the initial state by clicking on the black bullet next to the waiting state first,
and then clicking on the waiting state to connect it to the bullet. You may also change the
position of the states by dragging them at their top right corner (indicated by a move icon).
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The unconnected outcomes of each state are listed at the bottom of each state’s visualization.
First, click on the outcome you want to connect and then click on the target. The two bullets
at the bottom of the state machine are the outcomes of the state machine itself. You can ignore
the outcome failed for now.

Your state machine should now look similar to the one shown below.

The green color of the second transition refers to its required autonomy level.

Now save the behavior. This will generate all files required for executing the new behavior.

Since you added a new ROS package by creating a new behavior, catkin needs to configure
this new package. In order to do so, close the Chrome App after saving and run catkin_make.
This step is only required when adding a new behavior. Changes to a behavior do not require
this process.
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A.6.3 Execution of a Behavior

You should have completed the first two tutorials or at least have access to the created behavior.
Now we want to execute a behavior. This means, it is no longer sufficient to just launch the
FlexBE Chrome App. Instead, we need to launch the whole behavior engine. This can be done
by executing the following command:

roslaunch flexbe_onboard behavior_testing.launch

First, you have to load the previously created behavior. This is done by clicking on the Load
Behavior button at the top and then selecting your Hello World Demo in the list of available
behaviors. Similar to choosing a class when adding a new state, you can again start typing parts
of the name into the filter text field to quickly find what you are looking for.

Now, switch to the Runtime Control view of the user interface. It should look like shown below.
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In order to run the behavior, now click the green Start Execution button. As soon as you
click the button, several things will happen. The user interface informs the onboard engine as
well as the behavior mirror. The mirror will create a behavior with the same structure as the
onboard behavior in order to provide meaningful information by just receiving minimal data
from onboard, while the onboard engine now imports the sent behavior, builds it, and starts
execution. When everything is running as it should, the main panel will display the first state of
our behavior as the currently active state.
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The active state is always displayed in the center of the panel in blue color. On the right, you
can see possible outcomes of the state including the state which would be executed next.

After two seconds, the behavior continues with the next state.

As you can see now, the behavior does not continue after reaching the second state. Instead,
it highlights the outcome and asks for permission to execute it. We will allow it in a moment,
but first, take a look at the bottom panels. You can now see the Hello World message displayed
in the feedback panel, as well as a documentation of the LogState in the documentation panel.

Allow the requested outcome by clicking on the highlighted arrow. You can click on outcomes
at any time, even if they are not highlighted, in order to force them. The behavior will imme-
diately return outcomes requested in this way, so it is your responsibility to decide whether an
outcome should be forced. After permitting the outcome, the demo behavior finishes.

Let’s do a second run of this behavior, but this time, we change the default settings. Increase
the waiting time to four seconds and change the Autonomy Level to Full by selecting the respec-
tive entry at the control panel. Changing the Autonomy Level can be done at any time, no matter
if a behavior is running or not.
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The Autonomy Level was the reason why behavior execution stopped during the first run.
We just allowed transitions requiring less than low autonomy which only applies for the most
basic transitions. Each transition that required at least low autonomy was blocked and our
second transitions requires high autonomy as we configured in the last tutorial. This means, as
observed, the behavior will not execute the transition autonomously, but instead indicates that
it is ready to be executed and waits for permission. Since we now set the autonomy to Full,
behavior execution does not stop at the transition this time.
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