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Abstract
Optimal control of cooperative multi-vehicle systems requires goal-oriented task allocation and
simultaneously has to consider vehicle specific motion dynamics. The tight coupling of discrete
decision logic and continuous dynamics leads to a high-dimensional hybrid optimal control prob-
lem. Solution estimates can be obtained efficiently through discrete-time linear approximations of
the physical system behaviour.

Model-predictive control (MPC) based on Mixed-Integer Linear Programs (MILP) is able to allow
for the coupling of discrete-continuous structures based on approximated motion dynamics. MPC,
in general, combines optimality with robust stabilizing control.

In this thesis, existing MILP-based MPC appoaches are investigated with respect to their suitability
for the control of cooperative multi-vehicle systems in real-time applications. Based on a well
accepted benchmark scenario, their potential to provide better solutions than existing heuristic
approaches is demonstrated. Moreover, the MPC strategy proves to be applicable in real-time, at
least for small systems. The presented investigations can serve as a basis for further analysis and
development of efficient model-predictive control of cooperative mobility.
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Zusammenfassung
Optimale Regelung kooperativer Mehrfahrzeugsysteme erfordert neben zielorientierter Rollenzu-
weisung die Berücksichtigung fahrzeugspezifischer Bewegungsdynamik. Die enge Kopplung von
diskreter Entscheidungslogik und kontinuierlicher Dynamik führt auf ein hochdimensionales hy-
bidres Optimalsteuerungsproblem. Durch eine zeit-diskrete lineare Approximation des physikali-
schen Systemverhaltens können Näherungslösungen effizient berechnet werden.

Die modell-prädiktive Regelung (eng. model-predictive control (MPC)) basierend auf gemischt-
ganzzahligen linearen Optimierungsprogrammen (eng. mixed-integer linear programs (MILP)) ist
in der Lage, die Kopplung diskret-kontinuierlicher Strukturen auf Basis der Dynamikapproxima-
tion zu berücksichtigen. MPC im Allgemeinen kombiniert Optimalität mit robuster und stabilisie-
render Regelung.

In dieser Diplomarbeit werden bestehende MILP-basierte MPC-Ansätze hinsichtlich ihrer Anwend-
barkeit für die Regelung kooperativer Mehrfahrzeugsysteme in Echtzeitanwendungen untersucht.
Anhand eines anerkannten Benchmark Szenarios wird aufgezeigt, dass die Ansätze das Potential
bergen, bessere Lösungen als bestehende heuristische Herangehensweisen zu liefern. Außerdem
erweist sich die MPC-Strategie, zumindest für kleine Systeme, als echtzeitfähig. Die vorgestell-
ten Untersuchungen liefern eine Basis für weiterführende Analysen und die Weiterentwicklung
effizienter modell-prädiktiver Regler für kooperative Mehrfahrzeugsysteme.
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1 Introduction

1.1 Control of Cooperative Multi-Vehicle Systems

Cooperative behaviour of multiple autonomous vehicles plays an important role in numerous ap-
plications. Recent research in this area includes the automation of transportation systems, object
surveillance, environment exploration and formation flight [Mur07]. The performance of all these
tasks depends on the joint actions or locations of the involved vehicles, i.e. they have to act coop-
eratively.

Cooperative control is comprised of the determination of vehicle-specific trajectories and the
situation-based allocation of individual roles and subtasks to the team members. Most appli-
cations require robust online control strategies which allow real-time adaptation to a dynamic
environment. In this context, one of the biggest challenges is to deal with the complexity of
problems involving a large number of interacting vehicles.

There exist approaches, in which actions are allocated based on heuristic methods or behaviour-
based decision rules. On the other hand, there are optimization-based approaches which pro-
vide optimal control strategies for each vehicle individually or even the whole team at once.
Optimization-based methods can provide some optimal solution for every feasible systems state
including those a heuristic approach might not cover. On the basis of the underlying model and
an accurately designed cost function, it can be guaranteed that the obtained solution is the best
possible for the given system state.

Modeling a cooperative control problem must allow for continuous (trajectories) as well as dis-
crete variables and logical rules (allocation of roles). In general, this results in a nonlinear Hy-
brid Optimal Control Problem (HOCP). Solving this problem is computationally very expensive. A
discrete-time linear model can very much simplify the HOCP and still provide good solution esti-
mates. Therefore, many optimization-based control strategies use Mixed Integer Linear Programs
(MILP) to approximate the real system under consideration. The solution of a MILP can be com-
puted efficiently and provides a sequence of optimal control inputs over a certain number of time
steps.

In this thesis, a model-predictive control (MPC) strategy for discrete-time hybrid linear systems is
investigated. The approach is based on solving multiple MILP in a receding horizon fashion. A
stabilizing optimal closed-loop control strategy is obtained. The applicability of this approach to
the control of cooperative multi-vehicle systems as well as efficiency and scalability is analysed
based on its performance in a representative benchmark scenario.
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1.2 Benchmark Scenarios

Formation Control

Formation control is one of the fundamental problems in cooperative control. It can be defined
as the “coordination of a group of robots to follow a given path and to maintain a desired spatial
formation” [KZ08]. Formation control has various applications, for example search and rescue
missions, terrain and space exploration, or security patrols to only name a few. Different control
strategies have been developed which can roughly be divided into leader-following approaches,
virtual structure approaches and behaviour-based appoaches. They comprise centralized as well
as decentralized heuristic and optimization-based methods.

A major part of applications concerns unmanned aerial vehicles (UAV), which are to keep a certain
formation in order to perform a cooperative operation. An illustrative example of spacecraft
applications is the laser inferometer consisting of multiple satellite units flying in formation as
depicted in figure 1.1.

(a) (b)

Figure 1.1: (a) Four vehicles cooperatively changing formations [Bar09]; (b) Laser interferometer
made of several units flying in formation.

Multiple robots maintaining a formation can also be seen as prerequisite for tasks like cooperative
box pushing or cooperative load transportation. Altogether, the problem serves as a rich scalable
testbed for control of cooperative multi-vehicle systems.

Robot Games

Robot games also provide a variety of benchmark scenarios for control of autonomous robots.
Figure 1.2 shows two examples: robot soccer and RoboFlag. In RoboCup Soccer diverse kinds of
robots compete in five different leagues with different levels of autonomy. In the small size league,
two teams of five robots each have to be coordinated and controlled. For this purpose, a global
vision robot located four meters above the field can be used. Hence, task allocation is performed
on the basis of global knowledge of the current game situation.

In contrast to that, the robots in the humanoid league are completely autonomous in localizing
themselves, communicating with team-mates and percepting the ball, other players, and the field.
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The human-like design of the robots poses an additional challenge for the control of dynamical
movements.

There is the allocation of tasks like dribbling, defense or kicking the ball on the one hand and the
allowance for different physical capabilities for dynamical movement on the other. For this reason,
cooperative control in robot soccer combines discrete and continuous system characteristics.

(a) Humanoid robots playing soccer. (b) Cooperative move in RoboFlag [CDS+03].

Figure 1.2: Robot games as test-bed for cooperative control.

In the RoboFlag game two teams of robots are each trying to capture the other team’s flag. The
players have to defend opponents from reaching their flag and at the same time try to enter the
opposing team’s territory. Tasks switch between defense and offense, obstacles on the field have to
be avoided and the robots have to communicate relevant information to their team-mates. Hence,
the RoboFlag scenario is another possible test-bed for different cooperative control strategies, in
particular methods that can efficiently deal with a large number of robots (6-10 per team).

Target Observation

There are various surveillance, security, or rescue scenarios in which multiple targets moving in
a bounded area of interest need to be observed. The automation of this task is based on optimal
sensor placement to keep all targets in view. In cases where the sensor range and/or the number
of available sensors is limited, the sensors are required to dynamically move around the area
following the targets to be observed. A successful task performance strongly depends on the
robots’ cooperation, it cannot be decomposed into independent subtasks. The robots are coupled
in their common objective.

In this thesis, a target observation scenario in which multiple targets are to be observed by multiple
mobile robots with a 360◦ field of view with limited range is considered, see figure 1.3 for an
example. Movements are restricted to a rectangular bounded area in the plane with no obstacles.
Since emphasis is put on the aspect of cooperation, merely simple dynamics are used, that allow
robots and targets to move in x- and y-direction and vary their speed. A robot is said to observe a
target if the target is located within the robot’s observation range.

All locations of robots and targets are assumed to be known at all times. This permits a cen-
tral coordination of all robots. The goal is to minimize the total time in which targets escape
observation.

1.2 Benchmark Scenarios 11



(a) Simulation with moving targets
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(b) Simulation with stationary targets

Figure 1.3: Examples of different target observation scenarios: (a) Cooperative Multi-Robot Obser-
vation of Multiple Moving Targets [Par02]; (b) Target Observation Problem.

Since the problem involves mobile targets, an online control strategy is needed which evolves
dynamically and reacts on changes in the system. Moreover, an optimal control method has to
allow for individual physical/dynamical capabilities of the robots. The complexity of the overall
problem rises exponentially with the number of involved robots and targets.

Therefore, the considered target observation scenario, in the following referred to as Target Ob-
servation Problem, is an appropriate scalable test-bed for investigating the applicability of model-
predictive approaches to the control of cooperative behaviour in multi-vehicle systems.

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 gives an overview of related research
in the field of cooperative control of multi-vehicle systems. Centralized and decentralized ap-
proaches will be reviewed before the model-predictive approach investigated in this thesis is
classified among them.

In chapter 3, the basic characteristics of Mixed Logical Dynamical Systems are summarized. More-
over, the concepts of model-predictive control in general and in combination with multi-parametric
programming are described. The chapter ends with a short overview of the functionality provided
by the Multi-Parametric Toolbox for Matlab.

The model of the Target Observation Problem is derived in chapter 4. Examples of alternative ways
of modeling are discussed and indicate the process of developing the final model version. Finally,
a possibility to graphically evaluate stability and optimality of problem solutions is presented.

Chapter 5 describes the results of the experiments that were performed to evaluate the solutions
obtained from the model-predictive control approach.

The thesis ends with an outlook for real-time applications of the model-predictive controller fol-
lowed by a final conclusion in chapter 6.
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2 Related Research in Control of
Cooperative Multi-Vehicle Systems

Cooperative control in general deals with a collection or team of multiple vehicles all seeking to
perform a shared task. The task performance depends on the joint actions and mobility of all
agents and therefore a complete decomposition of the problem into independent subtasks is not
possible [Mur07].

Many different approaches have been proposed for cooperative control problems. They can
roughly be divided into centralized and decentralized methods. While centralized control con-
siders the cooperative multi-vehicle system as a whole, decentralized methods decompose it into
coupled subsystems. The decomposition can be hierarchical, dividing the overall problem into
different interacting levels. In most cases, however, “decentralized” refers to systems with dynam-
ically independent vehicles coupled by a common objective or cost function.

The following sections provide an overview of different centralized and decentralized approaches
to cooperative target observation and related tasks. A more general survey of research in co-
operative control is given in [Mur07]. In addition, [NSH04] summarizes aspects of multi-agent
model-predictive control in particular, while [Par08] overviews the field of distributed intelligence
and task allocation in multi-robot systems.

2.1 Decentralized Approaches

In decentralized control each vehicle individually chooses its next action based on locally available
information. This may include locations and (predicted) actions of nearby team-members, called
neighbors, and parts of the information they gathered. Neighbors share certain bits of information
based on some kind of communication protocol. In this context, a way of synchronizing the team
members has to be determined.

Since the global problem is divided into smaller subproblems, the computation of decentralized
algorithms can be done very efficiently and therefore is suitable for online applications. However,
these strategies are often based on heuristics and their solution may be inferior to centralized
optimization-based solutions. Approaches, in which each vehicle’s next move is based on the
solution of some optimization problem, can still find local optima only.

Another way to cope with the key problem of task allocation is the introduction of so called assign-
ment protocols. In this context, [Par98] proposes the behaviour-based architecture ALLIANCE for
the control of multi-robot cooperation. Parker’s approach uses motivations like impatience and ac-
quiescence for the activation of certain robot behaviour and is able to compensate robot failure or
other changes of the environment. ALLIANCE is rather intended for distributed cooperative tasks
that can be decomposed into independent or loosely coupled subtasks as for the here investigated
class of problems.
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Nevertheless, it was also Parker who worked on control strategies for what she calls inherently co-
operative tasks, i.e. tasks where “the utility of the action of one robot is dependent upon the current
actions of the other team members” [PT00]. She introduced the problem of Cooperative Multi-Robot
Observation of Multiple Moving Targets (CMOMMT), which is very similar to the Target Observa-
tion Problem, as testbed for inherently cooperative control. In the CMOMMT scenario no global
information about the target locations is available. For this reason, the robots must first track
down the targets to observe and exchange their local information with nearby team members.
Hence, their sensing capabilities include not only a vision range, but also a communication range
and a prediction range, which enables the robots to plan their moves based on predicted target
movements.
[Par02] describes an approach to the CMOMMT problem that is based on the calculation and
weighting of local force vectors, which repel robots from other team members and attract them to
nearby targets. Some of the numerical results obtained with this method will be used to evaluate
the results of this work in chapter 5.

Multi-robot learning is another approach to deal with cooperative control problems. The state of
the art in this branch of research is reviewed in [PL05]. A survey of machine learning methods that
are being applied to distributed multi-agent systems is provided among the description of different
techniques of team learning and an overview of possible (real world) applications. In [PT00]
multi-robot learning is applied to the CMOMMT scenario. An instance-based learning technique is
proposed that uses a randomly built lookup table of situation-action pairs to choose the best action
according to the current situation. Actions are ranked either by the highest expected reward or a
value describing the utility of following actions. Good results were obtained, but could not excel
those achieved by a hand-generated solution similar to the one described in [Par02].

The idea of using model-predictive control for cooperative multi-vehicle systems was pursued
in [KBB07] and [Dun07]. Both describe distributed MPC versions, where each agent solves an
individual optimization problem which includes information on its neighbors and their actions.
For both approaches stability could be guaranteed. [KBB07] furthermore provides a detailed look
at stability and feasibility issues for distributed MPC.

2.2 Centralized Approaches

Centralized approaches take all available information about the current system state into account
and can therefore provide a global control strategy for a whole team of vehicles. Usually this
strategy is obtained by solving an optimization problem. Hence, as opposed to decentralized
methods, global optimality of the resulting cooperative behaviour can be guaranteed. However,
the strategy requires stable communication between the central controller and all of the involved
vehicles. Malfunctions in the communication network or vehicle failures are hard to compensate.
Since they completely depend on the global controller, the individual vehicles are less autonomous
than in decentralized control.

Efficient solvers for (mixed-integer) linear programs are available, which is why (MI)LP are often
used to provide solution estimates for nonlinear control problems. In [RvS07b] a transformation
of a HOCP representing a heterogeneous cooperative exploration task into a MILP is presented.
The resulting system model includes vehicle-specific dynamics and collision avoidance as well as
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communication constraints. A similar approach was also applied to a benchmark scenario from
robot soccer in [RvS07a].

Depending on the number of involved vehicles and possible actions, considering the system as a
whole can result in large and complex optimization problems, the solution of which involves huge
computational effort. This can limit the application of optimization-based centralized control to
smaller systems. [ED05] proposes a MILP-based approach for RoboFlag drills. A Mixed Integer
Logical Dynamical (MLD) model is converted into a MILP formulation which is then solved by
CPLEX [ILO07]. For large numbers of robots involved in the drill, the required computation times
impede using the approach for real-time applications. The authors suggest to use more powerful
computers or to perform parts of the computation offline in a multi-parametric fashion.

In order to overcome the issue of computational effort, [CS05] suggests a model simplification
by transforming a MILP into an LP which can be used to compute suboptimal solutions of the
original MILP. A receding horizon algorithm based on the suboptimal solution then provides the
path planning. The approach was applied to different RoboFlag scenarios. The presented method
is based on a discretization of the state space, though, and hence is no option for cooperative tasks
in which the vehicle dynamics play a decisive role.

2.3 Combined Centralized/Decentralized Approaches

In order to exploit the advantages of both strategies, centralized and decentralized control can
be combined. [BF06] proposes a hierarchical combination of centralized and decentralized MILP-
based control for a target observation scenario. It comprises a higher-level central optimization
algorithm which provides the allocation of targets to the robots. Dynamics as well as obstacle and
collision avoidance, respectively, are treated in lower-level MPC-based algorithms by each robot
individually. This way, the number of constraints and variables in each optimization problem is
reduced and permits an online application of the method.

In order to compare the performance of decentralized versus centralized methods for coopera-
tive target observation, [LSPB05] proposes two (meta)heuristic tunably decentralized algorithms
based on hill-climbing and K-means, respectively. The considered problem definition is similar to
the Target Observation Problem, but involves randomly moving targets that always outnumber
the team of robots. The diverse results that were obtained do not permit a general conclusion
whether to prefer centralized or decentralized approaches to the considered scenario.

2.4 Classification and Aim of this Thesis

The model-predictive control approach investigated in this thesis combines the global optimality of
a centralized method with efficient closed-loop control. On the basis of a MILP formulation of the
problem, the obtained optimal controller directly incorporates motion dynamics with optimal task
allocation. However, using MILPs poses a trade-off between linearly approximating the vehicles’
physical capabilities on the one hand and the efficiency of available solvers on the other hand.

2.3 Combined Centralized/Decentralized Approaches 15



By using a combination of MPC and multi-parametric programming, the complete optimization
procedure could a priori be performed offline. The online control would then reduce to a simple
lookup to find the optimal control input for the current system state. Hence, fast online access to
the current global optimum would be possible. However, this strategy, first proposed in [BBM00],
has so far not been applied to the class of cooperative multi-vehicle scenarios investigated in this
thesis. In [Bao05] the multi-parametric MPC approach has successfully been tested for a multi-
object adaptive cruise control, [Bor03] describes its application to automotive traction control.

In this thesis, the computational performance of the basic as well as the multi-parametric MPC
approach and their suitability for real-time control of complex cooperative multi-vehicle systems
is fathomed on the basis of the target observation benchmark scenario introduced in section 1.2.
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3 Model-Predictive Control of Hybrid
Dynamical Systems

3.1 Modeling Hybrid Systems - The Mixed Logical Dynamical Framework

The Mixed Logical Dynamical (MLD) Framework was first proposed in [BM99] for modeling and
controlling constrained linear discrete-time systems containing interacting physical laws and log-
ical rules. The latter are transformed into linear inequalities which involve continuous as well
as integer variables and thus link dynamics and logic. Common translation techniques (e.g. the
Big-M method) are summarized in [BM99].
A system with linear dynamic equations subject to mixed-integer inequalities is obtained:

x(k+ 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (3.1a)

y(k) = C x(k) + D1u(k) + D2δ(k) + D3z(k) (3.1b)

E2δ(k) + E3z(k)≤ E1u(k) + E4 x(k) + E5 , (3.1c)

where k ∈ Z the current time step,
x = [xc xb]T , xc ∈ Rnc , xb ∈ {0,1}nb describes the system state,
y = [yc yb]T , yc ∈ Rpc , yb ∈ {0,1}pb is the output vector,
u= [uc ub]T , uc ∈ Rmc , ub ∈ {0,1}mb is the control input,
and δ ∈ {0, 1}rb and z ∈ Rrc represent auxiliary binary and continuous vectors, respectively.

Here only time-invariant systems will be considered, but the MLD framework and all results stated
in the following can also be extended to the time-variant case. The definitions presented in this
section are based on [BM99].

In general, the inequalities (3.1c) can be satisfied for different values of z and δ. However, a
unique dependence of x(k + 1) and y(k) on x(k) and u(k) is desirable, which motivates the
following definition.

Definition 1 Let IB denote the set of all indices i ∈ {1, . . . , rb}, such that [B2]i 6= 0, where [B2]i

denotes the ith column of B2. Let ID, JB, JD be defined analogously by collecting the positions of
nonzero columns of D2, B3, and D3 respectively. Let I¬ IB ∪ ID, J¬ JB ∪ JD. A MLD system (3.1) is
said to be well posed if, ∀k ∈ Z,

(i) x(k) and u(k) satisfy (3.1c) for some δ(k) ∈ {0,1}rb , z(k) ∈ Rrc , and x l(k+ 1) ∈ {0, 1}nl ;

(ii) ∀i ∈ I there exists a mapping Di : Rn+m → {0,1} such that the ith component δi(k) =
Di(x(k), u(k)), and ∀ j ∈ J there exists a mapping Zi : Rn+m → R such that z j(k) =
Z j(x(k), u(k)).
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Remark 1 A MLD system is said to be completely well posed if in addition I = {1, . . . , rl} and
J = {1, . . . , rc}. In other words this means that for all x and u the auxiliary variables δ and z
are uniquely determined and therefore x(k + 1) and y(k) are uniquely defined by x(k) and u(k)
[BFTM00].

From the control theoretic point of view, stability of a system is an important issue. Standard
stability definitions can be adjusted to fit into the MLD framework.

Definition 2 A vector xe ∈ Rnc × {0,1}nb is said to be an equilibrium state for (3.1) and input
ue ∈ Rmc × {0,1}mb if

� xe
ue

�

∈ X×U and x(k, k0, xe, ue) = xe, ∀t ≥ k0, ∀k0 ∈ Z.
The pair (xe, ue) is said to be an equilibrium pair.

Definition 3 Given an equilibrium pair (xe, ue), xe ∈ Rnc × {0,1}nb is said to be stable if, given
k0 ∈ Z, ∀ε > 0 ∃ µ(ε, k0) such that ‖x0− xe‖ ≤ µ ⇒ ‖x(k, k0, x0, ue)− xe‖ ≤ ε, ∀k ≥ k0.

Definition 4 Given an equilibrium pair (xe, ue), xe ∈ Rnc × {0,1}nb is said to be asymptotically
stable if xe is stable and ∃r > 0 such that ∀x0 ∈ B(xe, r) and ∀ε > 0 ∃K(ε, k0) such that
‖x(k, k0, x0, ue)− xe‖ ≤ ε, ∀k ≥ K .

For the binary component xb of the state vector, definition 4 means that there exists a finite time
k̄ such that xb(k) ≡ xbe, ∀k ≥ k̄. That permits to consider local stability only to depend on the
continuous part xc of the state vector. In particular, there exists a neighborhood of xce in which
xc(k) can be perturbed without violating xb(k) = xbe.

Given an equilibrium pair (xe, ue), the corresponding values of well posed components of the auxi-
liary vectors z and δ can be determined via the functions Zi and Di introduced in definition 1. In
order to allow for indefinite, i.e. not well posed, components, as well, the following definition is
useful.

Definition 5 Let (xe, ue) be an equilibrium pair for a time-invariant MLD system, and let the system
be well posed by definition 1. For i ∈ I, j ∈ J, let δe,i, ze, j be the corresponding equilibrium auxiliary
variables. An auxiliary vector δ (or z) is said to be definitely admissible if δi = δe,i, ∀i ∈ I, (z j = ze, j,
∀ j ∈ J), and

E2δ+ E3z ≤ E1ue + E4 xe + E5 . (3.2)

Although the framework was originally developed for hybrid systems, the MLD system class also
comprises other important system classes like finite state machines and automata, (constrained)
linear systems or nonlinear dynamic systems, where the nonlinearity can be expressed through
combinatorial logic, [BM99]. Hence, the MLD framework provides a powerful tool for a wide
range of modeling and control tasks, especially when combined with a predictive feedback control
strategy.
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3.2 Basic Concept of Model Predictive Control

Model Predictive Control (MPC), equivalently referred to as Receding Horizon Control (RHC), is an
optimal control strategy for (nonlinear) constrained systems. This and the following section illus-
trate MPC concepts for the control of discrete-time systems, in particular. The basic idea is to use a
model of the system and at each sampling time solve an optimization problem, which predicts the
optimal state evolution over a finite time horizon N according to some optimality criterion. The
output of the optimization procedure is a sequence of optimal control inputs u(0), . . . , u(N − 1).
The first element of the sequence is then applied to the system and its state at the next sampling
time is measured. The procedure is repeated with the new system state, see figure 3.1. In this
manner, the prediction horizon N is shifted or receded over time.

Notation: In the following, x0, . . . , x t , . . . , xT and u0, . . . , ut , . . . , uT−1 denote the states and inputs
at the global time steps t, while x(0), . . . , x(k), . . . , x(N) and u(0), . . . , u(k), . . . , u(N−1) represent
the states and inputs within the scope of the optimization problem, i.e. x(0) = x t , x(k) = x t+k,
and u(0) = ut , u(k) = ut+k.

Optimization problem
over time horizon N

Model

Real system

Real system

Figure 3.1: Basic idea of MPC

The most obvious advantage of this strategy is the ability to compensate modeling errors or ex-
ternal disturbances of the system. It has been successfully applied to systems with large sampling
times, e.g. chemical processes, where the time-span for solving the optimization problem is not
limited [Chr06]. Compared to solving an overall optimization problem for all T time steps, the
optimization procedure in receding horizon fashion clearly is less complex. Assuming an expo-
nential dependence on the number of time steps, the solution of one optimization problem over
the time horizon T would have complexity 2T , while the model-predictive approach would have
complexity T2N . For short prediction horizons N , this is an important advantage over open-loop
optimal control strategies.
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In the case of hybrid system control, a Constrained Finite-Time Optimal Control (CFTOC) problem
of the general form

min
UN

‖P x(N)‖p +
N−1
∑

k=0

‖Qx(k)‖p + ‖Ru(k)‖p (3.3a)

s.t.
x(k+ 1) = Ai x(k) + Biu(k) + fi

y(k) = Ci x(k) + Diu(k) + gi

«

if

�

x(k)
u(k)

�

∈Di (3.3b)

x(N) ∈X f (3.3c)

where p ∈ {1, 2,∞} is solved at every time step. UN := {u(k)}N−1
k=0 is the optimization variable and

X f is a compact terminal target set.

The state update and system output (3.3b) is given as piecewise affine (PWA) system over the set
of feasible states and inputs. The index i indicates the ith segment of a polyhedral partition D of
the state-input space. A segment is defined by constraints on the x and u variables, called guard
lines. These are described by inequalities

G x
i x(k) + Gu

i u(k)≤ Gc
i . (3.4)

The ith dynamics given by (3.3b) will be active if the current state-input combination satisfies
(3.4).

Every PWA system description can be transformed into a MLD system description and vice versa.
A proof of equivalence can be found in [BFTM00]. Therefore, all theoretical results mentioned in
section 3.1 also hold for PWA systems. On the other hand, methods developed for PWA systems
can be extended to the MLD framework.

One way to solve the CFTOC problem is to use its MLD representation and transform it into a
Mixed Integer Linear/Quadratic Problem (MILP/MIQP), depending on p = 1,∞ or p = 2. For this
purpose, problem (3.3) is rewritten as

min
UN

‖P x(N)‖p +
N−1
∑

k=0

‖Q1u(k)‖p + ‖Q2δ(k)‖p + ‖Q3z(k)‖p + ‖Q4 x(k)‖p (3.5a)

s.t. x(k+ 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)

y(k) = C x(k) + D1u(k) + D2δ(k) + D3z(k) (3.5b)

E2δ(k) + E3z(k)≤ E1u(k) + E4 x(k) + E5

x(N) ∈X f . (3.5c)

A standard approach for translating (3.5) into a MILP or MIQP is, among others, described in
[Bor03]. For the class of mixed-integer problems efficient (branch-and-bound) solvers like CPLEX
[ILO07] exist. However, MILP/MIQP are NP-hard problems. Thus, depending on the model’s size
and complexity, the time needed to compute the next optimal input in a MPC strategy can become
prohibitive for fast systems.

MPC provides feedback control tools to stabilize MLD and PWA systems, respectively, or to drive
them to desired reference trajectories. Under certain assumptions, stability can even be guaran-
teed, as stated in the following theorem.
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Theorem 1 [BM99] Let (xe, ue) be an equilibirium pair and let (δe, ze) be definitely admissible.
Assume that the initial state x0 is such that a feasible solution of problem (3.5) exists at time t = 0.
Then ∀Q1 � 0 (i.e. for Q1 positive semidefinite), ∀Q2 � 0, ∀Q3 � 0, and ∀Q4 � 0 the mixed-integer
predictive law (3.5) with ut = u(0) according to the receding horizon strategy stabilizes the system in
that

lim
t→∞

x t = xe

lim
t→∞

ut = ue

lim
t→∞
‖Q2(δt −δe)‖= 0

lim
t→∞
‖Q3(zt − ze)‖= 0 ,

while fulfilling the constraints (3.1c).

In most applications not all matrices Q i satisfy the requirements of theorem 1 or shall explicitly be
left as free tuning parameters. In that case, for non-singular matrices Q i, stability can be guaran-
teed by introducing certain constraints on the terminal state xT or by appropriately choosing the
terminal weight P (cf. [BBM00, BBM02, Kva08]).

3.3 Explicit MPC

For fast systems the complexity of the optimization problem is limited due to the required com-
putation time to solve it online. Therefore, only very short prediction horizons can be used or the
system model needs to be simplified. In cases where the problem complexity cannot be reduced
accordingly, the application of online MPC might not be possible at all [Chr06].

Bemporad et al. proposed a modification of the general MPC concept in which the optimization
procedure is a priori performed offline [BBM00, BBM02]. The state vector x t is considered a free
parameter and the optimization problem is once solved for all x t in the state space. This is done by
solving a multi-parametric optimization program. More details on multi-parametric programming
will be given in the next section.

This procedure provides a lookup table for the optimal control input ut , as can be derived from
the following theorem.

Theorem 2 [Bor03] The solution to the optimal control problem (3.3) with p = 1,∞ is a PWA state
feedback control law of the form u∗(k) = fk(x(k)),

fk(x(k)) = F i
k x(k) + g i

k if x(k) ∈ Pi
k , k = 0, . . . , N − 1 (3.6)

where Pi
k, i = 1, . . . , N r

k , is a polyhedral partition of the set Xk of feasible states x(k).

By solving the MILP version of the CFTOC in a multi-parametric fashion and as a result of the-
orem 2, the control input u(k) can be explicitly expressed as a piecewise affine function of the
current state x t = x(0), i.e.

u(k) = µ(x t , k) for k = 0, . . . , N . (3.7)
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Since for the MPC method only the first element of the optimal control sequence is of interest
(3.7) can be simplified to

µRH(x t) = µ(x t , 0) = µi(x t) if x t ∈ Pi , (3.8)

where Pi := Pi
0. (3.8) is called the optimal lookup table or explicit solution [Chr06, BBM02].

During the online computation the control input at time step t is then given by

ut = µRH(x t) . (3.9)

Figure 3.2 illustrates the explicit MPC concept.

Optimization problem
over time horizon N

Model

Explicit solution

Real system

offline

online

Figure 3.2: Explicit MPC scheme

The evaluation of the control law (3.9) requires the identification of the state space region Pi,
such that x t ∈ Pi. This leads to the so called point location problem for which an efficient solution
is described in [Kva08].

Remark 2 Similar results hold for the CFTOC with quadratic performance index, i.e. p = 2. As
opposed to the linear case, however, the partition of the feasible state space need not be polyhedral
[Bor03].

Remark 3 The explicit feedback control law (3.9) and the control law defined by (3.3) and (3.5),
respectively, are exactly equal, [BMDP02]. Therefore, identical control inputs will be obtained by both
the online and the offline version of MPC.
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Review of the Explicit Solution

The main motivation for the explicit MPC is its applicability to systems with high sampling rates.
Solving the point location problem is usually very fast compared to solving an optimization prob-
lem at every sampling time. Moreover, one can provide an exact upper bound for the duration of
the point location search, whereas a corresponding bound for the online optimization procedure
is hard to estimate.

Implementing an online model-predictive controller requires a large computational infrastructure.
In contrast, the explicit solution, once computed, can easily be implemented and reproduced on
other machines or even microprocessors.

The explicit MPC solution allows better understanding of the MPC characteristics like stability,
feasibility or robustness. In addition, it provides more visualization options. Along with the
analysis capacity comes the potential for post-processing the solution. It may be simplified, its
complexity may be reduced, or the solution can be adapted in other ways to meet individual
requirements.

On the other hand, multi-parametric optimization problems are difficult to solve and the required
computation time in the worst case depends exponentially on the problem size, in particular on
the number of integer variables involved [BM99]. This limits the applicability of the explicit MPC
method to problems with a low number of constraints and binary variables and a short prediction
horizon. The problem dimension also influences the solution complexity, i.e. the number of
regions Pi to compute and the storage demand of the resulting lookup table.

3.4 Multi-Parametric Programming

Parametric programming is used to obtain the optimal solution to some problem for a whole range
of different parameters. Considering the CFTOC problem (3.3), a characterization of the optimal
control input u∗ for all x in the feasible state space X is desired. Since the CFTOC solution depends
on a vector of parameters, as opposed to a single scalar, it is referred to as multi-parametric
program.

The solution of a multi-parametric program provides a partition of the state space into so called
critical regions CRi, i.e. “sets of the parameter space where the local conditions for optimality
remain unchanged” [Bor03]. More precisely, inside a critical region CRi the combination of active
constraints at the optimal solution does not change. An explicit dependence of the optimizer u∗

on the parameters x ∈ CRi is obtained.

In order to illustrate the partitioning process, consider a non-degenerate multi-parametric linear
program (mpLP). First, the smallest affine subspace K that contains the feasible state space X
of the LP has to be determined (standard procedure, e.g. [Bor03], algorithm 1.3.2). Then an
arbitrary state vector x0 ∈ K is chosen to solve the LP in order to obtain the optimizer u∗ and
the set A(x0) containing the indices of the corresponding active constraints. A(x0) defines the first
critical region CR0 = CRA(xo) = {x ∈ X : A(x) = A(x0)}. An effective way of partitioning the rest
of the space CRrest = X \ CR0 is proposed in the following theorem.
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Theorem 3 [BMDP02] Let Y ⊆ Rn be a polyhedron, and CR0 ¬ {x ∈ Y : Ax ≤ b} a polyhedral
subset of Y , CR0 6= ;. Also let

Ri = {x ∈ Y : Ai x > bi and Aj x ≤ b j,∀ j < i}, i = 1, . . . , m ,

where m= dim(b), and let CRrest ¬
⋃m

i=1 Ri. Then

(i) CRrest ∪ CR0 = Y and

(ii) CR0 ∩ Ri = ;, Ri ∩ R j = ;, ∀i 6= j,

i.e. {CR0, R1, . . . , Rm} is a partition of Y.

A two-dimensional example of the procedure described in theorem 3 is shown in figure 3.3. If
the problem under consideration is not degenerate, the partition of the feasible state space X is
uniquely defined [Bor03].

C

C C

CC

Figure 3.3: Partition of the rest of the space [BMDP02].

Some of the regions in the solution can appear more than once or overlap each other. In order to
reduce the complexity of the solution duplicates and overlaps are to be removed. Efficient algo-
rithms to determine a minimal representation of the solution are presented in [Kva08]. Figure 3.4
shows an example of a solution before and after simplification.

[DP00] describes an efficient approach for determining the solution of a multi-parametric mixed-
integer linear program (mpMILP) based on iteratively solving a MILP and a mpLP subproblem. It
follows from theorem 2 that the obtained solution is a piecewise affine function in x defined over
a polyhedral partition of the state space. The algorithm can be summarized as follows:

1. In a first step, the given MILP is solved to obtain initial values for the binary variables δ.

2. The binary variables are fixed, i.e. δ̄ = δ, and a mpLP is solved which provides a partition
of the state space into smaller critical regions CRi.

3. For each CRi a MILP is solved for x ∈ CRi.
If a value better than the current objective value can be obtained with a different combi-
nation of binary values δ∗, the upper bound for the objective in the region is updated and
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(a) Regions of explicit solution before
simplification (252 regions)

(b) Regions of explicit solution after
simplification (39 regions)

Figure 3.4: Example of a polyhedral partition of the state space [KGBC06].

δ̄ = δ∗ is used as new basis for again solving a mpLP to further partition the current region.
If no better feasible solution is found, CRi is marked infeasible and will not be explored
further.

4. The algorithm will terminate when no feasible regions are left.

3.5 The Multi-Parametric Toolbox

The Multi-Parametric Toolbox (MPT) is a free Matlab toolbox that was developed by members
of the Automatic Control Laboratory at the ETH Zurich [KGBC06]. It provides novel efficient
algorithms for the design and analysis of model predictive controllers for constrained (non)linear
and hybrid systems. Its features include modeling of hybrid systems and the import of existing
system structures, controller export to C code and simulations in Matlab Simulink, analysis of
hybrid systems, multi-parametric optimization as well as visualization tools and a Graphical User
Interface (GUI) for the controller design.

The MPT efficiently implements the MPC procedures described in sections 3.2 and 3.3. It of-
fers a huge library of state-of-the-art algorithms from fields like computational geometry and
multi-parametric programming [Kva08]. For the explicit solution of CFTOC problems like the
one considered in this thesis, multi-parametric programs are solved recursively in a dynamic pro-
gramming fashion [BBBM03]. The algorithm used for solving the Point Location Problem, i.e.
the online evaluation of the resulting explicit control law, is based on a binary search tree as pro-
posed in [TJB03]. See [Kva08] and [KGBC06] for a complete description of the MPT functionality,
case studies proving its efficiency, and a comparison to other available software packages like the
Hybrid Toolbox [Bem04] or the MPC Toolbox for Matlab.

In this thesis, the MPT functionality and its usability for the design and analysis of model predictive
controllers for the Target Observation Problem is explored. Two types of controllers have to be
distinguished. The MPT implementation of the basic MPC concept as presented in section 3.2 is
in the following referred to as online controller while the term explicit controller refers to the MPT
realisation of the closed-form solution as described in section 3.3.
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4 Modeling a Target Observation Scenario

4.1 Constraints

Dynamics

The focus of investigation in this thesis is control of cooperative behaviour. Therefore, it suffices
to model simplified vehicle dynamics and consider robots and targets to be point masses moving
in the plane. However, the modular structure of the overall system model permits to substitute a
simple dynamic model with any other more complex model if necessary.

Let x and y denote the robots’ position coordinates, v x and v y the corresponding velocities, ux

and uy the corresponding accelerations. The system model will only include dynamically moving
robots. In a first problem version the targets are assumed to stay in predefined positions. There-
fore, the model only includes constant target positions and no velocities. Later, also mobile targets
will be considered. Since the robots’ behaviour is only based on the current target positions, there
is no need to extend the model with target dynamics. Their movement will be computed outside
the MPC scheme. For slowly moving targets the controller considers the modified target positions
as noise on the constant values and will adjust the system state accordingly.

The robot dynamics are described by the differential equations ẍ(t) = ux(t) and ÿ(t) = uy(t)
which can be transformed into the first order differential equations

ẋ(t) = v x ẏ(t) = v y(t)

v̇ x(t) = ux v̇ y(t) = uy(t) .

The application of Euler’s method then provides discrete-time linear systems of the form
�

x (k+1)

v (k+1)
x

�

=

�

x (k)

v (k)x

�

+∆t

�

v (k)x
u(k)x

�

(4.1)

�

y (k+1)

v (k+1)
y

�

=

�

y (k)

v (k)y

�

+∆t

�

v (k)y

u(k)y

�

,

where k = 1, . . . , N , ∆t = tk+1− tk, x (k) := x(tk), and y (k), v (k)x ,y , u(k)x ,y defined analogously.

Notation: For reasons of clarity, throughout this section and section 4.4, all variables will be
denoted without time reference, e.g. x ¬ x (k).

Distances

The exact Euclidean distance between a robot r and a target t is given by dr t =
p

(x r − x t)2+ (yr − yt)2. This expression can be linearized using the following approximation:

dr t ≈min
�

d̃r t

�

� (x r − x t) sin
2π j

nd
+ (yr − yt) cos

2π j

nd
≤ d̃r t , j = 1, . . . , nd , nd ∈ N

�

. (4.2)
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Observation Constraints

A target is said to be observed if it is located within some robot’s observation range with radius R.
Let nR be the number of robots, nT the number of targets involved in the problem. For each
combination (r, t), where r ∈ {1 . . . nR} and t ∈ {1 . . . nT} a binary variable br t ∈ {0,1} indicates
whether or not robot r currently observes target t. This is expressed by the following implication:

br t = 1 ⇒ dr t ≤ R . (4.3)

All robots are assumed to have observation ranges of equal size. Applying the Big-M method to
(4.3) results in the inequality

dr t − R ≤ M(1− br t) , (4.4)

where M ≥max(dr t − R).

Since it is not of interest which robot observes target t, but if it is observed by any of them, another
binary variable st ∈ {0, 1} is introduced and represents the general observation status of target t:

st = 0 ⇔
∑

r

br t ≥ 1 . (4.5)

A linear formulation of (4.5) is given by the two inequalities

1−
∑

r

br t ≤ M · st and (4.6)

1−
∑

r

br t ≥ ε+ (m− ε)(1− st) ,

where M ≥max(1−
∑

r br t) = 1, m ≤min(1−
∑

r br t) = 1− nR and ε a small tolerance close to
machine precision.

The aspect of cooperation is realised by minimizing the number of unobserved targets, i.e.
∑

t st ,
and by minimizing each robot’s distance to those targets not yet observed by any other robot.
The latter decision can be expressed using the binary variables st and an additional set of auxil-
iary variables hr t ∈ R, r ∈ {1 . . . nR}, t ∈ {1 . . . nT} which equal the distances dr t in the case of
unobserved targets and equal zero in the case of already observed targets:

hr t = st · dr t . (4.7)

The corresponding linear representation comprises the inequalities

hr t ≤ M · st , (4.8)

−hr t ≤−m · st ,

hr t ≤ dr t −m(1− st) , and

−hr t ≤−dr t +M(1− st) .

Here, M =max(dr t) and m=min(dr t) = 0 and hence (4.8) reduces to

hr t ≤ M · st , (4.9)

hr t ≤ dr t , and

−hr t ≤−dr t +M(1− st) .

By minimizing the variables hr t only distances to unobserved targets affect the objective value.
Already observed targets are “ignored” by the robots.
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4.2 Objectives

Clearly, the main objective of the Target Observation Problem is to observe as many targets as pos-
sible for the largest possible period of time, i.e. in the discrete-time case for as many time steps as
possible. In order to achieve this goal the robots are to move towards strategically good positions.
This means that a robot is supposed to approach unobserved targets without losing sight of the
target it might already be observing. This condition becomes even more important when mobile
targets are considered and shall ensure that the robot is in an advantageous position to observe
additional targets as soon as they enter its observation range. At last, the robots are to move at a
minimum control effort, which in reality could correspond to fuel consumption or other limiting
factors. In summary, the cost function contains the following elements:

• The number of unobserved targets:

min
∑

k

∑

t

s(k)t (4.10)

• The distances to unobserved targets:

min
∑

k

∑

r,t

h(k)r t (4.11)

• The required control effort:

min
∑

k

∑

r

|u(k)r,x |+ |u
(k)
r,y | (4.12)

The three elements (4.10) - (4.12) have to be weighted according to the different objective pri-
orities and the best expected task performance. For this purpose, the weights qδ, qz, qu ∈ R are
introduced and the assembled cost function is of the form

min qδ ·
∑

k

∑

t

s(k)t + qz ·
∑

k

∑

r,t

h(k)r t + qu ·
∑

k

∑

r

|u(k)r,x |+ |u
(k)
r,y | . (4.13)
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4.3 Linear Problem Formulation

The overall linear discrete-time mixed-integer representation of the Target Observation Problem
is composed of the cost function (4.13), the constraints for dynamics (4.1), distances (4.2), ob-
servation (4.4), (4.6), and (4.9), as well as the specification of upper and lower bounds for all
variables:

(TOP)

min qδ ·
∑

k

∑

t

s(k)t + qz ·
∑

k

∑

r,t

h(k)r t + qu ·
∑

k

∑

r

|u(k)r,x |+ |u
(k)
r,y |

s.t. x (k+1)
r = x (k)r +∆tv (k)r,x

y (k+1)
r = y (k)r +∆tv (k)r,y

v (k+1)
r,x = v (k)r,x +∆tu(k)r,x

v (k+1)
r,y = v (k)r,y +∆tu(k)r,y

(x (k)r − x (k)t ) sin
2π j

nd
+ (y (k)r − y (k)t ) cos

2π j

nd
≤ d(k)r t

d(k)r t − R ≤ M1(1− b(k)r t )

1−
∑

r

b(k)r t ≤ M2 · s
(k)
t

1−
∑

r

b(k)r t ≥ ε+ (m− ε)(1− s(k)t )

h(k)r t ≤ M3 · s
(k)
t

h(k)r t ≤ d(k)r t

− h(k)r t ≤ −d(k)r t +M3(1− s(k)t )

umin ≤ u(k)r,x , u(k)r,y ≤ umax

vmin ≤ v (k)r,x , v (k)r,y ≤ vmax

xmin ≤ x (k)r , x (k)t ≤ xmax

ymin ≤ y (k)r , y (k)t ≤ ymax

b(k)r t , s(k)t ∈ {0, 1}

where M1 ≥max(dr t − R), M2 ≥max(1−
∑

r

br t) = 1, M3 ≥max(dr t),

m≤ 1− nR, r = 1, . . . , nR, t = 1, . . . , nT , j = 1, . . . , nd , k = 1, . . . , N
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MILP Formulation

Problem (TOP) is a MILP and can be solved directly with any available MILP solver. Its optimal
solution can serve as a reference for evaluating the solutions obtained from the MPC approach as
well as the controller performance. Moreover, size and complexity of the MILP can be compared
to the MLD problem formulation described in the next section. For these reasons, the Target
Observation Problem was first formulated as MILP of the general form

min
x

cT

�

x
u

�

s.t. A1

�

x
u

�

= b1 (MILP)

A2

�

x
u

�

≤ b2 .

Here, the vector ( x
u ) contains all variables introduced in section 4.1, i.e. a total of

�

8nR + nRnT
�

T + 2nT continuous and
�

nT + nRnT
�

T binary variables, where T is the consid-
ered number of time steps. The entire MILP comprises 10nR + 2nT + 8nRT + nT T + 2T nRnT nd

constraints. Its optimal solution
�

x∗
u∗
�

is computed by CPLEX [ILO07] and provides an optimal
open-loop control sequence for the problem.

MLD Formulation

In order to apply the concept of MPC and to explore the MPT functionality, problem (TOP) has to
be reformulated as CFTOC of the form (3.5) employing the MLD framework (cf. section 3.1):

min
UN

|P x(N)|+
N−1
∑

k=0

|Q1u(k)|+ |Q2δ(k)|+ |Q3z(k)|+ |Q4 x(k)| (4.14a)

s.t. x(k+ 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (4.14b)

y(k) = C x(k) + D1u(k) + D2δ(k) + D3z(k) (4.14c)

E2δ(k) + E3z(k)≤ E1u(k) + E4 x(k) + E5 (4.14d)

x(N) ∈ Tset . (4.14e)

In this representation of the problem, the vector x(k) ∈ R4nR+2nT contains robot positions,
robot velocities, and target positions only. All binary variables are contained in the vector
δ(k) ∈ {0, 1}nR·nT+nT . z(k) ∈ R2·nR·nT comprises all other (auxiliary) continuous variables like
the distances dr t(k) and hr t(k), respectively. The vector u(k) ∈ R2nR represents the robot control
inputs.

(4.14b) consists of 4nR+ 2nT equalities. Since there is no special use for the system output y(k),
line (4.14c) was “eliminated”, i.e. it does not yield additional constraints. (4.14d) comprises
4nRnT + 2nT + nRnT nd inequalities.

The MLD framework was exploited as favorable as possible in terms of problem complexity also
taking into account how minimizing the cost function affects the variables. As an example, con-
sider the first observation constraint in section 4.1. A correct representation would require an
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“if-and-only-if”-relation instead of the single implication (4.3). However, the optimization will
always drive the variables br t to value 1 instead of 0, which is why (4.3) suffices to completely
describe the relation between br t and dr t for problem (4.14). The accuracy of the distance approx-
imation (4.2) itself also depends on the minimization of the variables dr t and hr t , respectively.

The disadvantage of this strategy is that the resulting MLD model (4.14b) - (4.14d) is not com-
pletely well posed in the sense of remark 1. Without the influence of optimization, the functions
Di and Zi, as introduced in definition 1, do not provide unique values for the components of δ(k)
and z(k), respectively. A completely well posed model would be far more complex since more
constraints and more variables, especially more binary variables, would be needed. In terms of
the computational time for an explicit controller this was to be avoided. Note that the reduction of
the problem formulation does not influence or deteriorate the results of the overall optimization
procedure.

4.4 Alternative Modeling Approaches

Despite the reduced problem representation described in the previous section, the explicit solution
(cf. section 3.3) of the CFTOC problem (4.14) is still quite complex. Therefore, depending on the
number of involved robots and targets and the size of the prediction horizon N , the computation
of an explicit controller turned out to be extremely expensive (for details see section 5.1. Since
the number of binary variables in the MLD model considerably influences the solution complexity,
alternative ways of modeling with a reduced number of binary variables were tested. In the
following, an example of an alternative observation constraint will be presented.

On the other hand, a complete characterization of the developed MLD model is desirable in order
to analyse it with respect to the theoretical results discussed in section 3.1. One of the key prop-
erties is wellposedness of an MLD system. An alternative specification of distances is presented in
this section. It intends to provide uniquely determined distances independend of the optimization
influence and, hence, could help to overcome one of the disadvantages mentioned in section 4.3.

Alternative Observation Constraint

The approach described in the following intends to reduce the number of binary variables in the
MLD model by eliminating the nRnT variables br t . The idea is to check the minimum distance
of all robots to target t in order to determine if target t is observed by any of the robots. If the
minimum distance is smaller than the vision radius rad, the target is observed.

Let t ∈ {1 . . . T}. Then

st = 0 ⇒ min
r∈{1...nR}

dr t ≤ R. (4.15)

The translation of this statement into linear inequalities requires an auxiliary variable lt ∈ R
representing the minimum distance. With lt =−minr∈{1...nR} dr t (4.15) reduces to

st = 0 ⇒ lt ≥−R , (4.16)
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which can be transformed into

lt ≥−dr t , r = 1, . . . , nR

−dmax ≤ lt ≤ 0 , (4.17)

−lt − R≤ M · st ,

where M =max(−lt − R) =max(dr t − R).

In order to obtain the correct values for lt , the cost function has to be modified such that all
distances dr t as well as the new variables lt are minimized.

The main problem discovered with this approach is that its accuracy depends too much on the
effect of minimizing the cost function. It proves to be impossible to accordingly weight the sums
in the cost function and obtain useful approximations of dr t and lt . For this reason, the approach
is no longer pursued.

Alternative Specification of Distances

This modification of the distance model aims to obtain uniquely determined values for the vari-
ables dr t and, hence, come one step closer to a completely well posed MLD model.

When using the “Manhattan metric” instead of the Euclidean metric the distance dr t between
robot r and target t is given by

dr t = |x r − x t |+|yr − yt | . (4.18)

The absolute value of a function g(x) = L1 x1 + . . . Ln xn is modeled linearly by the following
(in)equalities (cf. [Kal02], p.116):

|g(x)|= a++ a− a+, a− ∈ R+

g(x) = a+− a−

a+ ≤ M · c c ∈ {0, 1}, M =max|g(x)|
a− ≤ M · (1− c) .

Therefore, equation (4.18) can be replaced by the set of constraints

dr t = a+x + a−x + a+y + a−y
x r − x t = a+x − a−x

a+x ≤ M · cx r t

a−x ≤ M · (1− cx r t)

yr − yt = a+y − a−y
a+y ≤ M · cy r t

a−y ≤ M · (1− cy r t)

with cr t,x , cr t,y ∈ {0, 1}, M1 =max|x r − x t |, M2 =max|yr − yt |.
For every combination of robot r and target t two binary variables cr t,x and cr t,y are introduced,
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which yields a total of 2nRnT additional binary variables compared to the former modeling ap-
proach.

While good results were obtained with an online controller, the increase of binary variables im-
peded the computation of an explicit controller. MATLAB’s maximum variable size was already
exceeded when solving a minimal problem setting.

4.5 Quadratic Problem Formulation

Representing the Target Observation Problem as a quadratic CFTOC is another attempt of reducing
the problem complexity and shortening the duration of the explicit controller computation. In
addition, quadratic cost functions are easier to tune and the solution is smoother around the
reference point than in the linear case [Chr06].

The quadratic structure of the cost function

min
UN

‖P x(N)‖2+
N−1
∑

k=0

‖Q1u(k)‖2+ ‖Q2δ(k)‖2+ ‖Q3z(k)‖2+ ‖Q4 x(k)‖2 (4.19)

offers the possibility to minimize the exact (squared) Euclidean robot-target distances of the form
(x r − x t)2 + (yr − yt)2. Therefore, the variables dr t can be eliminated in the MLD model (4.14b)
- (4.14d). For this purpose, the model has to be adapted accordingly.

While the constraints describing motion dynamics (4.1) remain unchanged, the distance approx-
imation (4.2) is no longer needed and can be excluded. A modification of observation constraint
(4.3) is necessary due to the missing accessibility of the distances dr t .
Robot r observes target t when t is located within r ’s observation range with radius R. This
condition is approximated similar to (4.2) by the implication

br t = 1 ⇒ (x r − x t)sin
2π j

nd
+ (yr − yt)cos

2π j

nd
≤ R . (4.20)

Applying the Big-M technique, (4.20) transforms into

(x r − x t)sin
2π j

nd
+ (yr − yt)cos

2π j

nd
≤ R+M(1− br t) , (4.21)

where M ≥ max((x r − x t)sin2π j
nd
+ (yr − yt)cos 2π j

nd
− R).

While the constraints (4.6) stay the same, the inequalities (4.9) are eliminated. This causes a
slight change in the structure of the cost function (4.13). While the linear CFTOC (4.14) only
minimizes distances to unobserved targets, the quadratic version will minimizes all robot-target
distances regardless of a target’s observation status. Therefore, (4.11) becomes

∑

k

∑

r,t

(x (k)r − x (k)t )
2+ (y (k)r − y (k)t )

2 (4.22)

Since the matrices Q i in a quadratic cost function have to be positive semi-definite, (4.22) can-
not be described in direct dependence on the corresponding components of vector x(k). Hence,
additional auxiliary variables

ax r t = x r − x t and a yr t = yr − yt (4.23)
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have to be introduced.

Due to the additional inequalities representing (4.23), the number of constraints compared to
the linear CFTOC remains unchanged. The quadratic problem formulation might still provide
a benefit in computational performance compared to the linear performance index. Due to the
different distance approaches, however, the quality of the solutions has to be considered, as well.

4.6 Stability and Optimality

In both the linear (see section 4.3) as well as the quadratic (see section 4.5) problem formulation
the number of constraints were kept at a minimum in order to speed up the controller computa-
tion. As already mentioned, this strategy works at the expense of certain properties of the MLD
model.

In both representations of the Target Observation Problem the matrices B2, D2, B3, and D3 of
the MLD systems equal zero and, therefore, condition (ii) of definition 1 becomes redundant.
This makes it difficult to directly transfer or apply definition 5 and theorem 1 to the MLD system
modeled here. Changing the model to be well posed would make it much more complex and the
problem more difficult to solve and, thus, would permit the multi-parametric computation of an
explicit controller. However, one can assume that if the missing constraints and variables needed
to obtain a well posed model were added to the present model version, the optimization would
still provide nearly identical results. For this reason a complete characterization of the modeled
MLD systems will not be considered. Nevertheless, a short descriptive discussion of stability and
optimality for the Target Observation Problem will be given in the following.

In the problem description (TOP) an equilibrium state can be considered to be any combination of
x , u, and δ variables, where all velocities and control inputs equal zero and a maximum number
of targets is observed, i.e. as many components st of δ as possible for the considered robot/target
constellation equal zero. Equilibrium states and hence also the optimal solution to the problem
cannot be uniquely determined. This is due to the possible interchangeability of certain robots
and targets on the one hand and due to the equivalence of different robot positions with respect
to the maximum number of observed targets on the other.

One can introduce certain “equilibrium areas” in the neighborhood of the targets. If only a single
target T is considered, its equilibrium area is the neighborhood with radius R and center (xT , yT ).
For more than one target, equilibrium areas can occur as the intersection of target neighborhoods
if those are located close enough to each other. Figure 4.1 shows two examples of equilibrium
areas for one target and two targets, respectively.

T T1 T2

Figure 4.1: Examples of equilibrium areas for one and two targets, respectively.

4.6 Stability and Optimality 35



As long as a robot r stays within an equilibrium area S, the corresponding discrete structure of
the system state, i.e. the values of br j, j = 1 . . . nT , does not change. Considering a single robot,
one can speak of local asymptotical stability (cf. definition 4) of robot positions (x r , yr) ∈ S \ ∂ S.
In case a disturbance moves the robot’s position out of the area, the controller will drive it either
back inside the same area or inside a different area closer to the robot’s current position. The
latter case only arises if the corresponding discrete state structure for a robot located in the new
equilibrium area yields the same objective value as for the former area.

In this context, one can classify the equilibrium areas with respect to the corresponding objective
value. The more target neigborhoods intersect, the more favourable is a robot position inside the
area, see figure 4.2.

T1

T2

T6

T3

T4

T5

Figure 4.2: Different equilibrium areas as intersections of target neighborhoods: The darker the
color, the more favourable are robot positions in the area.

In a scenario with multiple robots, the priority of the existing equilibrium areas can change as soon
as a target is observed by one of the robots. From the view of all other robots the neighborhood
of the observed target ceases and the controller drives them towards favourable positions with
regard to the unobserved targets.

It decisively depends on the number of robots and targets, their initial positions, their maximum
velocities, and in particular on the prediction horizon N whether or not an equilibrium is reached
within the time horizon T and whether it represents a global optimum for the Target Observation
Problem. Clearly, an increase of the prediction horizon N will improve the solution.

In summary, it can be stated, that the controller based on problem description (TOP) guarantees
“local stability” of robot positions inside the equilibrium areas and “global stability” with respect
to the optimal objective value.
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5 Results

5.1 Explicit Controller Computation

Several attempts to compute an explicit model-predictive controller as described in section 3.3
were made within the scope of this thesis. It turned out, that the large number of binary vari-
ables in the problem description (TOP) leads to a prohibitive number of regions, which have to
be generated when solving the corresponding multi-parametric program. For a minimal setting
consisting of 2 robots, 2 targets, and prediction horizon N = 3, the mpMILP contains 18 binary
variables. All attempts to reduce this number (cf. section 4.4) did not succeed. Solving this mp-
MILP would have required the solution of multiple mpLP with more than 100.000 regions each.
Using the quadratic problem formulation presented in section 4.5, i.e. solving the corresponding
mpMIQP, reduced the number of regions to around 50.000 per mpQP. However, on a 64Bit Linux
system with DualCore CPU, 128 Gigabytes RAM, and a 64Bit Matlab version the computation of
an explicit solution did not complete within 2 weeks and is assumed to last at least 3-4 weeks.

In addition, the CPLEX calls repeatedly performed during the computation required a permanent
connection to the remote license server. Since the MPT does not provide functionality to catch
license call errors or to buffer already obtained parts of the solution, all data would be lost as soon
as any kind of error ocurred while solving the multi-parametric program.

The possibility to parallelize the explicit solution computation was also taken into account. How-
ever, the algorithms implemented in the MPT (cf. section 3.5) cannot easily be divided into inde-
pendent iterations. A more detailed analysis of the MPT mechanisms and the underlying source
code with respect to parallelization would have gone beyond the scope of this thesis. Therefore it
was not possible to perform a parallel computation, e.g. on a cluster of multiple CPUs, apart from
the fact that several independent Matlab jobs would each have required their own Matlab license.

Due to all the difficulties that arised during the attempts to compute an explicit model-predictive
controller for the Target Observation Problem, more emphasis was put on further developping and
evaluating the online controller.

5.2 Evaluating Quality and Efficiency of the MPC Solutions

In this section, a version of the Target Observation Problem with non-moving targets is considered.
This problem can be solved in an open-loop fashion by determining the optimal solution of a MILP
as described in section 4.3. A comparison of the resulting open-loop optimal control sequence and
the closed-loop control sequences obtained from different model-predictive online controllers is
presented. For this purpose, the performance of nine different online controllers for N = 1, . . . , 9
will be investigated in terms of computational efficiency as well as the quality of the control
sequence they provide.
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Setup

The work area in the test scenario is considered a square of size 8000×8000 units. Initially, robots
and targets are randomly located inside this work area, the robots’ velocity v and acceleration u
equals zero. During the simulation, the robots’ velocity can vary between -200 and 500 units per
second. The same bounds in units per square second apply to their acceleration. Each robot has
an observation range of radius R= 2500.

Five sets of simulations were considered, one for each number of robots nR between 1 and 5.
The number of targets was considered nT = 2nR, which represents a problem version where, in
general, no complete target coverage can be achieved. For each instantiation of nR, 50 simulation
runs of length T = 20 time steps were performed. A MILP was solved for each setting of initial
robot and target positions. The same settings were then simulated using nine different model-
predictive online controllers with prediction horizons varying from N = 1 to N = 9. Identical cost
function weights (see section 4.2) were used for the overall MILP as well as the CFTOC problems
(4.14) solved during the model-predictive control procedure:

qz = 0.5 ,

qδ = 10000 , and

qu = 10 .

These weights mirror the objective priorities as the main objective is to minimize the number of
unobserved targets. Hence qδ is very large. qz weights the minimization of the robots’ distances to
unobserved targets and is required to move them towards convenient positions in order to observe
as many targets as possible. The weight on the control inputs qu is to ensure control efficient robot
trajectories. In the system models, the robots’ observation range is approximated by an octagon,
i.e. nd = 8, fitting into a circle with radius 2500.

The obtained simulation runs were evaluated with respect to the required computational time, the
achieved target coverage over the entire time horizon, and the number of observed targets at the
final time step. The target coverage is measured by the “A metric” Parker introduced in [Par02]:

A=
1

nT

T
∑

t=1

nT
∑

j=1

a(t)j

T
, (A metric)

where a(t)j are binary variables that equal 1 if target j is observed at time step t and 0 otherwise.
The A metric represents the average percentage of targets being observed by at least one robot at
some instant of time throughout a simulation of T time units.

In order to compare the final target observation status, a separate value of A for the last time step
only is measured by

A f inal =
1

nT

nT
∑

j=1

a(T )j . (5.1)

All computations were performed on a machine with DualCore CPU (Intel Pentium 4, 3GHz) and
3GB RAM. CPLEX [ILO07] was used as the standard MILP solver.
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Results

Figure 5.1 presents a comparison of the average time required to compute the MILP solution on
the one hand, and the average time required to perform the corresponding simulation run using
the online controller with prediction horizon N on the other hand.
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Figure 5.1: Average computational time required to solve the overall MILP for nR = 1, . . . , 5 and
nT = 2nR compared to the average time required for one simulation run using a model-
predictive controller with prediction horizon N .

The computational times increase exponentially with the number of vehicles involved in the prob-
lem, i.e. the number of constraints. Since in the model-predictive approach a MILP over the
prediction horizon N has to be solved at every time step t, the computational effort grows the
faster the greater the value of N . However, it is evident from figure 5.1, that solving T MILP
over time horizon N < T

2
is more efficient than solving one MILP over the entire time horizon T ,

especially for large numbers of constraints.

This conclusion does not apply to the case nR = 1, though. As can be seen here, solving the overall
MILP is much faster than the online controller simulation. It can be stated, that for very low
numbers of constraints, the time to solve the MILP is exceeded by the time, the online controller
requires to process the obtained data.

Figure 5.2 shows a comparison of the A metric and the values of A f inal obtained from the MILP
solution and the different online controllers, respectively. Clearly, all curves rise when the number
of robots (hence also the number of targets) increases. The denser the spatial distribution of the
targets, the easier is it for the robots to reach them and the more likely is it that one robot can
observe more than one target at the same time.

Regarding the graphs representing A f inal in figure 5.2 (b), one can see how the MPC solution
improves when N increases. However, even with the largest considered prediction horizon, N = 9,
the online controller was not able to drive the robots to the optimal final positions as obtained
from the MILP solution. This is because the controller can only plan optimal robot movements
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Figure 5.2: Comparison of (a) the A metric and (b) the target coverage at the final time step
t = T , obtained from the optimal MILP solution and the model-predictive controllers
(prediction horizon N ), respectively.

within the prediction horizon N , i.e. at each time step a “local” optimum for the next N time
steps is computed. The resulting sequence of T “local” optima not necessarily leads to the global
optimum of the overall MILP. If robot r is not able to reach target t within the next N time steps,
the online controller will drive it to a closer target. Hence, too distant targets are likely to stay
unobserved. Due to the considered simulation setup, cases occur in which a target cannot even
be reached within T time steps. This explains, why the blue MILP graph in figure 5.2 (b) does not
start at a value of A f inal = 0.5 for nR = 1.

The graphs in figure 5.2 (a) representing the A metric are very similar to the ones in 5.2 (b).
However, for N large enough, the A values obtained with the MPC approach come very close to or
even go beyond the optimal values. Although the final robot positions are not optimal and some
of the targets might never get observed, the robots controlled by the online controller stick with
their “local” target for a longer period in time than the robots in the optimal solution. That is why
the MPC approach in this case provides very good results since A records the average percentage
of observed targets for all time steps t.

5.3 Comparison to an Existing Heuristic Approach

This section presents a comparison of the online MPC approach with the heuristic decentralized
A-CMOMMT approach Parker proposed in [Par02] based on an observation scenario with multiple
moving targets. An almost identical simulation setup as in [Par02] was used and will be described
in the following.
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Setup

The area under consideration is a square with no obstacles. Initially, robots and targets are ran-
domly positioned within a 2000× 2000 square in the center of the work area. Since the robots’
observation range has a fixed radius of 2600 units, at the beginning all targets are observed. Dur-
ing the simulation, they move at a constant speed of 150 units per second and with a 5% chance at
every time step to change their orientation between −90◦ and 90◦. If a target reaches the bound-
ary of the work area, it is reflected off the boundary. A total of T = 120 time steps of ∆t = 1
second is considered. The robots can vary their speed between -200 and 200 units per second in
both x- and y-direction. A maximum acceleration of umax =±200 is considered. Furthermore the
following parameters are used:

N = 5

nd = 8

qz = 0.5

qδ = 10000

qu = 10 ,

where N is the prediction horizon, nd represents the number of hyperplanes to approximate the
observation range, and qz, qδ, qu weight the cost function as described in section 4.2. qδ and qu

are selected as described in the previous section. qz controls the minimization of distances to
unobserved targets and has to be tuned carefully. A bigger value of qz would cause the robots to
move towards the “center” of all unobserved targets, leaving the one they were already observing.

The evaluation of each simulation run is based on measuring the A metric [Par02]

A=
1

nT

T
∑

t=1

nT
∑

j=1

a(t)j

T
, (A metric)

as introduced in the previous section, where nT the number of targets, T the considered time
horizon and a(t)j binary variables, that equal 1 if target j is observed at time step t and 0 otherwise.

Two sets of experiments were performed. In the first set, an equal number of robots and targets is
considered, i.e. nR

nT
= 1, the second set considers a robot target ratio of nR

nT
= 1

4
. For both sets, the

number of robots is varied between 1 and 10, the number of targets accordingly between 1 and
20. Moreover, the size of the work area, defined by its side-length 2D, varys between D = 1000
and D = 50000. For each instantiation of nR, nT , and D 250 simulation runs are performed and an
average for A is derived. The normalization of the A metric with respect to the number of targets
allows a comparison of experiments that vary in the quantity of targets.

Differences in the Simulation Setup

Although an identical setup of the experiments was aspired, a few differences between the A-
CMOMMT approach and the here developed MPC approach, e.g. concerning the system models,
have to be taken into account when evaluating the comparison. Table 5.1 gives an overview of the
differences.
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A-CMOMMT appoach MPC approach
Work Area Circular work area with radius R

between 1000 and 50000
Square work area with side-length
2D and D between 1000 and
50000

Observation Range Circular observation range with
radius 2600 and “predictive track-
ing range” of 3000

Approximation of a circular obser-
vation range as largest octagon fit-
ting into a circle with radius 2600

Robot Dynamics Motion dynamics consist of orien-
tation and a fixed speed of 200
units per second

Dynamic model (4.1) with vari-
able x- and y-velocities (-200 to
200 units per second) and vari-
able x- and y-accelerations (-200
to 200 units per square second)

Target Dynamics Randomly assigned fixed speeds
between 0 and 150 units per sec-
ond

Fixed speed of 150 units per sec-
ond

Collision Avoidance Robots repel each other No collision avoidance

Table 5.1: Differences between the compared approaches

Nearly all of the presented differences are slightly to the disadvantage of the MPC approach com-
pared to the A-CMOMMT approach. This has to be taken into account when evaluation the results
of the comparison. A circular work area clearly is smaller than a square with corresponding side-
length and the approximation of the robot’s observation range by an octagon forces them to get
slightly closer to a target before they actually observe it. The two differences concerning the dy-
namics additionally complicate the system behaviour. The simple dynamic model used for the
MPC approach possibly makes the robots less agile, but is still more realistic than Parker’s model.
For example, as opposed to Parker’s robots, the robots in the MPC approach cannot perform a 180◦

turn in only one time step, while maintaining constant speed. In addition, the targets in Parker’s
problem version possibly move more slowly than 150 units per second, which can make it easier
for the robots to keep them in view. On the other hand, cases in which the targets are even too
slow for the robots can be imagined. Then the robots’ constant velocity of 200 units per second in
the A-CMOMMT approach could even permit a continuous observation.

Results

Figure 5.3 shows the comparison of the results Parker obtained from her CMOMMT approaches
and those obtained from the MPC approach. The figure on the left provides an overview of the
performance of four different approaches Parker compared in [Par02]. Fixed refers to a version
where all robots stay in randomly defined positions in the work area for all instants in time while
they move around randomly in the Random approach. Local denotes Parker’s approach that uses
local force vectors to attract robots to nearby targets and repel them from other robots. As opposed
to the A-CMOMMT approach, represented by the solid line, the force vectors in the Local approach
are not weighted. For a detailed description of Parker’s approaches see [Par02].
The colored lines in the figure on the right show the obtained MPC results for different numbers
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of robots and targets, respectively. The black line represents the average of all obtained results for
each instantiation of D.
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Figure 5.3: Quantitative comparison of the simulation results for a robot target ratio of nR/nT = 1
and randomly moving targets, obtained with (a) the A-CMOMMT approach [Par02]
and (b) the MPC approach.

Both the A-CMOMMT and the MPC graph start at a 100% target observation for the smallest
considered area. This is due to the size of the work area being smaller than the observation range
of a single robot. The graphs then slope until they reach a more or less constant level. In the
A-CMOMMT approach, a constant value of around 0.72 is reached, while the MPC graph varies
slightly between 0.72 and 0.73. It can be noticed, that the constant level in the A-CMOMMT
case is reached at a work area radius of around 20000 while the MPC graph slopes more quickly
and reaches the constant level at around D = 15000. This difference corresponds to the 27%
difference in the work area sizes. In both approaches a further increase of the work area size does
not affect the value of the A metric since the targets are too slow to reach the boundary of the
area. Hence, their reflection off the boundary “accidently” drives them into a robot’s observation
range.

For an equal number of robots and targets, a permanent 100% observation would be expected
since each of the robots could be assigned a target. However, in the MPC approach targets are
not assigned explicitly to each robot, but rather implicitly through the optimization problem.
Figure 5.4 shows some examples of simulation results obtained for the robot target ration of 1
and D = 10000. Red markers and lines correspond to the targets, blue markers and lines to the
robots enclosed in their observation range represented by the gray circles.

While (a) and (b) represent an ideal simulation progress with permanent target observation, the
other figures show examples in which the (TOP) problem formulation cannot prevent targets from
escaping the robots’ observation. In (b), (c), (d), and (e) there is at least one non-moving robot
that stays in the center of the area. This is due to the minimization of the control input u which
corresponds to the robots’ acceleration. Since at the beginning of the simulation all targets are
covered by other robots, the remaining robot r does not have to move, i.e. ur,x = ur,y = 0. Later
during the simulation when a target escapes observation, it depends on the prediction horizon
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Figure 5.4: Simulation results for nR = 5, nT = 5, and D = 10000. Red markers represent tar-
gets, blue markers represent robots with their observation range (gray circle), the
red/blue lines show the targets’/robots’ movements in the x-y-plane over the time
horizon T = 120s.
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N whether robot r takes over or not. (c), (d), and (e) show simulations where the escaping
target is too far away from the robot in the center. The robot cannot reach the target within the
prediction horizon N = 5. Hence, it stays immobile due to the minimization of u. For the same
reason, in figure (f) one of the robots moves towards the boundary in the lower right corner of the
work area, although the nearby target is already observed by one of its teammates. The control
input to stop the robot would “cost” more than to let it move on. In this point, the model of the
Target Observation Problem lacks correspondence to reality. In the cases described above a greater
prediction horizon could certainly improve the system behaviour.
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Figure 5.5: Quantitative comparison of the simulation results for a robot target ratio of nR/nT =
1/4 and randomly moving targets, obtained with (a) the A-CMOMMT approach
[Par02] and (b) the MPC approach.

In figure 5.5 the quantitative results for a robot target ratio of 1/4 are shown. The curve shapes
are similar to those in figure 5.3 though even out at a lower level clearly due to the fact that the
targets outnumber the robots.

Figure 5.6 presents examples of typical simulation runs. The simulation depicted in (d) clearly
results in a greater value for A than for the other cases. When the targets swarm out in a star-like
manner as in (b) and (c), the robots move in those directions where more than one target can be
observed by each robot, but still there is no chance to observe all of them.

Situations, in which one of the robots stays immobile as discussed for nR/nT = 1 are unlikely
to occur for the ratio of 1/4 since there exist enough unobserved targets for all of the robots
at the beginning of the simulation. Moreover, in the majority of the cases, a larger prediction
horizon would not improve the robots’ cooperative behaviour. Their future motions and the effect
of which predicted by the system model are based on the target positions at the current instant
in time. The model does not allow for somehow predicted target movements that would permit
to plan the robots’ behaviour more precisely. Hence, the obtained results are close the best that
can be achieved for the considered target observation scenario. Their slight inferiority to Parker’s
results can be justified by the differences in the simulation setup discussed previously.
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Figure 5.6: Simulation results for nR = 3, nT = 12, and D = 15000.
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6 Discussion and Outlook

6.1 Application to Real Systems

Validation by Simulation

The discrete-time linear robot dynamics as introduced in section 4.1 can only approximate the
physical behaviour of a real system. In addition, the considered model represents an idealized
system without any disturbances. For these reasons, the resulting model-based controller has to
be validated in applications to real systems.

A first step has been taken by providing an interface between the Multi-Parametric Toolbox for
Matlab and the Multi-Robot-Simulation-Framework (MuRoSimF) developed at the Simulation,
Systems Optimization and Robotics group (SIM) at TU Darmstadt. Based on a TCP/IP connec-
tion, which enables a frequent data exchange between the MPT and MuRoSimF, simulations of
different target observation scenarios could be performed, see figure 6.1 for simulation snapshots.

(a) (b)

Figure 6.1: (a) Top view and (b) 3D views of a simulation performed with MuRoSimF. The work
area is a 100× 100 square. Robots are represented by blue cylinders surrounded by a
blue transparent circle representing their observation range. Targets are depicted by
red cylinders.

MuRoSimF offers the possibility to interactively test the controller in real time. The user can,
for example, simulate disturbances on the system by dragging robots or targets away from their
current positions. A detailed description of the simulation framework MuRoSimF and its features
can e.g. be found in [FPvS08].

The online controller performed well in real-time simulations of smaller systems. For a problem
involving 2 robots and 2 targets, it provided the next control input within ∼ 0.04-0.09 seconds
(Intel Pentium 4 CPU, 2.66GHz, 1 GB RAM). This allowed a fast data exchange between controller
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and simulation, keeping deviations from the desired system behaviour at a minimum. However,
simulations involving more vehicles gave a first impression on how a communication delay can
affect the system behaviour and cause gaps between current and desired values.

Decentralization

In order to overcome the dependence on a stable communication between the central controller
and all robots, a decentralization of the model-predictive approach could be considered. Each
robot could be controlled by its individual model-predictive controller. Based on a system model
and the positions of team-mates and nearby targets currently perceived by the robot, the controller
could provide its next optimal control input. Adaptations might be necessary if the robot detects
more (or less) robots or targets than the system model includes. Nevertheless, the individual
controllers in this approach would only have to cover parts of the complete system, which reduces
each controller’s complexity. Moreover, robots and targets could be added to or removed from the
considered system without impairing the optimal control.

6.2 Conclusions

In this thesis, a model-predictive approach to control cooperative multi-vehicle systems was inves-
tigated by means of a benchmark scenario from target observation. The considered scenario was
modeled as Mixed Logical Dynamical (MLD) System. Based on the MLD system, model-predictive
online controllers were computed and tested.

The complexity of the cooperative control problem prohibited the computation of an explicit con-
troller. Real-time control based on the explicit solution would be more efficient than the online
controller. Moreover, the analysis of an explicit controller could have given further insight into the
characteristics of the controlled system. In order to speed up the computation and to obtain an
explicit solution, possibilities to parallelize the applied algorithms could be further investigated.

For problems with stationary targets, the efficiency and performance of the online controller was
analysed based on a comparison to the global optimum of a corresponding MILP over the entire
time horizon. For problems involving multiple moving targets, the online controller performed
well compared to a decentralized heuristic approach proposed in [Par02].

An interface for the simulation framework MuRoSimF was provided, which offers the possibility
to interactively develop, test, and evaluate model-predictive controllers designed with the Multi-
Parametric Toolbox in Matlab. The performed simulations verified the real-time applicability of the
online model-predictive approach, at least to small-scale multi-robot systems. Further tests would
be needed to generalize this statement and to fathom benefits and limits of the online controller
with respect to real-time applications. One possibility for further developing and improving the
efficiency of real-time model-predictive control was presented in the previous section.

The presented investigations motivate further analysis of the model-predictive control scheme
with respect to characteristics like robustness and stability. Its potential with respect to control of
cooperative multi-vehicle systems was demonstrated and verified. If further improved, the model-
predictive strategy can be expected to efficiently provide reliable optimal control of cooperative
mobility in real-time applications.
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[Bao05] M. Baotić. Optimal Control of Piecewise Affine Systems - a Multi-parametric Approach.

PhD thesis, Swiss Federal Institute of Technology Zurich, 2005.

[Bar09] S. Bartsch. Formationswechsel bei Mehrfahrzeugsystemen: Modellierung und Lösung
auf Basis von MILP (bachelor thesis; ongoing work). Master’s thesis, Technische Uni-
versität Darmstadt, 2009.
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