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Abstract

Virtual evidence boosting (VEB) is a very promising method for training conditional
random fields (CRFs) recently published by Liao et al. [2007]. By applying the principles
of LogitBoost, it performs feature selection and parameter estimation for both local
and pairwise factors of a CRF in a unified framework and is able to directly integrate
continuous observations. While Liao et al. [2007] have shown that the method surpasses
other approaches in practical applications, their derivation remains unsatisfactory. In
this work we provide a new and detailed derivation, which also includes the foundations
of VEB, LogitBoost and the inference method belief propagation. In this context we
propose two new versions of VEB which however show inferior performance to Liao’s
VEB in empirical comparison.

The context for this work is human activity recognition from wearable sensors. We
investigate the use of a wearable camera for recognizing spatial context (‘inside’, ‘outside’,
‘on a bus’) and compare color histogram, color-spatial moment, and steerable pyramid
image features for this task. The performance of the baseline system, a multi-sensor
board integrating seven sensor modalities, can be increased by adding camera features
on some of our recordings.
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Chapter 1

Introduction

Non-verbal communication is a key concept in human interaction in everyday life, even
beyond its role in human relationships. Without being aware of it, we speak through
our actions, and understand other people’s state, goals and intentions by observing what
they do. This allows us to predict or anticipate a person’s next action and if necessary
allows us adapt our own actions accordingly. This is for example crucial in traffic, where
failing to understand the situation around you can lead to serious accidents.

Recognizing what people are doing around us seems to be a very straightforward, if
not trivial task. This mainly due to two facts:

• First of all, we have excellent sensing and perception capabilities. Our eyes can
perceive a multitude of relevant details in the human environment and work well
across a significant range of lighting conditions. Also, and that’s particularly useful
for dynamic environments, our visual cortex can reliably detect motion and speeds,
even if we are moving ourselves. Where the eyes are limited — they only allow us
to see what’s in front of us — they are completed by other senses, in particular
the ears. They can alert our attention to relevant because potentially dangerous
events behind us, and hence allow us to retain an omnidirectional overview of things
around us.

• Secondly, we have a huge supply of experience what humans do, either from previous
observations of other people or ourselves. From this experience we can deduce the
possible goals behind other people’s visible actions.

However, if we try to implement the same capabilities in a computer system, the task
proves to be very difficult. The discipline concerned with this task is called human activity
recognition, or in short just activity recognition. It is not a distinct field of research but
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has received attention from many research communities, including robotics, machine
learning, and ubiquitous computing. Accordingly, the tasks have been investigated are
very variable, from tracking people in a room [Pentland, 1996] to inferring the meaning
of places to an individual [Liao et al., 2005].

1.1 Taxonomy of Activity Recognition Tasks

To better understand the scope of the activity recognition task pursued in this thesis, it
is useful to investigate the different dimensions of activity recognition. Applications can
be distinguished according to the setup of sensors with respect to the subject and by the
abstraction level of the categories inferred by the system.

1.1.1 Sensor and Application Setup

All activity recognition applications have in common is that they try to capture and infer
information about people in the real world. They differ however in where the sensors are
placed which respect to the people.

Early activity recognition placed the sensor networks into a room or building to
make them “smart rooms” [Pentland, 1996], which unlike other computer systems are
able to perceive their user’s activities and so can be more “helpful”. Similar systems have
emerged for mobile robots allowing the agent to recognize the movement of people around
it [Schulz et al., 2003a]. This capability is also sought after in traffic where a partially
autonomous sensor system in a car can help to prevent collisions with pedestrians [Gandhi
and Trivedi, 2006]. A future application which can also draw significant benefits from
activity recognition are mobile service or assistance robots. These will need to understand
spoken commands as well as non-verbal communication and be able to safely navigate
around natural and dynamic environments. All these applications have in common that
people and their activities are detected from remote sensors, like range finders or cameras.
In particular the latter can provide a rich set of information for remote recognition of
human activities. Indeed, “looking at people” has spun large interest in the computer
vision community, but due to the high complexity of the task — discovery and tracking
of a possibly non-rigid body (because of clothes) with tens of degrees of freedom in a
variable environment — no robust, general purpose solutions have emerged yet [Gavrila,
1999].

A different class of very successful applications of activity recognition use wearable
sensors, i. e. sensors that are carried around by a person, to infer information about the
wearer. This is a main focus of the ubiquitous computing community and has attracted a
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lot of attention in recent years. It allows for other types of sensors, e. g. accelerometers or
GPS, which provide much more concise data than remote sensing systems like cameras.
The applications are for example mobile devices like PDAs which provide relevant infor-
mation at the right time reducing the perceived burden of interruptions [Ho and Intille,
2005]. A more elaborate level of activity recognition is required by the system called Op-
portunity Knocks, which helps cognitively-impaired people to use public transportation
independently by making them aware of deviations of the usual route and helping them
recover [Patterson et al., 2004]. These two examples have in common that they give live
feedback to the users. In other cases the wearable devices only record daily activities for
off-line evaluation. Applications range from long-term health monitoring for the elderly
[Philipose et al., 2004] and social science studies [Wyatt et al., 2007] to automatic mission
summaries for soldiers (see section 1.2).

1.1.2 Activity Levels

Most commonly, the output of an activity recognition system is a label for what the
individual wearing the sensors or the observed people are doing at a particular point
in time. These labels can either be triggered by the actions themselves or be reported
at a constant rate. The set of labels which are distinguished strongly depend on the
application, but we can categorized them by their level of abstraction.

At the bottom level is the immediate action performed by a person, like walking,
speaking, or handling a certain object. The middle level of abstraction captures more
complex, compound actions, like crossing the street, talking with a friend, or making
dinner. These activities are obviously harder to detect or infer, but they contain a
much more valuable information, which for example allows a car’s collision avoidance
assistant to hit the brakes, a mobile phone to not suppress a call (because it’s a casual
conversation), or a caring person to see that their elderly relative is still capable to manage
her everyday life. The highest level of abstraction involves the goals and intentions of
people, like the walking towards a target or being on the trip home. The goals may span
a few seconds up to several hours, and therefore are particularly important to predict
the low or middle level action a person will perform next [Liao et al., 2004].

1.1.3 Location in Activity Recognition

Especially for the higher abstraction levels of activity, the location of the wearer is often
a cue for the activity performed. Consider the case that a person is ‘at a supermarket’,
which almost certainly means that he is buying things, unless he is ‘at work’. The concept
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“location” can be understood in very different ways in activity recognition applications,
so we can distinguish the following three notions:

1. An obvious interpretation is the absolute position in terms of latitude and longi-
tude. Determining the position of the person carrying a mobile device is called
localization, and it is a basic layer in many activity recognition systems. The
satellite-based global positioning system (GPS), which allows to directly measure
these values, has been found unreliable in human environments, so some solutions
rely on other radio beacons like GSM and WiFi antennas instead [LaMarca et al.,
2005, Ferris et al., 2006]. The absolute position can be used to find a users signif-
icant places, which is usually simply defined as the places a person stays at for a
certain time [Ashbrook and Starner, 2003, Marmasse and Schmandt, 2002]. These
systems identify distinct places, but they do not automatically assign any semantic
labels to these places (cf. item 3 in this list).

2. The objective category of an environment, which we call spatial context , is a further
notion of location. It distinguishes labels on the level of abstraction of inside and
outside [Subramanya et al., 2006], or certain types of rooms like office, kitchen,
corridor etc. [Torralba et al., 2003].

3. The place meaning describes the role that a place has for a particular person, like
home, work, or home of a friend [Liao et al., 2005, Hightower, 2003]. These labels
are specializations of the spatial context labels in the sense that ‘my office’ applies
to less places than the category ‘office’.

The process of finding the label from the latter two cases is both called place classifi-
cation or place labeling , so throughout this work we will resort to the unique expression
of “recognizing spatial context”. This will be the focus of the activity recognition task
pursued in this work.

1.2 Motivation for Recognizing Spatial Context

Spatial context has only rarely been detected in activity recognition systems (see related
work in section 2.3). However we think that spatial context is in fact a very important
notion of location because it captures general concepts that can be applied to arbitrary
locations and not only certain limited areas or a few places. Applications based on spatial
context labels can therefore work everywhere. For example ‘sidewalk’ and ‘building
entrances’ are also spatial context labels, and detecting these could be the key to a
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successful pedestrian target predictor. While this is a hard challenge for future research,
even much more simple labels are useful for many applications. In this work a wearable
sensor system will be used to classify the spatial context into ‘inside’ and ‘outside’, and
‘on a bus’.

This information may by itself be interesting. The experience sampling method is
used in social science studies to ask people about their everyday lives. In order to
reduce recall errors, experience sampling uses a portable device that prompts the user to
answer a questionnaire in place. Traditionally this is done in regular intervals, but the
approach can be made more efficient by only prompting in a certain spatial context or
after particular activities [Intille et al., 2003]. In a different application, Torralba et al.
[2003] use the spatial context information inferred by a camera-based system to get a
prior for which other objects may also be visible in the image.

Furthermore detecting spatial context can be an important layer in a larger activity
recognition system. Applications which identify significant places and their meaning to
a user [Liao et al., 2005] could use the spatial context label as additional information
since for example only few significant places can be outside. In other cases, detecting
the locations ‘car’ and ‘bus’ could have helped to differentiate the corresponding modes
of movement, which has proven to be very hard if only GPS traces are available [Liao
et al., 2004].

Finally, it can’t be dismissed that recognizing spatial context has a military applica-
tion. The preceding work by Subramanya et al. [2006] was funded under the DARPA
(Defense Advanced Research Projects Agency) program ASSIST (Advanced Soldier Sen-
sor Information System and Technology). The objective of this program is to develop
sensor systems to improve the soldiers ‘after mission’ reports. Creating these from mem-
ory only has proven to be difficult for the soldiers, and hence information essential for
the military mission is lost. The mission reports are supposedly particularly important
for urban combat environments [DARPA, 2004].

As a component of a future automatic report generator, it may useful to to augment
the absolute positions with a list of the buildings that have been visited by the soldiers. In
spite of the reasonable assumption of known bounding boxes of all buildings in the visited
area, it is not possible to reliably infer this information from GPS. A recording from the
DARPA evaluation mission in Aberdeen, Washington shows the reported GPS position
meandering outside and over neighboring buildings while the individual is actually resting
inside another building. Only by explicitly and jointly detecting the spatial context
indoors, outdoors or vehicle, the presence in buildings can be reliably inferred.
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1.3 Challenges of Activity Recognition

Parallel to the human cognition, an artificially intelligent activity recognition systems
consist of several layers, each with different tasks and challenges.

1. The first task is the design of the sensors, which should provide rich and meaningful
data, while being non-intrusive and inexpensive. In many cases one can resort
to standard integrated hardware. A notable exception to this are wearable RFID
readers like the iBracelet [Smith et al., 2005] which detect the RFID tags of grasped
objects.

2. The data collection is followed by a low level processing step called feature extrac-
tion. In this step the raw data is refined to make it more concise and so allows to
learn principled dependencies with hidden labels more easily. It involves general
data analysis and dimension reduction techniques — for example principal com-
ponent analysis or the Fourier transformation — and specifically designed feature
functions that extract higher level information that is known to be contained in
the raw data.

3. The model defines the scaffolding for the logic dependencies between features and
labels that can be learned. The design of the model has to take into account how
different label variables, for example low-level and high-level activities, depend on
each other which may yield complex hierarchies [Liao et al., 2004].

4. Closely related to the model is the choice or design of the learning algorithm and
inference mechanism. Real-world activity models are too complex as if they could
by created by hand. Therefore a machine learning algorithm is used to determine
the parameters of the model from examples, i. e. data recorded using the sensors and
low-level processing. Once the model is fully determined, an inference mechanism is
required to deduce the most likely activity or probabilities of activities. Especially
for online applications, like context-aware information systems, the efficiency of
that method is also important.

In the design of a solution all of these have to be considered, but in this work the
main contributions lie in the second and fourth layer of activity recognition.
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1.4 Contributions

The main focus of this work is on a recently published method for supervised learning of
relational data (cf. definition in section 3.2) called virtual evidence boosting [Liao et al.,
2007]. This method is suitable solution for the fourth task in an activity recognition
system but also widely applicable to many other problems. Furthermore, for recognizing
spatial context different sensors and features are evaluated in an empirical comparison.
In detail, the contributions are as follows:

• A complete and detailed re-derivation of virtual evidence boosting (VEB) for train-
ing conditional random fields is developed in chapter 5.4 which provides new insight
about the underlying optimization strategy of the algorithm. The derivation strictly
follows the ideas in the original publications [Liao, 2006, Liao et al., 2007] but due
to an error in their work yields an in parts different method (see section 5.4.6).
Interestingly, empirical comparison shows that Liao’s VEB still surpasses our ver-
sions VEB with neighborhood-based Newton steps and VEB with piecewise Newton
steps in the context of our activity recognition application (see section 6.3.2).

• VEB is based on the learning method LogitBoost by Friedman et al. [2000]. A
formal derivation for this method is given in chapter 4 providing the background
for the introduction to VEB. We also close a gap in the original proof, where the
optimality of the update steps remains vague (see section 4.2).

• The convenient notation of conditional random fields allows for a new informal
proof of the correctness of belief propagation in loop-free graphs. It avoids the
fuzzy concept of the “beliefs” [Yedidia et al., 2002] but bases the explanation on the
formula content of each message. Together with an introduction for readers who
are not yet familiar with the inference method belief propagation, the correctness
will be illustrated in section 5.3.

• Finally, we investigate the use of a web-cam in a wearable activity recognition
setup to recognize the spatial context categories ‘inside’, ‘outside’, and ‘on a bus’
(chapter 6). We evaluate color histogram, color-spatial moment, and steerable
pyramid image features and find color features or a combination of all features
to be most successful. The camera sensor is however outperformed by the multi-
sensor board [Lester et al., 2005], combining sensors for light, audio, temperature
and others. Still, the accuracy of label predictions can be improved by adding
camera features on our datasets which include traces recorded at night.
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Chapter 2

Related Work

In this section we discuss previous publications which are related to the topics of this
thesis. The first two sections present related learning methods, followed by three sections
on work related to the specific task of recognizing spatial context from camera data.

2.1 Boosting

Boosting algorithms have been hugely popular in recent years. Its key idea is to boost
the performance of a classifier by training and combining an ensemble of instances. The
first practical version was AdaBoost , published by Freund and Schapire [1997]. Its roots
lie in the probably approximately correct (PAC) learning theory which defines two types
of learning algorithms: a strong learning algorithm has to be able to classify all but a
small fraction of the samples correctly (with a given probability). However the class
of functions for which those strong learners provably exist is severely limited [Valiant,
1984]. A weak learner is only required to classify slightly better than random guessing
and hence exists for a much wider class of functions [Kearns et al., 1995]. Surprisingly,
given enough data, any weak learner can be boosted into a strong learner [Kearns and
Valiant, 1994]. Schapire [1990] provided the first polynomial time algorithm to do so,
and a simplified version, called Boost by Majority , was published by Freund [1995]. The
remaining limitation of the latter was however that each of the weak classifiers was
expected to yield the same performance, which is usually not true. AdaBoost combined
Boost by Majority with the Weighted Majority Algorithm by Littlestone and Warmuth
[1994], adaptively weighting each of the weak learners according to their performance
(hence the name Adaptive Boost ing). An important generalization to AdaBoost was
presented by Schapire and Singer [1999]. It allowed the weak learner to output a real-
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valued confidence level instead of discrete class labels.
AdaBoost yielded a surprisingly good generalization performance, but it was not well

understood why. Schapire et al. [1998] observed that AdaBoost often keeps decreasing
the generalization error even when the training error has already reached zero. The
driving force seemed to be to increase the classification margin. Also, they proved a
bound on the generalization error depending on the margin achieved over the test set.
Therefore they concluded that maximizing the margins is the key to a low generalization
error. Breiman [1999], however, showed that this is not entirely accurate: His explicit
max-margin algorithm named arc-gv (adaptive reweighting and combining – game value)
achieves uniformly higher margins, but has higher generalization errors. An important
step towards understanding AdaBoost was made, when it was described in terms of opti-
mization: it is a gradient descent method optimizing an exponential criterion [Friedman
et al., 2000, Frean and Downs, 1998]. This criterion can be seen as an approximation
for maximum likelihood, which is a common modeling criterion in the statistical commu-
nity, and explains in part the good performance of AdaBoost. Having found this insight,
Friedman, Hastie, and Tibshirani [2000] developed LogitBoost, which optimizes the data
likelihood directly (cf. section 4). The optimization view also allowed for a principled
comparison of the various flavors of boosting [Mason et al., 2000].

Boosting can also be applied to multiclass learning problems. The approach of simply
combining weak learners for multiple classes (AdaBoost.M1 by Freund and Schapire
[1997]) may not practical because the weak learners don’t necessarily achieve a correct
classification rate of 0.5 or better. More successful algorithms reduce the multiclass
problem into several binary problems by extending and transforming the training data
set (e. g. AdaBoost.MH , presented in [Schapire and Singer, 1999]) or by using multiple
predictors for one-vs-reference (AdaBoost.M2 [Freund and Schapire, 1997]) or one-vs-all
classification (LogitBoost (J classes) [Friedman et al., 2000], see section 4.4).

An extensive introduction to Boosting and its theoretic properties can be found in
Meir and Rätsch [2003].

2.2 Probabilistic Learning for Activity Recognition

Boosting is not the most suitable method for an activity recognition (AR) task because
it can only predict scalar labels and hence has to assume that the label sequence consists
of independent instances. Still, boosting has been used in some applications [Bao and
Intille, 2004], but other experiments show that the recognition accuracy can be improved
by exploiting dependencies [e. g. Lester et al., 2005, Subramanya et al., 2006].
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Therefore a learning method is required which finds a predictor for vectors of de-
pendent labels. The approach of probabilistic learning methods to this task is to learn
a probability distribution over inputs X and labels Y because this allows to infer the
most likely labels for a given input. Distributions over multiple random variables are
typically represented by graphical models, which factorize the distribution according to
a graph. Graphical models come in various flavors: as directed graphical models (i. e. the
edges are directed) like Bayesian networks [Korb and Nicholson, 2004, Pearl, 1988] or
as undirected graphical models like Markov random fields [Kindermann and Snell, 1980].
A particularly intuitive graph representation for undirected graphical models are the
so-called factor graphs [Kschischang et al., 2001] (cf. section 5.2), which therefore have
replaced the equivalent clique-based graphs in recent publications [e. g. Sutton and Mc-
Callum, 2006, Yedidia et al., 2005]. Many activity recognition tasks use graphical models
which are specialized versions of the two main flavors. Bayesian Networks for example
which consist of a connected sequence of time slices, i. e. copies of a set of variables rep-
resenting the state at a particular point in time, are called Dynamic Bayesian Networks
[Dean and Kanazawa, 1988]. Also, the well-known hidden Markov models (HMM) [e. g.
Rabiner, 1989] can be considered to be a special case of these where each time slice only
contains one hidden and one observed variable.

Graphical models can be trained to either represent a joint probability distribution
over the observations and hidden labels P(X,Y) (generative models) or a conditional
distribution P(Y |X) (discriminative models). The latter are particularly suitable for
classification problems because the values of the observed variables are always given
anyway and hence the model instance doesn’t need to contain any information about
the general distribution of these values. The learner can therefore make best use of the
available degrees of freedom to represent the conditional distribution we are interested
in [Minka, 2005]. Generative models on the other hand implicitly contain the marginal
distributions over all observations P(X), which can have very complex dependencies that
are intractable to represent correctly [Sutton and McCallum, 2006].

The conditional equivalent of Markov random fields are the so-called conditional
random fields (CRFs) [Lafferty et al., 2001]. Although CRFs have been originally used as
linear chains, they also generalize to arbitrary topologies. Especially if large datasets are
used, which is often the case in activity recognition (cf. section 6.2), training these CRF
is a challenging problem. The baseline approach is to maximize the likelihood with any
standard gradient descent optimization method (ML training) [Sutton and McCallum,
2006]. However the problem with that approach is that it requires to run inference for
every gradient evaluation, which can be very expensive even for approximate inference
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algorithms [Liao, 2006]. A possible solution to this is to use other optimization criteria
which allow for faster training. A classic approximation is maximum pseudo-likelihood
(MPL), [Besag, 1975] in which all neighbor variables are treated as observed and so no
inference is required. The same concept of learning small parts of the graph independently
can be applied to even smaller parts, namely a single edge rather than a full neighborhood
[Sutton and McCallum, 2005]. While still requiring inference, virtual evidence boosting
[Liao et al., 2007, Liao, 2006] approximates the optimization criterion so that the second
derivative can be computed and hence a very low number of iterations is required (see
also section 5.4).

A special requirement of activity recognition for the learning method is that it needs to
be able to handle continuous observations X and select relevant features from a possibly
very large feature set. Neither of these requirements is met by ML training of conditional
random fields. A workaround which has been used in AR applications is to train decision
stumps using boosting and then use the results as input to a graphical model for learning
label dependencies [Lester et al., 2005, Subramanya et al., 2006]. A more successful
solution is provided by virtual evidence boosting [Liao et al., 2007] which combines both
these steps in a unified manner (cf. section 5.4). A similar approach called boosted
random fields was developed for a vision task by Torralba et al. [2004]. This method
however makes several approximations which may not be valid in activity recognition
and is therefore generally surpassed by virtual evidence boosting [Liao et al., 2007].

2.3 Recognizing Spatial Context

There has been little previous work which specifically covered the activity recognition
task of recognizing spatial context from wearable camera. However there are many related
topics from activity recognition, ubiquitous computing, and image processing research
which cover parts of our task. This section presents solutions to recognizing spatial
context from various sensor systems and a notable related robotics application. The
following section 2.4 introduces work on localization and place recognition and discusses
a possible application to context recognition. Finally a survey of scene classification
approaches in section 2.5 provides features for the integration of image data into a context
recognition system.

The activity recognition task pursued in this work is based in part on the work of
Subramanya, Raj, Bilmes, and Fox [2006]. They estimate low-level activities, absolute
positions, and spatial context (indoor, outdoor, in a car) from multiple sensors, not
including a camera. Except for a global positioning system (GPS) receiver, all these
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sensors are united on a multi-sensor board, which had been previously used by Lester
et al. [2005]. Both approaches use the same features and boosted decision stumps to feed
into a hidden Markov model, respectively a complex dynamic Bayesian network. Liao
et al. [2007] showed that accuracies of the estimated activities and spatial context can
be improved by using virtual evidence boosting. Using the multi-sensor board and the
feature set designed for it will be one of the baseline approaches for the experiments in
chapter 6.

The second closely related work was published by Torralba, Murphy, Freeman, and
Rubin [2003]. From a helmet mounted web cam, they recognize 17 environment cate-
gories, including office, conference room, corridor, street, and plaza. The features are
based on the response to a steerable filter bank [Simoncelli and Freeman, 1995] averaged
over 16 image subblocks. For a forced classification, i. e. not allowing a don’t know classi-
fication if the model is undecided, they achieve a precision of 45%. They also report this
to be much better than color-based classification, although with a very primitive color
feature, at a correct classification rate not exceeding random guessing. The steerable
pyramid feature set will be the second baseline approach for for inferring spatial context
(see sections 6.1.2 and 6.3.1).

Motivated from robot mapping applications, Posner et al. [2006] developed an algo-
rithm for clustering the image series captured from a mobile robotic by their similarity.
The distance measure used is based on presence of visual words (cf. section 2.5). While
the clusters sometimes capture scene concepts, they are mostly specific to certain places
or dominant objects. However this unsupervised method could be interesting as part of
a learning approach with partial labels.

2.4 Localization and Place Labeling

There are two related fields of research concerned about other notions of location (cf.
section 1.1.3), which have attracted more attention in recent years. It may be possible
to apply solutions found in this areas to recognizing spatial context, however there are
several shortcomings.

Due to the unreliability of GPS in urban environments — GPS often fails inside
buildings or near tall buildings [LaMarca et al., 2005] — other systems have been devel-
oped to determine the absolute position of mobile devices. They use the existing GSM or
WiFi beacons to determine the location through triangulation and signal strength. The
solutions either require that beacon locations are known [LaMarca et al., 2005], or that
training data which includes the true locations is collected [Ferris et al., 2006, Cheng
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et al., 2005]. If a detailed map with individual buildings is available, the absolute po-
sition information may be used to infer the spatial context class ‘inside’. However, the
accuracy is critical, ruling out GSM-only based systems with a median error of 20–30 m
[LaMarca et al., 2005] and challenging GPS (see section 1.2). A spatial context category
like ‘in a vehicle’ can be very well be determined from position data, but a distinction
between bus and car for example is again very difficult [Liao et al., 2004].

A theoretic alternative for fine-grained spatial context recognition from absolute posi-
tion is using a systems which deploys dedicated beacons or sensors to enable localization
[Hightower and Borriello, 2001, Schulz et al., 2003b]. They provide excellent accuracies,
but installation cost make them unpractical for large scale applications.

Another field of active research is recognizing and automatic labeling of significant
places of users [Liao et al., 2005, Hightower et al., 2005]. Places are found by their
absolute positions or by the signature extracted from nearby wireless beacons and then
assigned the role it serves for the person carrying the mobile device. This label often bears
information about the spatial context class, for example a label at home would allow to
infer quite reliably that that place is inside. However, inferring the place meaning is the
harder problem. In fact, having spatial context labels could be a significant help for this
task.

2.5 Scene Classification

While cameras have been rarely used as worn sensors for activity recognition tasks, there
has been a lot of research in classifying the overall scene (as opposed to individual ob-
jects) depicted in images. This is often motivated by the insight that semantic categories
would allow significant improvements in image retrieval systems, which are search en-
gines for images. The number of classes distinguished range from two (inside/outside)
[Szummer and Picard, 1998] to 14 classes [Fei-Fei and Perona, 2005], including living
room, bedroom, kitchen, office, inside city, suburb, forest, and open country. These la-
bels precisely match the spatial context notion of location which we are interested in in
this work. Unlike here, however, the images are photographs of good quality and fairly
distinctive and representative (cf. section 6.2). Nevertheless scene classification research
has provided interesting approaches and a rich set of useful image features. These will be
examined after the presentation of those scene classification applications which include
the distinction indoor/outdoor.

For precisely this task Yiu [1996] uses a joint color histogram with bins generated by
clustering and a predominant texture direction feature [Gorkani and Picard, 1994]. With
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her best classifier she achieves an accuracy of 92% on a small set of images. Szummer
and Picard [1998] find that their results are improved by computing features for 16
subblocks of the image and hence capturing spatial and local information. With color
channel histograms from a rotated RGB space and MSAR texture features [Mao and Jain,
1992], they achieve a correct indoor/outdoor classification rate of 90.3%. For a hirarchical
classification approach, Vailaya et al. [2001] distinguish ‘indoor’, ‘outdoor’, and ‘close up’
images for a further subdivision into eleven classes. For the 3-class distinction layer, they
report an accuracy of 90.6% and find color moments on sub-images to be the most suitable
features (cf. section 6.1.4 (ii)). They also use a multitude of other features, including
color histograms, color coherence vectors, edge direction histograms, and texture filters.

Image features can be generally categorized into global features, e. g. histograms, and
local features like texture filters. Local features are specific to individual pixels, i. e. there
is one value for every pixel, and are therefore often averaged over parts of the image with
only the averages being used as feature values. Popular partitions include regular grids
of rectangles and the split into center and four corners [e. g. Stricker and Dimai, 1996].
Global features may also be made more location specific by computing feature values for
parts of the image. The following lists common global features and image filters.

Histograms. For a histogram, each pixel is mapped into a bin according to its color and
then the number of pixels in each bin is counted. The resulting vector is typically
normalized by dividing through the total number of pixels in the image. While
the bin setup is straightforward for grayscale images, there are multiple possible
generalizations for the use of color.

In a joint histogram each bin is simply a three-dimensional subset of the 3D color
space (e. g. [Swain and Ballard, 1991]). A common approach is to split each color
axis into N ranges, which results in N3 bins. Therefore a distinctive partition may
consist of a very large number of bins. As a remedy, a non-uniform segmentation in
the HSV color space [Smith, 1987] has been proposed [Lei et al., 1999] (see also sec-
tion 6.1.3). Another approach to this problem is to generate the bins automatically
by a clustering method. Although this may yield bins focusing on the significant
areas of the color space, it is questionable if this can be achieved with k-means
clustering, the approach pursued in [Yiu, 1996, Vailaya et al., 2001].

Alternatively, histograms of color images can be created by simply concatenating
several 1D histogram. The standard approach for this is to create one histogram
per color channel [Szummer and Picard, 1998]. This makes the choice of color space
very important because information is lost through the projections. Szummer and
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Picard [1998] propose the use of the Ohta color space [Ohta et al., 1980] which
rotates the RGB space so that the axes approximately match the directions of the
largest eigenvectors of the distribution of colors in natural images. Sural et al. [2002]
separate pixels into hue dominance (saturated colors) and intensity dominance
(unsaturated colors and grayscales) and create a 1D histogram for each subset.

Color coherence vectors are an extension of color histograms. The feature has been
proposed by Pass et al. [1996] in order to capture some local context within a
histogram. A pixel is defined coherent if it is part of a connected region of simi-
larly colored pixels. A separate color histogram is produced for coherent and non-
coherent pixels. This concept can be further generalized by adding local properties
as new dimensions to the color space [Pass and Zabih, 1999].

Edge direction histograms are one-dimensional histograms counting the frequency
of edge orientations [Tamura et al., 1978]. The edges can be detected with any
standard edge detection algorithm, for example a Canny edge detector. In or-
der to detect straight edges, supposedly specific to man-made environments, local
coherence information was included by Vailaya et al. [1998].

Dominant directions. Picard and Gorkani [1994] combines the results from steerable
filters at different scales to extract one or more dominant directions in the im-
age. The feature value consists of one or more edge directions with the respective
strength. This is a more compact representation than a full histogram and hence is
suitable for repeated computation over sub-images [Yiu, 1996]. Optimizations for
natural scenes are proposed in [Gorkani and Picard, 1994].

Color-spatial moments. Stricker and Orengo [1995] introduce the idea to approxi-
mately capture the distribution of colors in the image by the distribution’s central
moments. The moments are computed separately for every color channel, which
is equivalent to a diagonal approximation for the 2nd and higher order moments.
Aiming to also capture the spatial distribution of colors in the image, Stricker and
Dimai [1996] divide the image into parts and compute the color moments for each
of them (cf. section 6.1.4 (ii)). The inverse approach is pursued by Lei et al. [1999]:
They discretize the colors with a histogram and then compute the moments of the
pixel position distribution for each histogram bins (cf. section 6.1.4 (i)). We empir-
ically compare these types of color-spatial moment features and present the results
in section 6.3.1.
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Texture features. Textures are regular patterns of grayscale values. In order to seg-
ment images composed of several textures, many different statistical, geometrical,
structural, model-based and signal-processing features have been developed (sur-
veys and comparative studies can be found in [Gool et al., 1985, Reed and du Buf,
1993, Randen and Husøy, 1999, Singh and Singh, 2002]). Texture features have
also been successfully used in the natural scene classification context. Popular
choices include steerable pyramid filters which detect edges at different scales and
orientations [Simoncelli and Freeman, 1995] (see also section 6.1.2) and multires-
olution simultaneous autoregressive models (MSAR) [Mao and Jain, 1992], where
the feature value is the difference to a model generated from neighboring pixels.

Very interesting recent approaches in scene classification use new statistical techniques
from text modeling, namely probabilistic latent semantic analysis (pLSA) [Hofmann,
1999] and latent Dirichlet allocation (LDA) [Blei et al., 2003]. The equivalent of words
in images are the so-called textons or visual words, which are clusters of local feature
vectors automatically created by K-means clustering [Leung and Malik, 1999, Sivic and
Zisserman, 2003]. In modern approaches the clustering is based on local descriptors
like SIFT (Scale Invariant Feature Transform) [Lowe, 1999, 2004] or similar approaches
[Mikolajczyk and Schmid, 2005, Bay et al., 2006]. The number of textons can be either
fixed if they are computed on a fixed grid or variable by using a detector for salient
regions [Kadir and Brady, 2001, Lowe, 1999, Mikolajczyk et al., 2005]. The statistical
model then describes the images as a mixture of aspects, which in turn are multinomial
distributions of textons.

pLSA or LDA can be used to automatically extract these aspects. The resulting
aspect distributions for each image can be used as input for a classification algorithm
[Quelhas et al., 2005]. In this case pLSA or LDA act as a statistical clustering method
and is used with the aim to automatically extract meaningful concepts like sky, rocks,
foliage, etc. which had to be labeled by hand in other approaches [Oliva and Torralba,
2001, Vogel and Schiele, 2004]. Quelhas et al. [2005] successfully classifies 92.2% of
indoor/outdoor images and further states that the result only deteriorates to 88.6% if a
mere 2.5% of the training images are labeled.

LDA can also be used to create a full generative image model, which is the probability
distribution of textons for any image from a set of images. By learning a LDA model
for each scene category, Fei-Fei and Perona [2005] classify new images by choosing the
category which best explains images’ distributions of textons and achieve a respectable
accuracy of 65% for a joint classification of 14 (!) classes. (Some of these classes were
listed a the top of this section.)
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Chapter 3

Foundations

This chapter will introduce the notational concepts used throughout this thesis, in par-
ticular in the derivations of the probabilistic learning methods LogitBoost and virtual
evidence boosting. The second section formally defines the task which is solved by both
methods, a supervised learning problem.

3.1 Notation

Most of the notation follows the common convention, with the exception of the square
bracket index alternative and subscripts in angle brackets. Still further definitions of
mathematical operators and concepts are also given here to avoid misunderstandings.
The meaning of variables and indices as well as further special purpose symbols are
defined near their first uses.

Vectors are distinguished from scalar values by boldface, for example y. Vector entries
are identified by a subscript which identifies the element, i. e. yt is the t-th element
of label vector y.

Indexing. In line with the vector entry definition, we will use subscripts to index the
elements of a compound structure, or the other way around omit a subscript to
denote the compound of all indexed entities. So x stands for the “vector” of all
observation vectors xt and FA,j for a particular one of the model functions F .
Where the multiple indexing is necessary or the subscript is already used for other
purposes (which are unambiguously identifiable as such), some indices may be
placed in square brackets behind the symbol. Belief propagation messages mA→1

for example are vectors, so to select the j-th entry of that vector, we write mA→1[j].
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Selecting multiple vector elements. A subscript in angle brackets like y〈A〉 describes
the vector of all entries of y which correspond to the elements of the set A. These
are those entries with matching indices, and in few cases also the symbols have to
correspond. For example if A = {Yt, Yt−1,Xt}, then y〈A〉 stands for (yt yt−1)T , or
F〈Ψ〉 is the vector with an entry FB for every ψB ∈ Ψ. While this non-standard
notation may seem a little fuzzy, it is still very powerful and should become clear
in the application. Note however that the factors ψ are indexed by sets, e. g.
ψ{Yt,Yt−1}, which simply identifies them and is not an instance of the angle bracket
subscript notation.

Sums and products have two standard ways of specifying their ranges: through lower
and upper bounds

∑J
j=1 or set membership expressions

∑
ψ∈Ψ. We also use a third

notation which only gives a variable like
∑

y and denotes the sum over all values of
y. The domain of the variables, which would for the instantiation y be the domain
‘dom(Y)’ of the vector of random variables Y, becomes clear in the context.

Stochastic notation. As indicated in the previous example, we use uppercase roman
letters for random variables and the respective lowercase letter for instantiations.
Conditional probabilities are written as P(Y = y |X=x) and the random variable
may be omitted where the result is unique as in the case of P(y |x). Learning al-
gorithms often represent conditional probabilities using function parameterization.
To make the parameter explicit, it may be added on the conditional side, separated
by a semicolon, e. g. P(y |x;F ).

Other functions and symbols The indicator function or Boolean function 1〈j=k〉 is
equal to one if and only if its argument (again in angle brackets) is true, and zero
otherwise. A pair of vertical lines can both denote the set size |A| or the absolute
value |f |. A single, long vertical line at the end of a term like α[yt]

∣∣
yt=j

denotes a
parameter substitution, i. e. the example term is equivalent to α[j]. This is often
used in the context of parameter updates, e. g.

∂ `(F + f)
∂f

∣∣∣
f≡0

sets the function f to constant zero in the derivative.
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3.2 Supervised Learning Problems

Both probabilistic methods that will be illustrated in this work are algorithms for su-
pervised learning problems, and most activity recognition tasks are set up as problems
from this class. It begins with some kind of information y that we would like to know
in a computer system, like the activity performed by an individual carrying a mobile
device. However this information cannot be measured directly but only some other data
which is correlated with the hidden information. This data is called the observations,
feature values, or simply input values and denoted by the letter x. We would like to find
a prediction function H(x) which can predict the correct label y given the observations
x. So to learn this function, a learning algorithm is presented with examples pairs of
observations x(s) and the respective correct or true labels y(s).

(a) (b) (c)

Figure 3.1: (a) A sample set with input data x ∈ R2 and binary labels. The points
could be samples of the distribution (b), but they have actually been generated with the
distribution (c). The shade shows P(y |x), P(x) is not shown.

We obviously want the prediction function to not only return the labels for those
observations that were part of the examples but also for other previously unseen ob-
servations. This is possible to a certain extend because there is some kind of pattern
behind the observations and the labels. In statistics, these patterns are described by
a distribution P(x, y), which gives the probability for any combinations of observations
and labels. The exact distribution is usually not known and the only clues we have about
it are samples from the distribution (see figure 3.1). Therefore the challenge in learning
lies in the generalization: to find an accurate label prediction function for data from the
underlying distribution, only given a limited set of samples.

In general, the labels may be discrete or continuous values. However, in this work we
only consider problems with discrete class labels from a finite domain. These are often
referred to as classification problems (as opposed to function approximation problems). In
the most basic case, the learner only has to distinguish two classes (binary classification,
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cf. algorithm 4.1), and if there are more than two classes, the setup is called a multiclass
problem (cf. algorithm 4.2). More generally, it is possible to consider problems where one
has to predict a vector of labels y instead of a single label y, called a relational learning
problem. These problems are harder to solve, because the learning algorithm not only
needs to learn the dependency to the input x but also the dependencies between the
components of the label vector y themselves (see also section 5.1 and algorithm 5.1).
Relational learning is not to be confused with multi-label problems, where each input
value may be labeled with a subset of a set of (scalar) labels {1, . . . , J} [cf. Schapire and
Singer, 1999]. Here, the labels will always be mutually exclusive.

Mathematically, the problem can be defined as follows:

Definition 3.1. Let P (x,y) be the joint probability distribution of the (interdependent)
random vectors X and Y. Given a set of samples

{
(x(s),y(s))

∣∣ 1 ≤ s ≤ S
}

from that
distribution, the task in a supervised learning problem is to find a prediction function
H : dom(X) 7→ dom(Y) minimizing the generalization error

E
[
floss(H(X),Y)

]
(3.1)

with respect to some loss function floss.

Remark 3.2. In classification problems, there is a straightforward loss function: either
a label is correct or it isn’t. It is possible to use other functions when some labels
are considered more similar than others and hence confusing labels may imply variable
loss values. However the 0/1 misclassification loss is most common and shall also be
used here. In relational learning, this loss function translates to the rate of incorrectly
predicted labels in the label vector

floss(y,y′) =
1
T

T∑
t=1

1〈yt=y′t〉 . (3.2)

So the aim of the learning algorithm is to minimize the overall rate of incorrect labels.
Especially for the presentation of test results, it is also common to refer to the inverse
measure 1−E

[
floss(H(X),Y)

]
, called the correct classification rate or simply accuracy .

Remark 3.3. The probability distribution P (x,y) is usually unknown. It is often governed
by a complex, real-world process, which would be hard to capture exactly. However it is
sufficient to have a set of samples from that distribution. In activity recognition tasks,
these samples can be generated by naturally performing the activities we are interested
in, recording the observations, and manually labeling them with the true labels. The
labeled data is then partitioned into a training set and a test set , and only the training
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(a) (b) (c)

Figure 3.2: The samples from the actual distribution in figure 3.1c could also also have
been the result of sampling from the non-smooth distribution in (a). The prediction
function (b) which exactly matches the training set performs worse on new samples than
the optimal predictor (c).

set is provided to the learning algorithm to find the prediction function H(x). The
quality of that function can then be assessed through the empirical expectation over the
test set Stest

E
[
floss(H(X),Y)

]
≈ 1
|Stest|

∑
(x,y)∈Stest

floss(H(x),y). (3.3)

In order to reduce the effects caused by randomness in observations and labels, learn-
ing is repeated for different partitions and the resulting accuracy rates are averaged. In
the common leave-one-out or (n-fold) cross-validation strategy, the data is split into n
distinct sets, using any n− 1 sets for training and the remaining set for testing.

Remark 3.4. Note that the probability distribution ranges over both the observations
and the true labels. Hence the labels Y may not be determined given the observations
X but there may be different labels possible for the same value of X (cf. the gray area in
figure 3.1c). This is indeed the case in many real-world applications, where for example
a certain sensor measurement may be caused by different activities. One consequence of
this is that there is no “perfect” prediction function H(x) which would yield an expected
loss of zero.

More important is however that non-deterministic labels make the classification prob-
lem harder. This is because it is generally impossible to tell how smooth a distribution is,
given only samples from that distribution. Many learning algorithms implicitly assume
deterministic labels, i. e. conditional probabilities either zero or one like in figure 3.2a,
and therefore are prone to overfitting . In that case, the prediction function accounts too
much for the randomness in the training set, which decreases performance on the test
set or any newly generated samples from the underlying distribution (see figure 3.2 b–c).
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Chapter 4

LogitBoost

LogitBoost is a probabilistic learning algorithm for supervised learning by Friedman,
Hastie, and Tibshirani [2000]. Its optimization strategy is the basis of virtual evidence
boosting (VEB) and hence knowledge about LogitBoost is required to fully understand
VEB. This chapter aims to provide a sound understanding of LogitBoost but also an
introduction for readers who are not yet familiar with the method. We redo the formal
derivation of LogitBoost and particularly focus on details which are hard to understand
or even incomplete in the original paper [Friedman et al., 2000].

LogitBoost or other versions of boosting (cf. section 2.1) may be chosen as learning
methods for an activity recognition task. Boosting is however limited in that it can
always only predict scalar labels. In activity recognition we generally want to estimate
temporal sequence of activity labels, so with boosting these would have to be estimated
independently, i. e. by using only one input vector from a particular time slice to predict
one label. Graphical models like conditional random fields (CRFs) on the other hand
take all inputs and estimates the entire sequence at once. Therefore they can exploit
dependencies between the labels like for example the fact that successive labels are often
the same. We will revisit this issue in section 5.1 in the context of the introduction of
VEB, a method for training these CRFs.

4.1 Fitting an Additive Model for Maximum Likelihood

In this section we will introduce the model maintained by LogitBoost and the optimiza-
tion criterion for instantiating this model. The model can be thought of as the internal
data structure to represent the prediction function H(x) and in the case of probabilistic
methods is usually a probability distribution or density function. LogitBoost models the
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Input: the training data set
{
(x(s), y(s))

∣∣ 1 ≤ s ≤ S}; a function approximator
for weighted least squares fitting; the number of boosting rounds M

Output: the classification function H(x) predicting the labels y ∈ {0, 1}

initialize the model function F ≡ 01

for m = 1 to M do2

foreach sample index s ∈ {1, . . . , S} do3

for the input vector x(s) compute the modeled probability for y = 1, the4

so-called working response, and the weight:

p(s) =
eF (x(s))

eF (x(s)) + e−F (x(s))

z(s) =
y(s) − p(x(s))

p(x(s))(1− p(x(s)))

w(s) = p(x(s))(1− p(x(s)))

end5

use the function approximator to fit the function fm(x) to (x(s), z(s)) by6

weighted least squares with weights w(s)

update the model F ← F + 1
2fm7

end8

output the classifier9

H(x) =

1 if F (x) > 0 (or equivalently
∑m

m=1 fm(x) > 0)

0 otherwise

Algorithm 4.1: LogitBoost (2 classes)
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conditional probability for the category labels given the input P(Y = j |X=x). In this
section and the following we will present LogitBoost for binary classification problems
(algorithm 4.1), i. e. with only two possible classes j = 0 and j = 1, before generalizing
the algorithm for multiclass problems in section 4.4.

The input for the LogitBoost algorithm is a set of pairs of inputs x and the correspond-
ing true label y. It is assumed that these pairs are instantiations of the random variables
X and Y (cf. section 3.2) and that there exists some (usually unknown) conditional prob-
ability distribution P(Y |X). LogitBoost aims to approximate this distribution because
if it was known the optimal prediction function would be straightforward:

H(x) =

1 if P(Y = 1 |x) > 0.5

0 otherwise.
(4.1)

Without loss of generalization only the probability P(Y = 1 |x) needs to be represented,
which is a function of x with values in [0, 1]. LogitBoost finds this function, which we
call the model function, through an optimization process. This is an unusual application
of optimization because the optimization variable is a function instead of just a scalar
or vector. Since probabilities are restricted to values in [0, 1], the model function should
also meet this restriction. This would however make the optimization much harder since
it introduces a constraint to the otherwise unconstrained optimization. To avoid this
difficulty, the conditional probabilities are mapped to R and result is represented by the
model function F instead. A convenient map is the monotone logit transformation which
yields the following target:

F (x) ≈ 1
2

log
P(Y = 1 |x)
P(Y = 0 |x)

. (4.2)

Given the model function, the probabilities can be easily recovered:

P(Y = 1 |x) ≈ eF (x)

eF (x) + e−F (x)

def= P(Y = 1 |x;F ). (4.3)

The conditional probability with the model function F as extra argument on the con-
ditional side stands for the conditional probability which is modeled — or equivalently:
represented — by the algorithm.1 The prediction function is based on the modeled
probability and set to 1 if and only if P(Y = 1 |x;F ) > 0.5, or equivalently F (x) > 0

With x being a vector with real-valued entries, it is not possible to computationally
1In the following the model function may be omitted for brevity because we will — unless explicitly

stated otherwise — always be talking about modeled probabilities.
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represent all functions F : dom(x) 7→ R. It is necessary to choose a family of functions
which can be parameterized with a finite number of parameters. In LogitBoost F is
allowed to be a finite sum of some simple base functions fm which each only require
a few parameters. With equation (4.3) the parameterization of F implies a family of
probability distributions that can be represented by LogitBoost. In the probabilistic
learning literature, the term model is used to denote this family of distributions (as in
“graphical model”) but also sometimes stands for the single distribution instance found
by a learning method (as in “to fit a model”). We attempt to make it clear if we refer to
instance by using the expression “model function”, but some ambiguity can’t be avoided.
Friedman et al. [2000] for example coined the expression “LogitBoost fits an additive
logistic model,” which summarizes that the method finds a model function taking the
form F (x) =

∑M
m=1 fm(x) to approximate the logistic transformation of the probabilities.

The model function is determined in a forward stepwise manner. In each iteration
of the algorithm, a new function fm is chosen from a set of base function and added
to the model to improve the optimization criterion (see following paragraph). Each of
the updates is done in a greedy fashion: once added a function will never be revised
or removed. The base functions are all those functions that can be represented by a
particular function approximator . Popular choices include decision trees, neural nets,
and kernel functions [Meir and Rätsch, 2003, chapter 8], and even with the most basic
function approximator, a step function

fstep(x) =

a if xc < t,

b if xc ≥ t,
(4.4)

very good results can be achieved [Friedman et al., 2000, chapter 7]. Step functions are
commonly referred to as decision stumps because they are equivalent to decision trees
with only a single level. Note that it is assumed that for any base function f the function
approximator can equally represent scaled versions α · f of that function. Therefore the
restriction of F to be a simple sum instead of a weighted sum does not affect the model,
i. e. the family of distributions that can be represented.

The criterion maximized by LogitBoost is the log-likelihood . (For the distinction
of other criteria that contain the word “likelihood”, the term as defined here shall also
be referred to as data likelihood .) It is defined as the natural logarithm of the joint
conditional probability of the true labels y(s) of all samples in the training set given all
input values x(s):

log P(y(1) . . . , y(S) |x(1), . . . ,x(S);F ). (4.5)
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This conditional probability depends on the current model function F . In fact, with
the training set being fixed, this value only depends on the model function and shall be
written in short as `(F ). Since we assume that sample pairs (x(s), y(s)) are independently
generated (cf. definition 3.1), the log-likelihood computes as

`(F ) def=
S∑
s=1

log P(Y = y(s) |x(s);F ) (4.6)

The logarithm in the optimization criterion is taken to simplify the computations. This is
permissible because log is a strictly monotone function, and hence the (local and global)
maxima of the likelihood and the log-likelihood coincide.

While this optimization criterion can’t guarantee that the modeled conditional prob-
ability will accurately match the unknown true probability if the number of samples finite
(cf. figure 3.1), we at least know that a maximum likelihood estimator makes best use of
the information it is given if the number of samples reaches infinity (it is asymptotically
efficient) [Kay, 1993]. In this case the likelihood is maximized if the model function is
equals the true conditional probability [Friedman et al., 2000], i. e.

P(Y = 1 |x;F ) = P(Y = 1 |x) (4.7)

for all x. We will discuss practical implications of the criterion is section 4.3.

4.2 Optimizing the Likelihood with Newton’s Method

In this section we will show that LogitBoost maximizes the data likelihood by an optimal
approximations to Newton steps. Newton’s method for optimization is a well-known and
(under certain conditions) quickly converging gradient descent method. Here however
we are optimizing over functions f : dom(X) 7→ R which causes the difficulty that
the Newton update is generally impossible to represent. Recall that in each iteration,
LogitBoost adds a single base function f and the difficult question is how to choose
f if none of the available functions exactly matches the Newton step. Friedman et al.
[2000] derive a weighted least square approximation, however the optimality of that
approximation remains vague.

This issue can overcome by basing our derivation on a different view on Newton’s
method: The update steps are equivalent to analytically finding the optimum with respect
to the 2nd order Taylor polynomial of the target function. This means that even if the
optimum can’t be resented, it is now possible to tell which base function would yield
the best update. It can be shown that each LogitBoost update maximizes the Taylor
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approximation of the likelihood.

Theorem 4.1. In each iteration LogitBoost augments its additive logistic model by the
base function that maximizes the 2nd order Taylor polynomial of the data likelihood.

Before proving this we introduce the following notation:

Definition 4.2. Let
{
(x(s), y(s))

∣∣ 1 ≤ s ≤ S
}

be a set of instantiations of the random
variables (X, Y ) (cf. definition 3.1). Then the empirical expectation Ê over X and Y is
defined as

Ê
[
g(X, Y )

]
=

1
S

S∑
s=1

g(x(s), y(s)).

Given the weights w : dom(X)× dom(Y ) 7→ R, the weighted empirical expectation Êw is
defined as

Êw
[
g(X, Y )

]
= Ê

[
w(X, Y ) g(X, Y )

]
=

1
S

S∑
s=1

w(x(s), y(s)) g(x(s), y(s))

Proof of theorem 4.1. LogitBoost represents the probability P(Y = 1 |X=x;F ) by

p(x) def=
eF (x)

eF (x) + e−F (x)
. (4.8)

Since the random variable Y can only take values y ∈ {0, 1}, the conditional probability
P(Y = y |X=x;F ) can be written as y p(x)+(1−y)(1−p(x)). This yields the following
form for the data likelihood (4.6):

`(F ) = S · Ê
[
log P(Y |X, F )

]
= S · Ê

[
Y log

(
p(X)

)
+ (1− Y ) log

(
1− p(X)

)]
= S · Ê

[
Y F (X) + (1− Y )(−F (X))− log

(
eF (X) + e−F (X)

)]
= S · Ê

[
2Y F (X)− log

(
1 + e2F (X)

)]
(4.9)

Since the sample set size S is constant, it is irrelevant for maximizing the data likelihood
and will be dropped in the following equations.

In the update step a base function f is added to the current model F , resulting in
the data likelihood `(F + f). Given the derivatives

∂ log P(y |x, F + f)
∂f(x)

∣∣∣
f≡0

= 2y − 2
e2(F (x)+f(x))

1 + e2(F (x)+f(x))

∣∣∣
f≡0

= 2(y − p(x))

∂2 log P(y |x, F + f)
∂2f(x)

∣∣∣
f≡0

= −4
e2(F (x)+f(x))

(1 + e2(F (x)+f(x)))2

∣∣∣
f≡0

= −4p(x)(1− p(x)),
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the new likelihood `(F +f) can be approximated by Taylor expansion around the current
working point F + 0 or f ≡ 0:

`(F + f) ≈ Ê
[
log P(Y |X, F ) + f(X) · 2 (Y − p(X))− f(X)2 · 2 p(X)(1− p(X))

]
= Ê

[
log P(Y |X, F )

]
− 2 Êw

[
f(X)2 − Y − p(X)

p(X)(1− p(X))
f(X)

]
,

with weights w(x, y) = p(x)(1− p(x)).
The aim is now to find the base function f that maximizes this expression. It can be

easily verified that the approximate data likelihood reaches its maximum if and only if
the following is minimized:2

Êw
[
f(X)2 − Y − p(X)

p(X)(1− p(X))
f(X) + 1

4

( Y − p(X)

p(X)(1− p(X))

)2]
= Êw

[(
f(X)− 1

2
Y − p(X)

p(X)(1− p(X))

)2]
.

(4.10)

The function approximator called in every iteration of LogitBoost fits the base func-
tion f(x) to

(
x(s), 1

2
y(s)−p(x(s))

p(x(s))(1−p(x(s)))

)
by weighted least-squares using the weights as de-

fined above. Therefore f minimizes expression (4.10) and the update has the claimed
optimality.

Note that in algorithm 4.1 the factor 1
2 is multiplied after fitting f , which yields the

same updates as in the proof. This is done to emphasize the similarity to the multiclass
version of LogitBoost (algorithm 4.2).

4.3 Discussion and Evaluation

From a theoretic point of view, LogitBoost has very promising properties. It applies
a fast converging optimization method — a best effort approximation of the Newton
method — to the statistically sound optimization criterion maximum likelihood. Also the
chosen parameterization, an additive logistic regression model, is popular in the statistics
community [Friedman et al., 2000, Hastie and Tibshirani, 1990]. This is supported by
very good experimental results on real-world and simulated data, equivalent or surpassing
that of AdaBoost [Friedman et al., 2000].

However, for a theoretic evaluation one also needs to consider the following two
issues. LogitBoost may be unstable like any method based on Newton updates. In that
case GentleBoost also proposed by Friedman et al. [2000] may be more appropriate. It

2We can add and remove terms that don’t depend on f . For example p(x) only depends on the
current model function F (x) but not the additive update f(x).
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optimizes an approximation of the data likelihood and so yields bounded updates.
Secondly, LogitBoost doesn’t perform any explicit regularization, which would mean

adding a penalizing term for unlikely models to the optimization criterion. Unless the
sample set contains samples with matching input x(s) and different labels y(s), the high-
est data likelihood could be achieved by setting the modeled conditional probability
P(Y |X;F ) to either 0 or 1 to exactly match every sample (cf. figure 3.2a). Usually we
know that these non-smooth distributions are less likely than smoother ones, but Logit-
Boost (like most other boosting versions) would still aim for the non-smooth distribution.
Still, it depends on the base functions if complex distributions can be represented, so some
regularization is also achieved with an appropriate choice base functions (e. g. not too
expressive ones). Nevertheless, LogitBoost may overfit, although it was like AdaBoost
thought to be resistant to overfitting [Mease and Wyner, 2005]. This issue especially
occurs if the data is noisy , i. e. if there are ranges of X where the true conditional prob-
ability P(Y = y |X) is neither close to zero or one (cf. figure 3.1c). This problem can be
explicitly addressed by a different choice of optimization criterion [Mason et al., 2000,
Meir and Rätsch, 2003].

4.4 LogitBoost for Multiclass Problems

In this section it is shown how LogitBoost can be generalized to multiclass problems. The
task is hence to find a prediction function which can predict the correct label from the
set {1, . . . , J} instead of just binary labels. The idea is again to model the probabilities
P(Y = j |x) for each class and then simply predict the most likely label for the given
input x. The key difference is that we need more than one model function to represent
all class probabilities. Since the probabilities have to sum to one, J − 1 model functions
would be sufficient, but for reasons which will be discussed in remark 4.6, each class j
gets its own model function Fj . The algorithm we are describing in this section is listed
as algorithm 4.2.

For the same reasons as before, i. e. to simplify the optimization process, the model
function should be allowed to take any real values. Therefore, each class probability is
mapped to R and that value is represented by Fj(x). The mapping used is a symmetric
generalization of the two-class logistic transformation. It is defined as follows:
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Input: the training data set
{
(x(s), y(s))

∣∣ 1 ≤ s ≤ S}; a function approximator
for weighted least squares fitting; the number of boosting rounds M

Output: the classification function H(x) predicting the labels y ∈ {0, . . . , J}

initialize the model functions Fj ≡ 01

for m = 1 to M do2

foreach class label j ∈ {1, . . . , J} do3

foreach sample index s ∈ {1, . . . , S} do4

for the input vector x(s), compute the modeled probability for y = j,5

the respective working response and weight:

pj(x(s)) =
eFj(x

(s))∑J
k=1 e

Fk(x(s))

z
(s)
j =

1〈y(s)=j〉 − pj(x(s))

pj(x(s))(1− pj(x(s)))

w
(s)
j = pj(x(s))(1− pj(x(s)))

end6

use the function approximator to fit the function fm,j(x) to (x(s), z
(s)
j ) by7

weighted least squares with weights w(s)
j

end8

foreach class label j ∈ {1, . . . , J} do9

compute normalized updates f ′m,j(x) = J−1
J

(
fm,j(x)− 1

J

∑J
k=1 fm,k(x)

)
10

update the model function Fj ← Fj + f ′m,j11

end12

end13

output the prediction function H(x) = arg maxj Fj(x)14

Algorithm 4.2: LogitBoost (J classes)
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Definition 4.3. Let pj(x) abbreviate the probabilities P(Y = j |x). Then the symmetric
multiple logistic transformation is defined as

Fj(x) = log
pj(x)

J
√∏J

k=1 pk(x)
(4.11a)

= log pj(x)− 1
J

J∑
k=1

log pk(x). (4.11b)

This is equivalent to

pj(x) =
eFj(x)∑J
k=1 e

Fk(x)
,

J∑
k=1

Fk(x) = 0. (4.12)

Remark 4.4. The equivalence of the two definitions can be easily shown by substituting
all occurrences of F in (4.12) by equation (4.11a) and by substituting p in (4.11b) by
the definition in (4.12). The sum constraint in (4.12) is needed to ensure that the
parameterization is unique because the probabilities pj(x) would not change if a constant
was added to all Fk(x). In theory the sum may be fixed to any constant value, but the
choice of zero is entailed by the definition (4.12) which always produces a zero-centered
set of model functions.

The alternative to the parameterization defined above is the standard multiple logistic
transformation, which applies the idea of only using J − 1 model functions. Since that
parameterization is required as intermediate representation for the proof of multiclass
LogitBoost, it is also introduced here.

Definition 4.5. In the standard multiple logistic transformation, the label probabilities
pj(x) are represented by the model functions

Gj(x) = log
pj(x)
p1(x)

= log pj(x)− log p1(x). (4.13)

An equivalent definition is

pj(x) =
eGj(x)∑J
k=1 e

Gk(x)
, G1(x) = 0. (4.14)

Remark 4.6. The base class, here class 1, can be arbitrarily chosen. This is the disad-
vantage of this parameterization because it is often observed that the choice of base class
affects the classification performance. Since the probability p1(x) does not have it’s own
(nontrivial) model function component G1(x), the optimization of the learning algorithm
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can’t focus on getting p1(x) right but that probability is only affected by the updates to
the other components. Unless there is a special default class like ‘no label’, this effect is
not desired.

Descriptively, the symmetric and standard multiple logistic transformations differ
in what each of the model components Fj or Gj represents. For the standard trans-
formation they can be interpreted as the confidence for label j versus the base class
(one-vs-reference parameterization). The symmetric transformation on the other hand
represents the confidence for a class versus all other classes (one-vs-all parameterization).

As before, each of the model functions Fj is additive, i. e. it is built from sequentially
adding base functions fm,j(x). This makes the optimization of the likelihood a bit tricky
since the symmetric parameterization imposes the centering constraint (4.12) on the
model functions. One way to deal with this would be to ignore the constraint during
the update and just re-center the models afterwards. However it turns out that this way
the computed steps are too large by J

J−1 , and hence if that approach was applied to the
two-class case, the effective update would be twice the optimal update.

So the solution chosen by Friedman et al. [2000] is to shift the parameterization to
the standard multiple logistic transformation, update those model functions, and convert
the result back to the symmetric parameterization. In order to eliminate effects of the
choice of base class (cf. remark 4.6), the updates are computed with each possible base
class and the average is applied. Effectively, this only yields the factor J−1

J and hence
means no extra computational cost. Still, this is a key idea for the derivation of the
multiclass version of LogitBoost.

The data likelihood is again optimized by Newton steps. However instead of a scalar
function F (x), the optimization variable is the vector of functions (Fj(x))j=2...J . Since
the inversion of the Hessian matrix, a (J−1)-dimensional matrix of functions of x, is
generally not possible, full Newton stepping is not an option. Instead, the 2nd derivative
is approximated by a diagonal matrix, resulting in a quasi-Newton update. The following
theorem summarizes the characteristics and optimality of the update step.

Theorem 4.7. In each iteration LogitBoost (J classes) augments its model by an average
of quasi-Newton steps maximizing the data likelihood. The steps are computed w. r. t. the
standard multiple logistic transformation of the label probabilities for each possible base
class. Where the update can’t be represented by the base functions, the best approximation
in terms of quasi-Newton steps is chosen.

Proof. With the definitions above (equations 4.11 and 4.13), it is evident that

Gj(x) = Fj(x)− F1(x) (4.15)
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defines the standard multiple logistic model of the probabilities pj(x) with base class 1.
Rewriting the modeled probabilities P(Y |X, G), the data likelihood is given by

`(G) = Ê
[
log P(Y |X, G)

]
= Ê

[ J∑
j=1

1〈Y=j〉Gj(X)− log
J∑
j=1

eGj(X)
] (4.16)

A generic update adds the functions g2, . . . , gJ to the respective model functions
resulting in the new model G+ g. Note that in compliance with (4.14) there there is no
update for the base class model function G1, i. e. g1 ≡ 0.

Similar to the two-class case, these functions are determined by finding the maximum
of the 2nd order Taylor approximation of the data likelihood around the current model
G + 0. Since the update is quasi-Newton, i. e. the Hessian matrix is approximated, the
same approximation is used in the Taylor polynomial. Here that amounts to Hessian
matrix with all off-diagonal elements set to zero. With the derivatives

∂ log P(y |x, G+ g)
∂gj(x)

∣∣∣
g≡0

= 1〈y=j〉 − pj(x) (4.17)

∂2 log P(y |x, G+ g)
∂2gj(x)

∣∣∣
g≡0

= −pj(x)(1− pj(x)), (4.18)

the data likelihood (cf. 4.16) is approximately

`(G+ g) ≈ c+ Ê
[ J∑
j=2

gj(X) · (1〈y=j〉 − pj(X))− 1
2

J∑
j=2

gj(X)2 · pj(X)(1− pj(X))
]

= c− 1
2

J∑
j=2

Êwj

[
gj(X)2 − 2

1〈Y=j〉 − pj(X)
pj(X)(1− pj(X))

gj(X)
]
, (4.19)

with weights wj(x, y) = pj(x)(1 − pj(x)) and c = Ê
[
log P(Y |X, G)

]
, a constant term

with respect to the update g. Now it is easy to verify (cf. proof of theorem 4.1) that
the likelihood is maximized if the update functions gj (j = 2, . . . , J) are fitted to(
X,

1〈Y =j〉−pj(X)

pj(X)(1−pj(X))

)
by weighted least square. Note that the fitted functions gj don’t

depend on the choice of base class.
The parameterization of the model after the update G+ g can be converted back to

the symmetric multiple logistic transformation by adding − 1
J

∑J
j=1Gj + gj to each of

the model components. (It is easy to see that the parameterizations before and after this
step represent the same probabilities pj(x); see (4.12) and (4.14).) Using the definition
from the forward conversion (4.15) this results in the following symmetric model after
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the update:

Fj + fj ≡ Gj + gj −
1
J

J∑
k=1

Gk + gk

≡ Fj +
(
gj −

1
J

J∑
k=1

gk
) (4.20)

This procedure can be repeated for every choice of base class b. It yields the updates
fj ≡ 0 if j = b and fj ≡ gj − 1

J

∑J
j=1 gj otherwise. Averaging over all base classes hence

gives the update

f ′j(x) =
J − 1
J

(
gj(x)− 1

J

J∑
k=1

gk(x)
)
. (4.21)

This concludes the derivation of multiclass version of LogitBoost (algorithm 4.2).
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Chapter 5

Virtual Evidence Boosting

Virtual evidence boosting (VEB) is a efficient method for training conditional random
fields (CRFs) of arbitrary topology with discrete and continuous features. The reader
who is familiar with CRFs and the inference method belief propagation method may
directly skip to section 5.4 where the novel method virtual evidence boosting is presented.
For all others the following sections introduce the remaining foundations of VEB.

5.1 Motivation for Graphical Models

Statistical learning methods seek a probability distribution over the input X and the
labels Y from a predefined family of distributions, the so-called model , to underpin the
required prediction function H(x). The key limitation of LogitBoost is that its model
only allows for scalar labels Y and hence only independent labels can be predicted. The
natural way of parameterizing distributions over multiple dependent random variables
is through graphical models. An example of such a model formalism are conditional
random fields, which are introduced in the following section. Other well-known graphical
models are Hidden Markov Models and Dynamic Bayesian networks (cf. section 2.2).
Generally these models have the common idea to represent the random variables as
network nodes and to indicate dependencies by edges or arcs connecting the dependent
variables. A special type of graphical models are the so-called temporal models where
the nodes represent a state variable at different points in time.

Applied to our problem of recognizing spatial context, the graph for the temporal
model would look as depicted in figure 5.1. From the data streams produced by the
wearable sensor, features are computed for a series of times (1, . . . , T ). Although the
choice of features is important for the application (see section 6.1), for now it is sufficient
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Figure 5.1: A linear chain conditional random field.

(a) (b)

Figure 5.2: The model of LogitBoost written as conditional random field. The observed
node labeled with the random vector X in (a) is an abbreviation for several nodes. For
X = (X1 X2 X3)T figure (a) is equivalent to figure (b).

to know that they yield a vector xt, the so-called feature values or observations, for each
t ∈ {1, . . . , T}. Furthermore there is a correct spatial context label yt for each point in
time. In order to model this data statistically, the values xt and yt are considered to be
instantiations of the random variables Xt and Yt. Since the spatial context of a person
only changes occasionally, there is a strong correlation between successive label variables
Yt and Yt+1. Also, by design of the features there are correlations between the label
variables Yt and the respective features Xt. Once the model parameters are learned, it
is possible to infer a consistent set of labels, taking the dependencies between the labels
into account.

A thinkable alternative to fitting a graphical model is to treat the feature/label pairs
as independent samples

{
(xt, yt) | t = 1, . . . , T

}
of the random variables X and Y and

then to apply LogitBoost (algorithm 4.2). Although this may indeed work, it cannot
exploit the correlations between successive labels and therefore generally yields inferior
results (see section 6.3.2). The model of LogitBoost can also be seen as a simple graphical
model (figure 5.2).

Remark 5.1. From a statistical point of view it is not absolutely necessary to use a
temporal model for activity recognition. This is the case if Xt is a sufficient statistic
for Yt, and hence Yt and Yt′ are conditionally independent given their feature values Xt
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and Xt′ . This can approximately be achieved by using features that are computed over
highly overlapping ranges of the sensor data streams. The activity recognition application
presented by Bao and Intille [2004] implements this idea, however without referring to the
argument given here as to why this may be statistically sound. Nevertheless, explicitly
modeling the relation between labels clearly surpasses that approach in the scalability to
strong correlations and complex models.

5.2 The Statistical Model: Conditional Random Fields

Conditional random fields are graphical models for conditional distributions [Lafferty
et al., 2001] and are therefore particularly suitable for activity recognition tasks (cf.
section 2.2). They model the joint conditional probability of the label variables Y given
the input variables X. (Other names for the label variables are hidden variables because
they can’t be observed in the application, or output variables). A very good tutorial
which presents conditional random fields in comparison to other graphical model has been
published by Sutton and McCallum [2006]. Nevertheless the definition — including the
generalizations permitted if virtual evidence boosting is used for training the parameters
— is repeated here.

A conditional random field defines a family of conditional distributions P(Y |X) that
factorize according to a certain graph. This graph (cf. figures 5.1 and 5.2), called a
factor graph [Kschischang et al., 2001], is bipartite with two types of nodes: variable
nodes (depicted as circles) representing the random variables and factor nodes (depicted
as black squares). The random variables can again be distinguished into two groups:
the input variables Xt which are known during both training and testing, and the label
variables Yt which are to be predicted. It is required that the labels Yt can only take
discrete values from a finite set, written as dom(Yt). The input variables however can
take any value from a continuous domain. This generalization, possible due to VEB
training, is very important for activity recognition tasks because most low-level features
extracted from the sensors yield rational numbers (cf. section 6.1). Finally, the nodes
corresponding to label variables are referred to as label nodes or hidden nodes, as opposed
to the observed nodes of input variables.

Each of the factor nodes (or just factors) ψA ∈ Ψ connects a certain number of
variable nodes, which is specified by the set A ⊂ {Xt | t = 1, . . . , T} ∪ {Yt | t = 1, . . . , T}.
The factors ψA also stand for functions ψA : dom(X〈A〉) × dom(Y〈A〉) 7→ R+ over their
neighbors, representing the compatibility of assignments to these variables. (Other names
for factor functions are compatibility functions or local functions). Together they define
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the probability distribution represented by the conditional random field. The probability
of a labeling y given the input variable values x computes as the product of the local
factors:

P(Y =y |X=x) =
1

Z(x)

∏
ψA∈Ψ

ψA(x〈A〉,y〈A〉), (5.1)

with the normalization function

Z(x) =
∑
y

∏
ψA∈Ψ

ψA(x〈A〉,y〈A〉). (5.2)

The factor functions are assumed to be of the form

ψA(x〈A〉,y〈A〉) = exp{FA(x〈A〉,y〈A〉)} = exp
{∑

m

fA,m(x〈A〉,y〈A〉)
}

(5.3)

for arbitrary choices of fA,m from a infinite set of base functions (see section 5.4.1 for
details). Note that the permissible model functions FA are more general than those in the
common conditional random fields [Lafferty et al., 2001, Sutton and McCallum, 2006],
where FA has to be a weighted sum over a fixed set of base functions.1 In that context
only the weights are learned, where here the full set of function parameters, for example
the threshold of a step function, are chosen during training (cf. the LogitBoost model,
section 4.1). Again, the sum in (5.3) does not need to be weighted because the set of
base functions is assumed to be closed under multiplication with scalar values and hence
the weight would be redundant.

The factors ψA of a conditional random field determine two important properties
of the model: which pairs or cliques of random variables are dependent and how these
dependencies are parameterized. The network topology is usually implied by the se-
mantics of the random variables in the specific application. A very common case are
linear chain CRFs, which are similar to hidden Markov models. Each label variable Yt,
t ∈ {1, . . . , T} depends on its predecessor and successor labels Yt−1 and Yt+1, as well as
its feature vector Xt. This can be realized by defining a factor node to cover each of
these pairwise relationships (see figure 5.1). An alternative is shown in figure 5.3 where a
single type of factor ψ{Yt,Yt−1,Xt} covers pairwise and feature/label dependencies at once.
This notation simplifies the derivations in the following section and nevertheless defines
the same family of distributions if the joint factor is the product of the two individual

1In these publications the base functions are called features or feature functions. A feature is nothing
but a function which “processes” raw sensor data and returns a value which is suitable for the learning
algorithm. Therefore it makes perfect sense to talk about features if the input values x to the CRF is
the raw data. Here however, we assume that the input values x already are the output of the feature
functions, and hence the base functions indeed add a new layer to the model.
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Figure 5.3: An alternative form for linear chain CRFs.

factors of figure 5.1:

ψ{Yt,Yt−1,Xt}(yt, yt−1,xt)
def= ψ{Yt,Yt−1}(yt, yt−1) · ψ{Yt,Xt}(yt,xt).

Linear chain CRFs are often used for temporal models and so Xt and Yt then stand for
the observation and respective label at time t. Note however that we will also use the
index t to identify random variables even if there may be no temporal interpretation.

The second important aspect about the factor nodes are the functions they repre-
sent. The more flexible they are the more complex relationships between the connected
variables can be learned. On the other hand, most applications heavily rely on param-
eter tying between the factors, i. e. the factors are grouped into C sets Ψc, the factor
templates, and all factors of a template represent the same compatibility function:

ψA(x〈A〉,y〈A〉) = ψc(x〈A〉,y〈A〉) for all ψA ∈ Ψc. (5.4)

This captures that certain random variables of the model share the same dependencies
and therefore only one compatibility function for these groups needs to be learned. In
linear chain CRFs, for example, it is commonly assumed that the random variable pairs
(Yt−1, Yt) and (Yt, Yt+1) have the same dependency because the underlying stochastic
process doesn’t change over time. So typically in figure 5.1 one would define two factor
templates2 and only one in figure 5.3.

Apart from greatly reducing the number of parameters to be learned, parameter tying
also allows to train one CRF and then infer labels in another CRF with the same factor
templates but a different graph topology. There are limitations to this, but obviously
the parameters learned for a spatial context sequence can be applied to longer or shorter
sequences. This also applies to the training data: instead of having several instantiations

2Irrespective of the semantic interpretation, it should be clear that the factors F{Yt,Xt} and F{Yt,Yt−1}
can’t belong to the same template, because they have incompatible domains. The other way around,
however, it would for example be valid to divide the factors F{Yt,Yt−1} into more than one template set.
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of the random variables of a CRF, one assumes without loss of generality to only have one
instantiation for a larger CRF which consists of several disconnected copies of the original
graph. The derivation of virtual evidence boosting (section 5.4) will hence assume that
the training data is given as a single sample.3

5.3 Belief Propagation for Inference in CRFs

The conditional probability for a full set of labels y given the features x can be directly
computed with formula (5.1) (assuming that Z(x) is known or only ratios of probabilities
are sought after). However for training CRFs with virtual evidence boosting, marginal
probabilities of the form P(Yt |X) are needed.

Furthermore, in the application of a trained CRF for predicting labels, the most likely
label vector

y′ = arg max
y′

P(Y =y′ |X=x′) (5.5)

for a previously unseen vector of input values x′ has to be found. For singly connected
CRFs, i. e. graphs that that do not contain loops, the most probable label assignment
can be efficiently found using the so-called Viterbi algorithm [e. g. Sutton and McCal-
lum, 2006]. Otherwise, an assignment y′ can be chosen by maximizing the marginal
probabilities of its components:

y′ = arg max
y′

∏
t

P(Yt = y′t |X=x′). (5.6)

While examples can be constructed where the approximation (5.6) yields suboptimal label
assignments, i. e. the assignment y′ does not maximize the joint conditional probability
as in (5.5), this approach still yields reasonable predictions. All experiments in section
6.3 use equation (5.6) for testing the classification performance of learned models.

The process of computing marginal probabilities is called inference. It is clear that
for any non-trivial application the marginals can’t be computed by simply summing over
all possible assignments of the non-fixed variables. However by storing intermediate
sums, the runtime can be reduced significantly, in many cases (cf. section 5.3.3) from
exponential in the number of label variables to linear. For linear chain CRFs this yields
the forward-backward algorithm which can be generalized to belief propagation and loopy
belief propagation for general topologies. The dynamic programming idea behind these
algorithms shall be first illustrated through a derivation of forward-backward (closely

3The empirical expectation which will occur in those formulas is therefore a “sum” over that one
sample.
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following Sutton and McCallum [2006]), before discussing how this is applied to general
graphs.

5.3.1 The Forward-Backward Algorithm

As discussed in the previous section (see figure 5.3), a linear chain CRF contains the se-
quence of factors ψt

def= ψ{Yt,Yt−1,Xt} and one factor ψ1
def= ψ{Y1,X1} where the predecessor

label node doesn’t exist. (For the sake of a shorter notation, ψ1(y1, y0,x1)
def= ψ1(y1,x1)

will implicitly occur in the following formulae.) Using distributive law, the normalization
Z(x) (cf. equation 5.2) can be written as

Z(x) =
∑
y

T∏
t=1

ψt(yt, yt−1,xt) (5.7a)

=
∑
yT

∑
yT−1

ψT (yT , yT−1,xT )
∑
yT−2

ψT (yT−1, yT−2,xT−1)
∑
yT−3

. . . (5.7b)

Careful investigation of the indices shows that the inner sums only depend on the variable
of the immediate enclosing sum. Instead of naively recomputing inner sums for each outer
summation, an exponential amount of time can be saved by applying a caching strategy.

This leads to the definition of a set of forward variables αt, each of which stores the
value of an inner sum

αt[j]
def=

∑
y1,...,yt−1

t∏
t′=1

ψt′(yt′ , yt′−1,xt′)
∣∣∣
yt=j

(5.8a)

=
∑
yt−1

ψt(j, yt−1,xt)
∑
yt−2

ψT (yt−1, yt−2,xt−1)
∑
yT−3

. . . (5.8b)

for each possible value j of the enclosing sum’s variable yt. The forward variables αt are
vectors of length |dom(yt)| and αt[j] denotes the j-th entry of that vector. The forward
variables can be efficiently be computed by the recursion

αt[j] =
∑
yt−1

ψt(j, yt−1,xt) · αt−1[yt−1] (5.9)

with the initialization α1[j] = ψ(j,x1). The equivalence of (5.8) with the recursive
definition (5.9) of the forward variables can be easily shown by induction. With the
forward variables equation (5.7) can be simplified to Z(x) =

∑
j αT [j].

The backward recursion is using exactly the same approach, with the exception that
the sums in (5.7a) are pushed in in the reverse order, resulting in an outermost sum over
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y1 and so on. The backward variables are defined as

βt(j) =
∑

yt+1,...,yT

T∏
t′=t+1

ψt′(yt′ , yt′−1,xt′)
∣∣∣
yt=j

(5.10)

and recursively computed through

βt(j) =
∑
yt+1

ψt+1(yt+1, j,xt+1) · βt+1[yt+1] (5.11)

with the initialization βT [j] = 1.
So far the forward and backward recursions only each provide a way of computing

the normalization Z(x). However by combining the results from both, the marginal
distributions for each label variable can be determined. By definition the joint probability
(see equation 5.1) can be marginalized w. r. t. to a variable Yt by summing over all
assignments of the remaining variables. Again by applying the distributive law, we see
that the sums can be grouped and eventually be replaced by the forward and backward
variables:

P(Yt = yt |X=x) =
1

Z(x)

( ∑
y1,...,yt−1

t∏
t′=1

ψt′(yt′ , yt′−1,xt′)

)
( ∑
yt+1,...,yT

T∏
t′=t+1

ψt′(yt′ , yt′−1,xt′)

)

=
1

Z(x)
αt[yt]βt[yt]. (5.12)

Analogously, the marginal probability over two neighboring label variables

P(yt−1, yt |x) ∝ αt−1[yt−1]ψt(yt, yt−1,xt)βt[yt] (5.13)

can be computed easily. Since the probabilities have to sum to 1 (and ensuring this
feasible for the marginals), it is common to omit normalization factors and indicate this
by replacing equalities by the “proportional to” sign “∝”.

5.3.2 Belief Propagation in Chains and Trees

For the generalization of forward-backward to belief propagation, we’ll first consider
the same problem, inference in linear chain CRFs, but using the notation and ideas
of belief propagation. The forward and backward variables are called messages in belief
propagation. The symbolmA→t denotes the message which is passed from the factor node
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Figure 5.4: Forward and backward variables shown as belief propagation messages.

ψA to the variable node Yt. Using the abbreviation At
def= {Yt, Yt−1,Xt}, the forward and

backward variables are equivalent to the following messages (cf. figure 5.4):

mAt→t = αt (5.14)

mAt+1→t = βt . (5.15)

An idea which is often presented in introductions to belief propagation [e. g. Yedidia
et al., 2002] is that the messages contain what the the sender and the network behind
it believe that the receiving variable Yt should be. This is expressed as a multinomial
distribution, i. e. each component of the message vector is proportional to how likely
the each of the possible values of the receiving random variable is. Consequently, the
combined belief about a variable Yt, the marginal probability P(Yt = yt |X=x), is the
product of all incoming messages at that node (cf. equation 5.12 and 5.18).

The informal definition of the recursion for computing messages is as follows: the
message mA→t combines (multiplies) the information from

1. the compatibility of assignments to the neighbors of the factor node ψA and

2. the messages which were received from the other neighbors of ψA, with the excep-
tion of the message sent from ψA itself.

In the case of a linear chain there is only one other message and so this mirrors the
computations from the forward and backward iterations (5.9) and (5.11).

Instead of talking about believes and information, a different view may be more
helpful to understand belief propagation. One can look at what global formula each of
the messages stands for and how these are useful for the computation we want to perform.
The conditional probabilities (5.1) are computed by taking the product of all factors. For
the marginal probabilities these products are summed over all combinations of values for
all but one variable. The messages (cf. definition of the forward variables (5.8) and figure
5.4) contain the product over all factors that lie behind the arc the message is passed
along, i. e. for a message m{Yt,Yt−1,Xt}→t these are the factors

{
ψ1, . . . , ψt

}
, and these
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Figure 5.5: An example for a loop-free CRF.

products are summed over all variables except the one where the message is sent to.
Since the value yt is needed for determining the value of the factor ψt, the message is a
vector with the result for every possible value yt.

Now the calculations of marginal probabilities for general tree-shaped CRFs (figure
5.5) are straightforward. For example the marginal distribution of Y4 is the product
over all factors, summed over all variables except Y4. Similar to (5.12) the sums can be
grouped into three groups which cover the three subgraphs that the node Y4 partitions
the graph into. Again, each of the groups of sums is equal to one of the messages which
arrives at the node Y4 because they each have exactly one of the subgraphs behind them.
Therefore the marginal probability for Y4 = j is the product of the j-th components of
the messages:

P(Y4 = j |X=x) = mB→4[j]mC→4[j]mD→4[j]

Next we will show how messages are computed recursively at the example of the
message from the factor node ψB to the variable node Y2 (see figure 5.5). According to
our definition it has to contain the sum-product over the variables and factors behind it.
First of all this means the factor ψB itself, and for the factors beyond we already know
that they are included in the messages mC→4 and mD→4. Also, additionally to what is
marginalized out in those messages, we need to sum over the nodes Y3 and Y4, which are
the nodes connected to ψB other than Y2. The example message therefore is calculated
through

mB→2[j] =
∑
y3

∑
y4

ψB(j, y3, y4)mC→4[y4]mD→4[y4] .

The message mB→4 is obviously not included in the recursion because it covers a part
of the graph which doesn’t lie behind the arc from ψB to Y2.
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In general, belief propagation specifies the following recursive formula for computing
the messages [e. g. Yedidia et al., 2005]

mA→t[j] =
∑

y〈A\{Yt}〉

ψA(x〈A〉,y〈A〉)
∣∣
yt=j

∏
Yt′ ∈A\{Yt}

mt′→A[yt′ ], (5.16)

where the mt′→A can be seen as the intermediate messages from the variable nodes Yt′
to the factor ψA

mt′→A[yt′ ] =
∏

ψA′ ∈ nb(Yt′ )\{ψA}

mA′→t′ [yt′ ] (5.17)

and nb(Yt′)
def=
{
ψA′ ∈ Ψ |Yt′ ∈ A′} is the set of all neighbors of the node Yt′ . Recall that

the indices of the factor nodes ψA are the set of variable nodes Yt they are connected to.
The marginals for a node are proportional the the product of the incoming messages

P(Yt = j |X=x) ∝
∏

ψA ∈ nb(Yt)

mA→t[j]. (5.18)

It is easy to see that in a dynamic programming manner and starting from the leaves,
every message in the graph can be eventually be calculated. A formal proof would
perform an induction over the number of factor nodes behind the arc of the message,
but this would not give any more insight than the illustrative arguments developed here
earlier.

5.3.3 Loopy Belief Propagation

The dynamic programming argument is however not true if the graph contains a loop.
Every message of the loop is behind itself and so would need to be known for being
computed. This contradiction can be broken by simply initializing the messages with a
uniform distribution, i. e. the same positive value for each of the vector components, and
then repeat the message update (5.16) for all messages in any order until they converge. If
the graph does not contain any loops, this indeed yields the same exact results as before.
Otherwise however this is neither guaranteed to yield accurate marginal distributions,
nor even to converge. Nevertheless, loopy belief propagation has been used successfully in
many applications. The interested reader is referred to the work by Yedidia et al. [2005],
who show the equivalence of the algorithm to the Bethe approximation to the free energy
and how improvements of that approximation lead to the more accurate generalized belief
propagation. The second issue with loopy belief propagation in comparison to belief
propagation in chains and trees is the computational complexity. Instead of linear time
with respect to the number of nodes, it may take many iterations over all nodes until
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the messages converge. VEB for for training conditional random fields uses loopy belief
propagation although it may be possible include other inference methods if necessary.

5.4 Training CRFs with Virtual Evidence Boosting

As discussed in the related work section 2.2, there are several issues with the standard
training of conditional random fields by maximum likelihood (ML) [Sutton and McCal-
lum, 2006]. Each learning iteration requires running inference, for example loopy belief
propagation, and even with modern optimization methods, tens to a few hundred it-
erations are required. Furthermore there is no native support for continuous feature
values.

Therefore, a new method for training CRFs called virtual evidence boosting (VEB)
has been recently published by Liao, Choudhury, Fox, and Kautz [2007], with more
details in the PhD thesis of the first author [Liao, 2006]. It applies the optimization
strategy of LogitBoost (see chapter 4) which leads to many advantages over maximum
likelihood estimation and other methods (cf. related work in section 2.2).

• VEB learns the dependencies of the labels on input values as well as correlations
between the labels in a unified framework. Nevertheless the neighboring label
variables are not simply treated as observed and so the dependencies amongst
labels are not overestimated.

• Also, VEB is able to handle both discrete and continuous observations. It re-
duces the learning iteration to a weighted least squares problem and then employs
standard function approximators to represent the update.

• The parameter estimation process is based on Newton’s method for optimization,
and so VEB training takes less iterations than gradient descent methods not using
the second derivative. 10–20 iterations are sufficient for most applications. Still,
each iteration can be brought to the same computational complexity as ML.

• VEB is able to perform feature selection and detect dependencies between the
variables, while ignoring irrelevant features and connections in the graph. In each
iteration, only those factors are updated which yield the best improvement of the
optimization criterion so that only significant features and dependencies between
the labels are included in the model.

• VEB can in theory be used to train conditional random fields of almost arbitrary
topology, assuming that belief propagation converges and infers accurate marginal
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probabilities. A limitation applies to the number of variables a factor can be
connected to (see section 5.4.1). Also there may be some issues on highly complex
topologies in practice (see section 6.3.3).

In order to achieve these advantages, VEB contains several approximations. First of
all it maximizes the per-label likelihood

Ê
[
log

T∏
t=1

P(Yt |X)
]

(5.19)

instead of the joint likelihood of all labels

Ê
[
log P(Y |X)

]
. (5.20)

Additionally it assumes that the factors which are not immediate neighbors of each
node are fixed during an individual training iteration, so the Newton steps are actually
computed with respect to an approximation of the per-label likelihood (see section 5.4.2).

The local view onto small neighborhoods in the CRF is based on a similar idea from
maximum pseudo-likelihood estimation (MPL) [Besag, 1975]. The pseudo-likelihood is
probability of a label variable, given all connected variable nodes, the so-called Markov
blanket , including other label variables

Ê
[
log

T∏
t=1

P(Yt | nbv(Yt),X)
]

(5.21)

Learning the parameter by maximizing the pseudo-likelihood can be done easily, because
it doesn’t require any inference. However it has been observed, that MPL overestimates
the dependency between the labels [Geyer and Thompson, 1992]. To comprehend this
issue, imagine a linear chain CRF where the true label only switches a few times. MPL
then may only learn the few situations, i. e. input value combinations, where the label
is not the same as the neighbors’ labels. This means that the learned model may infer
long sequences of labels only based on the presence of a few unique feature values which
have been the “switching cues” in the training data. It is easy to imagine, that this may
be very unstable and easily leads to bad generalization performance.

In VEB the learning algorithm is not given the true labels of the neighboring hidden
nodes but only knows a probability distribution over the labels of those nodes. The
distribution reflects what currently can be inferred with the model parameters. This
leads to the following behavior: During the first iterations VEB selects the factors which
are connected to the input nodes, which is equivalent to learning the labels indepen-
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(a)

(b) (c)

Figure 5.6: Example of the network transformation schemes of maximum pseudo-
likelihood and virtual evidence boosting. (a) Original CRF. (b) Transformation for MPL.
(c) Transformation idea for VEB (not applied in following derivation).

dently. Once the model is able to produce reasonably confident estimates for for the
label variables, dependencies between the variables may included in the model. This is
inherent in the strategy of always picking the factor whose parameter update yields the
largest improvement of the per-label likelihood, so there is no need for distinct phases of
learning feature and neighbor dependencies. This conception of VEB is overcoming the
bootstrapping problem that may occur if a graphical model was trained with MPL: the
correct labels of neighboring variables need to be known to correctly infer a label.

The MPL optimization criterion (5.21) can also be seen as maximum likelihood on a
transformed conditional random field: All connections between hidden nodes are removed
and each of the affected nodes gets a new connection to a copy of its former neighbor (see
figure 5.6 a-b). The copied neighbor nodes are treated as observed, i. e. their label is fixed
to the true label. In the graphical modeling context, this information which is inserted
into the graph is called evidence [e. g. Korb and Nicholson, 2004]. The resulting CRF
then only has small, independent patches with one hidden variable each. VEB training
can be seen in a similar way except that the neighboring labels are not considered to be
known exactly. Instead they are treated as virtual evidence [Pearl, 1988], i. e. they are
given a prior distribution which is set according to the inference in the original conditional
random field (see figure 5.6c). The view of VEB as a network transformation scheme
with virtual evidence, which has coined the name of the algorithm, is promoted by the
original authors [Liao et al., 2007]. Here however, the derivation will be based on the
equivalent in the original, unmodified CRF.

In the now following sections, the formulas and logic of VEB will be derived, imple-
menting the ideas outlined above. The first section illustrates why we can assume that
the CRFs only have two types of factors, pairwise factors and local factors, and defines
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Figure 5.7: Scheme to convert factors connected to more than two hidden nodes to
pairwise factors.

the parameterizations of their factor functions. The second section investigates the op-
timization criterion of VEB and discusses the approximations which allow to optimize it
by Newton’s method. In the third section it is shown that a quasi-Newton update to the
parameters can be found by solving a weighted least squares problem, and subsections
detail the formulae for each factor type. There are two versions for computing the up-
dates for pairwise factors with different computational complexity which are presented
in section 5.4.3 (iv). Before listing the complete algorithm in the fifth section, section
5.4.4 illustrates how feature selection is generalized to CRFs by only applying parameter
updates to some factors.

The derivation is a complete redevelopment done in the preparation of this Master’s
thesis. It is based on the re-derivation of LogitBoost (section 4), so the reader is en-
couraged to also read the proofs of theorem 4.1 and 4.7. Liao [2006] on the other hand
extends the the original derivation of LogitBoost [Friedman et al., 2000] and fails to see
a difference in the application to CRFs which results in an error. Therefore both our
update formulae for pairwise factors differ from the one by Liao et al. [2007]. They are
compared in the sixth section compares and it is discussed why their formula may still
work in practice. In fact, Liao’s VEB generally surpasses the performance of our versions
of VEB. The results of an empirical comparison can be found in section 6.3.2.

5.4.1 Parameterization of Local and Pairwise Factors

From now on we will assume that the CRF only contains two types of factors: pairwise
factors which connect two hidden variable nodes, and local factors which connect one
hidden node with one or several input variable nodes (cf. figure 5.7). This is not a
very strong limitation because every factor graph can be transformed into an equivalent
graph only containing these factor types, and in most cases this graph can be used
instead. A possible strategy for the transformation is to join label nodes which are
connected to factors not satisfying the criteria (see figure 5.7). The joined nodes then
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stand for a random variable over the cross-product of the domains of the joined variables.
This step can be repeated until every factor is either reduced to a pairwise or a local
factor. The practical limitation to this procedure is caused by the fact that the joined
nodes have a domain which is exponential in the number joined nodes. So training the
transformed CRF may become infeasible if the original graph contains factors which
connect large numbers or even all hidden variables. (The same problem arises with the
strategy described in [Yedidia et al., 2002].) This situation is generally hard to handle for
a learning algorithm and is best addressed by customized algorithms [Liao et al., 2005,
Liao, 2006]. To reiterate, the only limitation on the topology imposed by VEB is that
each factor only connects a small number of hidden nodes.

For notational convenience we will also state that every hidden node has at most
one local factor connected to it. This is no limitation because there may be a vector of
observations connected to the other end of that factor. That random vector node X may
be seen as an abbreviation for several observed nodes Xi (cf. figure 5.2 on page 36).

The factor functions themselves are learned from a very flexible class of functions.
In fact, VEB requires that the factors have a separate set of parameters for every label
assignment of the connected hidden nodes. This seemingly complicated concept is very
simple in practice. For the local factors there is a separate model function FA,j(x) for
every possible label j of the hidden variable. The local factor function “selects” the
respective model function according to the label, so these factors take the form

ψ{Yt,Xt}(yt,xt) = exp{F{Yt,Xt}(yt,xt)}

= exp
{ ∑
j∈dom(Yt)

1〈yt=j〉 · F{Yt,Xt},j(xt)
}
. (5.22)

With this parameterization, it is easy to verify that the the conditional probability (cf.
equation (5.1)) of the CRF shown in figure 5.2 is exactly the symmetric multiple logistic
transformation (4.12) from the multiclass version of LogitBoost (section 4.4). Just like
in LogitBoost, the model functions FA,j(x) are sums of any base functions that can be
the output of a function approximator.

For the pairwise factors, the parameter separation requirement of VEB means that
they need to be arbitrary functions over the discrete domains of the connected variables
ψ{Yt,Yt′} : dom(Yt) × dom(Yt′) 7→ R+. They can only take a finite number of values
and hence can be parameterized by matrices F{Yt,Yt′} which store the logarithms of the

50



compatibilities:

ψ{Yt,Yt′}(yt, yt′) = exp
{∑
j,k

1〈yt=j〉 1〈yt′=k〉 · F{Yt,Yt′}[j, k]
}

= exp{F{Yt,Yt′}[yt, yt′ ]}.
(5.23)

Recall that the square bracket arguments have a role like subscripts in common notation,
i. e. here they select the respective element of the matrix.

In order to make the parameterization of the factor functions unique (cf. remark
4.4), a centering constraint for each factor is introduced. They require that the model
functions and the elements of the model matrix of a factor each sum to zero:∑

j

F{Yt,Xt},j(xt) = 0 for all xt ∈ dom(Xt) (5.24)

∑
j,k

F{Yt,Yt′}[j, k] = 0. (5.25)

This constraint has to be taken into account when optimizing a factor’s parameters. After
a learning update to one of the parameters, it is simple to re-center the parameterization
because adding the same fixed value or function to all parameters of a factor doesn’t
change the represented probabilities (cf. equations (5.1)–(5.3), the constant summands
in the exponents cancel out). However, the centering constraints also introduce the issue
that there are more parameters than actual degrees of freedom. In analogy to the mul-
ticlass version of LogitBoost (section 4.4) we will ignore this issue at first and compute
updates for all parameters, but then discount the updates to make them optimal (again
with respect to quasi-Newton steps computed for all possible non-symmetric parame-
terizations, see theorem 4.7). VEB updates each of the matrix components separately,
respectively each of the model functions (see section 5.4.3). In both cases one of these
entities should have been bound by the centering constraint, so the updates need to be
discounted by one over the number of separate updates. In a nutshell, the updates to the
model matrix F{Yt,Yt′} of a pairwise factor are multiplied by

(
1−1/|dom(Yt)× dom(Yt′)|

)
and the updates to the model functions F{Yt,Xt},j of a local factor are multiplied by(
1− 1/|domYt|

)
.

This concludes the definition of the parameterization of the factor functions used by
virtual evidence boosting. In particular the local factors (5.22) are much more flexible
than those in CRFs trained by maximum likelihood because the base functions are not
fixed by also learned by “weak classifiers”. Interesting is however that VEB can’t be
limited to learning factor functions from a smaller class of functions. This are for example
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factor functions of the form

ψ(y1, y2) = exp{αd1(y1, y2) + βd2(y1, y2)}.

The idea behind this example may be that there are two predefined meaningful distance
metrics d1 and d2 and only their weights α and β have to be learned. Such an approach
may be preferable in an application where the number of labels is large and hence the
number of parameters of arbitrary pairwise factors (5.23), which is quadratic in the
number of labels, may be excessive. Developing VEB for constrained pairwise factors is
a task for future research.

5.4.2 Optimization Criterion and Approximations

In this section we will investigate the optimization criterion of VEB and the approxima-
tions which allow tho apply Newton’s quickly converging method for optimization.

VEB maximizes the the per-label likelihood (5.19), which can be written as a sum
over training samples and label nodes

1
S

S∑
s=1

T∑
t=1

log P(Yt = y
(s)
t |X=x(s), F〈Ψ〉). (5.26)

This term is a function of the parameters of the CRF, which is illustrated by the adding
F〈Ψ〉 to the right side of the conditional probability. The parameters are the “variable”
of the optimization process, so they are iteratively adapted with the aim to maximize
the optimization criterion. In each iteration VEB computes an additive update to the
current parameters of all factors F〈Ψ〉: a matrix fA is added to the model matrix of each
pairwise factor ψA and base functions fB,j are added to the model functions of each local
factor ψB.4 Hence, within an iteration the current parameter set F〈Ψ〉 is considered fixed,
and an update f〈Ψ〉 (which abbreviates all of the above fA and fB,j ; see also the notation
definitions in section 3.1) needs to be found to maximize

Ê
[ T∑
t=1

log P(Yt |X, F〈Ψ〉 + f〈Ψ〉)
]
. (5.27)

It is in general not possible to maximize this term exactly. What we are aiming for
4For the pairwise factors the additive update is equivalent to a full update which would allow an

arbitrary parameter set F ′
〈Ψ〉 to be the output of an iteration. For local factors the additive update

parallels LogitBoost (see section 4.1), which is strictly less than a full update: each of the factors’ model
functions FB,j is a sum of base functions, and only one further base function is added, leaving the other
base functions unchanged.
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is a quasi-Newton step which effectively does the following: The optimization criterion
is approximated by a 2nd order Taylor polynomial and then the best “value” for f〈Ψ〉
is determined analytically with respect to that approximation. The convenience of this
approach lies in the fact that the approximation is only based on information about the
target function at the current parameter set F〈Ψ〉+0. This is important because even just
evaluating the term (5.27) with any nonzero update f〈Ψ〉 would require to run inference on
the whole CRF again. Still, the “information” required about the optimization criterion
is the first and second derivative with respect to f〈Ψ〉, and unfortunately computing the
latter is not feasible.

Therefore the Newton step is taken with respect to an approximation of (5.27) which
drops some of the dependencies on the update f〈Ψ〉. The approximation assumes that
each of the marginal probabilities P(Yt |X) are functions only of the updates to the
respective immediate neighboring factors (cf. definition of nb(Yt) near equation (5.17)),
with the remaining factors being fixed. This yields the update criterion

p`(F〈Ψ〉, f〈Ψ〉)
def= Ê

[ T∑
t=1

log P(Yt |X;F〈nb(Yt)〉 + f〈nb(Yt)〉, F〈Ψ\ nb(Yt)〉)
]

(5.28)

for which a Newton step can indeed be computed (see following section). We introduce
the term label probabilities to refer to the marginal probabilities with partially updated
parameters from the update criterion. Note that despite the partial update within the
label probability formulae, the CRF’s parameters will be set to F〈Ψ〉 + f〈Ψ〉 at the end of
the iteration. Therefore the value of the optimization criterion will be given by (5.27),
although f〈Ψ〉 itself is the optimum of the Taylor polynomial of an approximation of the
original criterion.

From the computational point of view, the key idea behind the update criterion is
that it can be computed from existing belief propagation (BP) messages and no new and
costly inference is required. This will be exemplified for the simple CRF in figure 5.8 in
the following paragraph before writing down the general formula in equation (5.31).

Example 5.2. At the beginning of each iteration, VEB runs loopy belief propagation on
the CRF with the current parameter set F〈Ψ〉. From this the label probabilities can
be computed by multiplying all incoming messages at the respective node (cf. equation
5.18), for example

P(Y1 = y∗1 |x, F〈Ψ〉) =
mB→1[y∗1] ·mA→1[y∗1]∑
y1
mB→1[y1] ·mA→1[y1]

(5.29)

To make the dependency on the neighboring factor functions explicit, the iterative for-
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Figure 5.8: A simple CRF with the pairwise factor ψA and the local factors ψB and ψC .
The indices of the factors are the sets of the connected variable nodes, so A = {Y1, Y2},
B = {Y1,X1}, and C = {Y2,X2}

mula for the BP messages (5.17) is unrolled once, yielding

P(Y1 = y∗1 |x, F〈Ψ〉) =
ψB(y∗1,x1) ·

∑
y2
ψA(y∗1, y2)m2→A[y2]∑

y1

(
ψB(y1,x1) ·

∑
y2
ψA(y1, y2)m2→A[y2]

)
=

∑
y2

exp{FB(y∗1,x1) + FA[y∗1, y2] + n2→A[y2]}∑
y1,y2

exp{FB(y1,x1) + FA[y1, y2] + n2→A[y2]}

(5.30)

with the definition of log messages n2→A[y2]
def= logm2→A[y2] for notational convenience.

Since all model functions which occur in this unrolled form belong to the immediate neigh-
boring factors, replacing them by the updated functions yields the label probabilities from
the update criterion (5.28).5 So for getting P(Y1 = y∗1 |X=x, FA + fA, FB + fB, FC), we
would replace FA by FA + fA and FB by FB + fB in equation (5.30). The resulting
formula is show in (5.45) in a later example.

The same approach of unrolling the belief propagation message recursion yields the
general formula for the label probabilities from the update criterion:

P(Yt = y∗t |x;F〈nb(Yt)〉 + f〈nb(Yt)〉, F〈Ψ\ nb(Yt)〉) ∝∑
y〈nbv(Yt)〉

exp
{ ∑
Ys∈nbv(Yt)

F{Yt,Ys}[y
∗
t , ys] + f{Yt,Ys}[y

∗
t , ys] + ns→{Ys,Yt}[ys]

}
× exp{F (y∗t ,xt) + f(y∗t ,xt)} (5.31)

with the sets nbv(Yt) describing all the label variables which are connected to the other
5In a loop-free CRF all remaining messages in (5.30) don’t depend on the neighboring factors, so

replacing all model parameters by their updated version yields exactly one of the label probability
terms from the update criterion. If however the CRF contains loops, the messages are not necessarily
independent of the neighboring factors. They are still used in the formulas for the label probability, so
strictly speaking the notation (5.28) is not quite accurate. (The occurrences of F〈nb(Yt)〉 in the messages
in the unrolled form (5.30) are not replaced by F〈nb(Yt)〉 + f〈nb(Yt)〉.)
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ends of Yt’s pairwise factors:

nbv(Yt) =
{
Ys | ∃ψA ∈ Ψ, A = {Yt, Ys}

}
. (5.32)

Note that the neighbor variable set nbv(Yt) is less than the Markov blanket because the
latter would also include the observed variable Xt connected through the local factor. It
shall be further pointed out about the notation that the outer sum in (5.31) ranges over
all possible assignments to the variables in nbv(Yt) (cf. the notation definitions in section
3.1), while the sum in the exponent simply yields three addends for every connected
pairwise factor.

The update criterion ignores some of the influence of the parameter update f〈Ψ〉 on
the per-label likelihood. Consequently, the accuracy of this approximation depends on
how strong the dropped influence would have been in the exact formula. We’ll again use
the CRF in figure 5.8 as an example.

Example 5.3. Previously we have seen that the approximated label probability of the
label Y1 ignores the influence of an update fC to the local factor ψC . Assuming no other
updates, the exact label probability would have the following dependency on fC :

P(Y1 = y∗1 |x, FC + fC) ∝
∑
y2

exp{FA[y∗1, y2]} · exp{FC(y2,x2) + fC(y2,x2)}. (5.33)

We see that the influence of fC is larger the more skewed the distribution FA[y∗1, ·] is, or
the other way round that the influence averages out if the model matrix FA has uniform
values. The latter is the case at the initialization and during the first iterations of VEB
because the label interdependencies only slowly become visible to the algorithm after
local factors have been updated. Eventually however the model becomes more certain
about the distribution of neighboring label nodes, which is expressed as a skewed model
matrix FA, and so the ignored effect of the update fC may lead to a decrease of Y1’s label
likelihood. In larger CRFs than the one considered here these effects can also propagate
over several hidden nodes and so make the issue even worse. As a rule of thumb it can
be summarized that the update criterion is a fairly good approximation of the per-label
likelihood at first, but gets less accurate with the number of learning iterations.

Note that we haven’t considered as to why the algorithm would choose an update
fC to the factor ψC . Since the latter connects to Y2, the update term is part of the
label probability of Y2 and also of the update criterion. Furthermore the Newton step
is taken with respect to the template parameters, so if the factors ψB and ψC have tied
parameters, VEB would determine fB without considering the influence this has on Y1’s
label probability via ψC .
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Some readers may criticize that the entire approach of computing quasi-Newton steps
for an approximation to the optimization criterion is flawed. It doesn’t have to be. A very
successful example is Newton’s method for optimization by itself, which also computes
iterative updates with respect to an approximation. It obviously depends on the quality
of the approximation, and as discussed in the previous example the quality decreases
as more of the label variables dependencies are learned. Indeed it has been observed in
some rare cases that the algorithm diverges eventually but not before reaching a good
parameter set (see section 6.3.2). The second important question is the sensitivity of
the resulting updates to the approximation in different parts of the parameter space.
Newton’s method is known to be fairly unstable by itself and it turns out to compute
excessively large updates to the pairwise factors. (Whether or not this is also caused by
the additional approximation remains unknown.) However this issue can be overcome
by limiting the step size (see following section), yielding a stable and successful learning
method (see experiments in [Liao et al., 2007] and section 6.3).

Also, it has to be noted that the view of VEB presented here is equivalent to seeing
it as maximum likelihood on the decomposed CRF with virtual evidence, which was
motivated in the introduction to section 5.4 on page 48. The latter view may be more
convincing as to why VEB works in practice, but in our opinion the description developed
here is more useful for understanding what the algorithm actually does.

5.4.3 Updating Factors with Newton’s Method

In this section it will be shown how the update criterion is optimized by Newton’s method.
It is well-known that the Newton steps maximize the 2nd order Taylor polynomial, and
in the first subsection this shown to be equivalent to solving a weighted least squares
problem. The following subsections then fill in the steps that are specific to local and
pairwise factors: computing the derivatives which are used in the Taylor polynomial and
solving the weighted least squares problems. So following the update for local factors in
subsection two is an example for the pairwise factors and finally the general formulae in
the fourth subsection.

We have seen that the update criterion p`(F〈Ψ〉, f〈Ψ〉) (5.28) sums over log label prob-
abilities which only have the model parameters of their immediate neighboring factors
updated to F〈nb(Yt)〉 + f〈nb(Yt)〉. To capture the update criterion in a formal notation,
we needed to refer to the model functions of individual factors (F〈nb(Yt)〉 is short for the
vector of all model functions FA of the factors ψA ∈ nb(Yt)). For the optimization of the
update criterion on the other hand, we are only interested in the actually independent
parameters. Recall that many CRFs have tied parameters, so all factors which belong
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to a factor template Ψc share the same model functions Fc. Here, this means that the
updates fc are identical for factors of the same template, but in the update criterion
formula they are still only applied to the immediate neighbors and not all factors of a
template.

5.4.3 (i) From Newton to Weighted Least Squares Problems

The parameter update steps of Newton’s method can be found by optimizing the second
order Taylor approximation of the update criterion. This polynomial requires the gradient
and Hessian matrix of the update criterion p`(F〈Ψ〉, f〈Ψ〉) (5.28) with respect to all factor
template updates (f1 . . . fC). Since derivation and sum operations can swap places (the
empirical expectation is also just a sum, see definition 4.2 on page 27), the derivatives
can be reduced to sums

d p`(F〈Ψ〉, f〈Ψ〉)
d(f1 . . . fC)

∣∣∣
f〈Ψ〉≡0

= Ê
[ T∑
t=1

∇t(Yt,X)
]

(5.34)

d2 p`(F〈Ψ〉, f〈Ψ〉)
d(f1 . . . fC)

∣∣∣
f〈Ψ〉≡0

= Ê
[ T∑
t=1

Wt(Yt,X)
]

(5.35)

over the gradients and Hessians of the label probabilities

∇t(yt,x) def=
d

d(f1 . . . fC)
log P(yt |x;F〈nb(Yt)〉 + f〈nb(Yt)〉, F〈Ψ\ nb(Yt)〉)

∣∣
f〈Ψ〉≡0

(5.36)

Wt(yt,x) def=
d2

d2(f1 . . . fC)
log P(yt |x;F〈nb(Yt)〉 + f〈nb(Yt)〉, F〈Ψ\ nb(Yt)〉)

∣∣
f〈Ψ〉≡0

. (5.37)

By applying the distributive law, the Taylor approximation therefore becomes

p`(F〈Ψ〉, f〈Ψ〉) ≈ c+ Ê
[ T∑
t=1

(f1 . . . fC) · ∇t(Yt,X) +
1
2
(f1 . . . fC) ·Wt(Yt,X) · (f1 . . . fC)T

]
.

(5.38)
The current per-label likelihood c = p`(F〈Ψ〉, 0) doesn’t depend on any update, so it is
not important for finding the optimal fc. Just like in LogitBoost, only quasi-Newton
steps are feasible where all off-diagonal elements of the Hessian matrix are set to zero.
This allows to rearrange the right-hand side of equation (5.38) into one weighted squared
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error term for each parameter fc[i]:

p`(F〈Ψ〉, f〈Ψ〉) ≈ c−
1
2

Ê
[ T∑
t=1

C∑
c=1

∑
i

(−Wt[c, i]) fc[i]2 − 2∇t[c, i] fc[i]
]

(5.39a)

= c− 1
2

C∑
c=1

∑
i

T∑
t=1

(
Ê(−Wt[c,i])

[(
fc[i]−

∇t[c, i]
−Wt[c, i]

)2]− Ê
[ ∇t[c, i]2
−Wt[c, i]

])
(5.39b)

where ∇t[c, i] is a shorthand for the element of the gradient ∇t(Yt,X) corresponding to
the parameter fc[i], and similarly Wt[c, i] abbreviates the respective diagonal element
from Wt(Yt,X). The quasi-Newton step is given by the updates fc which minimize the
Taylor approximation. Equation (5.39b) shows that each individual parameter of that
update can be computed independently by solving the weighted least squares problem

fc[i] = arg min
f

T∑
t=1

Ê(−Wt[c,i])

[(
f − ∇t[c, i]
−Wt[c, i]

)2]
. (5.40)

Each individual parameter can either be an element fc[j, k] of the model matrix of a
pairwise factor template or a model function fc,j(x) of a local factor template. The
following subsections will go into each of these cases, determine the derivatives, and
show how the least squares problems can be solved.

Note that equation (5.39b) doesn’t take into account that some of the diagonal ele-
ments of the Hessians Wt may be zero and so the term would be undefined. This happens
for the parameters fc[i] which are not tied to any of the neighboring factors of the variable
node Yt, and so the label probability is not functions of that parameter. Consequently,
entire summands in the first line (5.39a) are zero and those as well as the respective
summands in (5.39b) and (5.39a) should be dropped. The formally correct formulas are
deferred until the pseudo-code listing of virtual evidence boosting (algorithm 5.1).

5.4.3 (ii) Newton Steps for Local Factors

The quasi-Newton updates for the local factors are virtually identical to the LogitBoost
update steps. The derivatives of the label probabilities P(Yt |X) with respect to the
model functions fc,j(xj) are

∇t(y∗t ,x)[c, j] =
∂ log P(Yt = y∗t |x;F〈nb(Yt)〉 + f〈nb(Yt)〉, F〈Ψ\ nb(Yt)〉)

∂fc,j(xj)

∣∣∣
f〈Ψ〉≡0

= 1〈y∗t =j〉 − P(Yt = j |x;F〈Ψ〉)
(5.41)
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and

Wt(y∗t ,x)[c, j] =
∂2 log P(Yt = y∗t |x;F〈nb(Yt)〉 + f〈nb(Yt)〉, F〈Ψ\ nb(Yt)〉)

∂2fc,j(xt)

∣∣∣
f〈Ψ〉≡0

= P(Yj = j |x)
(
1− P(Yt = j |x)

) (5.42)

if the local factor ψ{Yt,Xt} of the node Yt belongs to the template Ψc. Otherwise both
derivatives are zero. The weighted least squares problems are equivalent to a weighted
regressions of each of the update functions fc,j to the points

(
xt,

∇t(y∗t ,x)[c,j]
Wt(y∗t ,x)[c,j]

)
with weights

(−Wt). From equation (5.40) it can be concluded that there is a target point for every
training sample and each random variable Yt connected to a local factor of type c. Since
in practice the number of trainings samples can be assumed to one due to parameter
tying (cf. section 5.2), there is (at most) one target point for each label variable. The
symbol y∗t stands for the true label of Yt according to that one training sample, i. e.

y∗t
def= y

(s)
t .

Any function approximator may be used to fit these points. The experiments in this
thesis (section 6.3) fit step functions

fstep(x) =

α1 if πi(x) < β,

α2 if πi(x) ≥ β,
(5.43)

if the feature values x are continuous, or arbitrary functions fB,j : dom(Xt) 7→ R if the
feature values are discrete. The latter simply results in a weighted mean for each element
of dom(Xt).

For the step function there are four internal parameters to be determined. The first
one is the index i which selects one of the components of the features values. (πi(x) is
the projection on the i-th entry of the vector x.) In order to pick the best feature, the
remaining parameters are determined for each i and then the step function is chosen that
minimizes the weighted squared error from equation (5.40). The threshold does not have
to be searched but can be determined by a heuristic to maximize the information gain
[Liao, 2006]:

β =
∑T

t=1(−Wt)xt∑T
t=1−Wt

. (5.44)

Finally the function values α1 and α2 are the weighted mean of the targets on either side
of the threshold.
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5.4.3 (iii) Stable Newton Steps for Pairwise Factors

For the parameters of pairwise factors computing the Newton steps poses some more
challenges. First of all, the derivatives can get very complicated, especially if a hidden
node Yt is neighbor of multiple factors with the same parameters. Secondly, the Taylor
approximation of the update criterion may be convex (which is the bad case, as the
likelihood is maximized), and so a heuristic has to be found to still produce reasonably
scaled and stable updates.

So to avoid the complicated derivatives for a start, we’ll go back to the simple CRF
from figure figure 5.8 on page 54 and set up as well as solve the least squares problems
for the only pairwise factor ψA. The general case will follow in the next subsection 5.4.3
(iv).

Example 5.4. Recall that the label probability for the variable Y1 from the update crite-
rion is

P(Y1 = y∗1 |x;FA + fA, FB + fB, FC) =∑
y2

exp{FB(y∗1,x1) + fB(y∗1,x1) + FA[y∗1, y2] + fA[y∗1, y2] + n2→A[y2]}∑
y1,y2

exp{FB(y1,x1) + fB(y1,x1) + FA[y1, y2] + fA[y1, y2] + n2→A[y2]}
. (5.45)

With some standard calculus it is easy to see that the derivatives w. r. t. the model
matrix component f [j, k] of the logarithm of that term are

∇1(y∗1,x)[A, j, k] =
∂ log P(Y1 = y∗1 |x;FA + fA, FB + fB, FC)

∂fA[j, k]

∣∣∣
fA≡0,fB≡0

= 1〈y∗1=j〉
exp{FB(j,x1) + FA[j, k] + n2→A[k]}∑
y2

exp{FB(j,x1) + FA[j, y2] + n2→A[y2]}

− exp{FB(j,x1) + FA[j, k] + n2→A[k]}∑
y1,y2

exp{FB(y1,x1) + FA[y1, y2] + n2→A[y2]}

= 1〈y∗1=j〉 P(Y2 = k |Y1 = j,x)− P(Y1 = j, Y2 = k |x)

(5.46)

and

W1(y∗1,x)[ij,k] = 1〈y∗1=j〉 P(Y2 = k |Y1 = j,x)
(
1− P(Y2 = k |Y1 = j,x)

)
− P(Y1 = j, Y2 = k |x)

(
1− P(Y1 = j, Y2 = k |x)

) (5.47)

After differentiating the updates are set to zero because the Taylor approximation only
needs the derivatives “evaluated” at the working point, which is fA ≡ 0, fB ≡ 0, and
fC ≡ 0. The indicator term in (5.46) results from the fact that the numerator of (5.45)
may not contain the parameter fA[j, k], namely if the true label y∗1 is not equal to j, and
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hence the log of the numerator differentiates to zero. Note that unlike in the case of local
factors (cf. equation 5.42), the indicator term doesn’t vanish in the second derivative.

The derivatives of the second label probability P(Y2 = y∗2 |x;FA + fA, FB, FC + fC)
with respect to the same parameter fA[j, k] yields the equivalent with the roles of Y1

and Y2 and of j and k switched. It should be clear that y∗2 has to be equal to k for the
indicator term to be non-zero, because Y2 is connected to the “other end” of the factor
ψA.

The weighted least squares problem for the scalar parameter fA[j, k] can be simply
solved by differentiating (5.40) w. r. t. that parameter and by setting the result to zero.
The solution and hence the quasi-Newton update for this parameter is the weighted
mean of the fractions ∇t/(−Wt) with weights (−Wt), or equivalently with a simplified
numerator:

fA[j, k] =

∑2
t=1∇t(y∗j ,xj)[A, j, k]∑2
t=1−Wt(y∗j ,xj)[A, j, k]

(5.48)

This small example already reveals a problem with the Newton step for the pairwise
factors: Since there may be a positive summand in the second derivative Wt (5.47), the
weights (−Wt) in the weighted least squares problem may be negative. This is a quite
unintuitive case, so it is better to go back one step in the derivation and investigate the
Taylor polynomial (5.39a). For each individual parameter fc[i] it contains the following
addend:

−1
2

Ê
( T∑
t=1

−Wt[c, i] fc[i]2 − 2∇t[c, i] fc[i]
)
. (5.49)

This is a function of fc[i] and its graph is a parabola which opens down if and only if
the sum of the weights Ê

(∑T
t=1−Wt[c, i]

)
is positive. In that case the best update fc[i]

with respect to (5.49) is the vertex of the parabola because we are aiming to maximize
the update criterion. Should however the sum of the weights be negative, the parabola
opens up and so according to the approximation the best likelihood can be achieved with
the current parameter at both positive and negative infinity. This is obviously not true
and so in that case Newton’s method doesn’t result in any useful update steps at all.

Even if the sum of the weights is positive, it can be observed in experiments that the
resulting updates are often very extreme and quickly make the algorithm diverge. This
can be prevented by imposing some kind of lower bound on the weights, since the vertex
computes analogously to equation (5.48). Instead of limiting the sum of the weights, it
has been found to work better to limit each weight individually. The Taylor polynomial
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of a single label probability with respect to a single factor is the parabola

−(−Wt[c, i]) fc[i]2 + 2∇t[c, i] fc[i] (5.50)

with the vertex at the abscissa fc[i] = ∇t[c,i]
−Wt[c,i]

. If we assume that the label probability
takes its maximum at a parameter which is close to the current one, for example less
than ϑ away, this constraint |fc[i]| ≤ ϑ should be inserted into the approximation that
is used to compute the update. It is easy to see that this can be achieved by setting the
weights to

(−Wt[c, i])← max{(−Wt[c, i]),
ϑ

|∇t[c, i]|
}. (5.51)

With this approach the update fc[i] is guaranteed to not exceed the step limit ϑ in
magnitude. Also, the limit is rarely even reached since the clipping is done before taking
the weighted average. Experimentally, a step limit of ϑ = 2 has been found successful,
but other parameters or entirely different stabilization approaches may be explored in
future work.

The first publication of VEB [Liao et al., 2007, Liao, 2006] does not update the
pairwise factors by Newton’s method, but just solves some other weighted least squares
problem whose weights are always positive. Their approach is discussed in the later
section 5.4.6.

5.4.3 (iv) Updating Pairwise Factors with Tied Parameters

In many cases tied parameters in the CRF simply results in more summands in the
weighted least squares problem (5.40) for the template parameter. This is for example
true for local factors, where every hidden node which has a local factor from a template
type contributes a term. However the situation is more complicated if one hidden node is
connected to more than one factor from a template Ψc. Since these factors are updated
with the same parameters fc[i], less summands cancel out in the derivatives of the label
probabilities. In this section we will develop a specialized notation for the label prob-
abilities and differentiate that expression. At the end of the section a computationally
less complex approximation to the derivatives will be presented.

The general formula for the label probabilities has been presented before as equation
(5.31) on page 54. In order to write down the derivatives of that formula, we need
to distinguish which templates each of the neighboring factors belong to. Therefore a
specialized version of (5.31) needs to be developed. In this context we observe that if we
are taking the derivative with respect to fc[j, k], we can ignore the parameter update for
all other factor templates. (Or by example: in (5.46) the derivative would have been the
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same if the factor ψB had the model functions FB instead of FB +fB.) Therefore we can
resort to a label probability formula which only makes the parameter Fc explicit. This
is achieved by starting from the product of all incoming messages at the variable node
(the marginal probability according to belief propagation, cf. equation (5.18)) and only
unroll the messages from those factors that have the template type Ψc:

P(Yt = y∗t |x) ∝∑
y〈Υl∪Υr〉

exp
{ ∑
Ys∈Υl

Fc[ys, y∗t ] + ns→{Ys,Yt}[ys] +
∑
Ys∈Υl

Fc[y∗t , ys] + ns→{Ys,Yt}[ys]
}

×
∏

Yt′∈nbv(Yt)\(Υl∪Υr)

m{Yt′ ,Yt}→t[y
∗
t ]. (5.52)

The sets nbv(Yt) (cf. equation 5.32), Υl, and Υr comprise all or a subset of the label
variables which are connected to Yt’s pairwise factors. The latter two are defined as

Υl = {Ys | ∃ψA ∈ Ψc, A = (Ys, Yt)} (5.53)

Υr = {Ys | ∃ψA ∈ Ψc, A = (Yt, Ys)} (5.54)

and stand for the variables which are “to the left” and “to the right” of Yt and connected
by a factor from template Ψc. The ends of the pairwise factors need to be distinguished
in case both arguments of the factors have the same domain, and so Yt can be connected
to either end.6

Replacing the model matrix Fc by Fc+fc in (5.52) yields the label probability formula
which can be derived with respect to the update components fc[j, k]. Note that the
normalization, one over the sum ranging over all labels yt of the entire term, needs
to be explicitly taken into consideration for the derivatives. A major difference to the
differentiation in example 5.4 in the preceding subsection is that the chain rule yields
factors greater than one. Let ch(y∗t , y〈Υl∪Υr〉, j, k) denote the number of times a parameter
Fc[j, k] occurs in the exponent in (5.52), i. e.

ch(y∗t , y〈Υl∪Υr〉, j, k) =
∑
Ys∈Υl

1〈ys=j∧y∗t =k〉 +
∑
Ys∈Υl

1〈y∗t =j∧ys=k〉 . (5.55)

Also let pot(yt,y〈Υl∪Υr〉) abbreviate the exponent in equation (5.52) and mp(yt) the prod-
uct of the messages from other factors, each with y∗t substituted by yt. The derivatives

6This is standard in temporal models for the factors connecting the state variables in subsequent time
slices (cf. figure 6.9 on page 94). It is in fact be possible to define these factors to be symmetric, which
can be achieved by having both sums in (5.55) range over Υl ∪Υr.
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for the Taylor polynomial can then be written as

∇t(y∗t ,x)[c, j, k] =

∑
y〈Υl∪Υr〉

exp{pot(y∗t ,y〈Υl∪Υr〉)} · ch(y∗t , y〈Υl∪Υr〉, j, k) · mp(y∗t )∑
y〈Υl∪Υr〉

exp{pot(y∗t ,y〈Υl∪Υr〉)} · mp(y∗t )

−

∑
yt

∑
y〈Υl∪Υr〉

exp{pot(yt,y〈Υl∪Υr〉)} · ch(yt, y〈Υl∪Υr〉, j, k) · mp(yt)∑
yt

∑
y〈Υl∪Υr〉

exp{pot(yt,y〈Υl∪Υr〉)} · mp(yt)
(5.56)

and

Wt(y∗t ,x)[c, j, k] =

∑
y〈Υl∪Υr〉

exp{pot(y∗t ,y〈Υl∪Υr〉)} · ch(y∗t , y〈Υl∪Υr〉, j, k)
2 · mp(y∗t )∑

y〈Υl∪Υr〉
exp{pot(y∗t ,y〈Υl∪Υr〉)} · mp(y∗t )

−

(∑
y〈Υl∪Υr〉

exp{pot(y∗t ,y〈Υl∪Υr〉)} · ch(y∗t , y〈Υl∪Υr〉, j, k) · mp(y∗t )∑
y〈Υl∪Υr〉

exp{pot(y∗t ,y〈Υl∪Υr〉)} · mp(y∗t )

)2

−

∑
yt

∑
y〈Υl∪Υr〉

exp{pot(yt,y〈Υl∪Υr〉)} · ch(yt, y〈Υl∪Υr〉, j, k)
2 · mp(yt)∑

yt

∑
y〈Υl∪Υr〉

exp{pot(yt,y〈Υl∪Υr〉)} · mp(yt)

+

(∑
yt

∑
y〈Υl∪Υr〉

exp{pot(yt,y〈Υl∪Υr〉)} · ch(yt, y〈Υl∪Υr〉, j, k) · mp(yt)∑
yt

∑
y〈Υl∪Υr〉

exp{pot(yt,y〈Υl∪Υr〉)} · mp(yt)

)2

(5.57)

Computing these gradients is always feasible, but the learning process is notably
slowed down if there are more than two neighboring factors from a single template. This
is because the sum over the neighbor assignments y〈Υl∪Υr〉 has dom(Ys) to the power
|Υl ∪Υr| summands (Ys is any element of Υl ∪ Υr). Furthermore, this runtime is re-
quired once for every hidden node in the CRF and every factor template the node’s
neighbors belong to (but not for the elements of the model matrices). An efficient im-
plementation requires only one depth-first search over all assignments which at the same
time accumulates the potentials and counts parameter occurrences (one summand per
recursion) and sums over the assignments (one summand every time a leaf is reached).
Using an amount of space which is linear in the number of model matrix parameters, this
allows to compute the derivatives with respect to all model matrix parameters fc[j, k],
j = 1 . . . J , k = 1 . . .K. With these derivatives the stabilized Newton steps are computed
just as described in the preceding subsection.

At this point the reader may ask why the computations for local factors don’t take
exponential runtime in the number of neighboring factors. The basis of the derivatives
are the label likelihoods (5.31) which do sum over all possible label combinations for the
Markov blanket. In the previous sections however all sums could be collapsed back into
belief propagation messages after taking the derivatives and setting all parameter updates
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f〈Ψ〉 to zero. Equivalently, this step can also be done before taking the derivatives,
yielding label probability formulas like in (5.52) but with Υl ∪ Υr containing at most
one label variable. For taking the derivatives with respect to the parameters of local
factors ψ{Yt,Xt}, respectively pairwise factors ψ{Yt,Ys} with unique parameters, the label
probability formulae can be simplified to

P(Yt = y∗t |x) ∝ exp{F{Yt,Xt}(y
∗
t ,xt)} ×

∏
Yt′∈nbv(Yt)\{Ys}

m{Yt′ ,Yt}→t[y
∗
t ] (5.58)

respectively

P(Yt = y∗t |x) ∝
∑
ys

exp{F{Yt,Ys}[y
∗
t , ys]} ×

∏
Yt′∈nbv(Yt)\{Ys}

m{Yt′ ,Yt}→t[y
∗
t ]. (5.59)

The derivatives of these terms have the same complexity as the terms themselves, so
computational cost was previously not an issue.

We observe that in each of these formulae only one of the messages arriving at Yt is
unrolled. This idea can also be applied if a hidden node is connected to several factor
with tied parameters: instead of unrolling several messages at once like in (5.52), we
unroll them separately and take the average. More precisely, this can be described as
a modification of the update criterion (5.28) specific to the template currently updated.
Each of its summands

log P(Yt |X;F〈nb(Yt)〉 + f〈nb(Yt)〉, F〈Ψ\ nb(Yt)〉)

is replaced by one term for each pairwise factor of the current template. These sum to

1
|Υl ∪Υr|

∑
Ys∈Υl∪Υr

log P(Yt |X;F{Yt,Ys} + f{Yt,Ys}, F〈Ψ\ψ{Yt,Ys}〉) (5.60)

The summands take the simple form of (5.59), and so the derivatives of the sum are in
analogy to example 5.4 on page 60

∇t(y∗t ,x)[c, j, k] = η
∑

Ys∈Υl∪Υr

1〈y∗t =j〉 P(Ys = k |Yt = j,x)− P(Yt = j, Ys = k |x) (5.61)

and

Wt(y∗t ,x)[c, j, k] = η
∑

Ys∈Υl∪Υr

1〈y∗t =j〉 P(Ys = k |Yt = j,x)
(
1− P(Ys = k |Yt = j,x)

)
−P(Yt = j, Ys = k |x)

(
1− P(Yt = j, Ys = k |x)

) (5.62)

with the factor η = 1/ |Υl ∪Υr|.

65



We will call this approach for computing the updates of pairwise factors piecewise
Newton steps (based on the name of related piecewise approximation of pseudo-likelihood
training by Sutton and McCallum [2007]) and the more exact version above neighborhood-
based Newton steps. The resulting versions of VEB are compared empirically in section
6.3.

5.4.4 Selecting the Factor with the Best Update

Many applications of boosting choose to use very simple weak classifiers or function
approximators like decision trees with few levels or even decision stumps [e. g. Schapire
and Singer, 1999, Friedman et al., 2000]. It has been observed that this yields a good
generalization performance which may be caused by one or both of the following points:
The family of distribution that can be represented is smaller when simple base functions
are used, which may make it harder to overfit. Secondly, it makes the algorithm select
the best features. We will now explore the latter aspect and show how this is put into
practice in VEB.

The key property of decision stumps and low decision trees is that they are only
functions of one or a few feature values x. So when a tree or stump is fitted, features
are picked that yield the best update in the current iteration. Consequently, there is a
fair chance that all features that have been chosen and integrated into the model are
actually significant for the labels. The other way round, if there is a feature that is
entirely random, it may still have a correlation with the labels in the training set but
this correlation will usually be weaker than correlations of significant features. If this
is the case in all iterations, the random feature will be ignored entirely by the model.
Therefore feature selection may indeed contribute to a good generalization performance.

In conditional random fields there are not only different features but they may also be
connected to distinct hidden variables (via local factors), and there are pairwise “features”
between the hidden variables. So to generalize the concept of feature selection to CRFs,
VEB only updates one factor (respectively one set of factors with tied parameters) per
iteration. This leads to the already described bootstrapping behavior of VEB: In the first
iterations the algorithm mostly updates local factors and only later learns the correlation
between the labels. Also, it allows VEB to detect relevant dependencies between the
hidden variables and ignore irrelevant ones (cf. experiments in [Liao et al., 2007]). With
the decision stumps as base functions for the local factors (cf. section 5.4.3 (ii)) VEB
also selects the best features whenever a local factor is updated.

In order to determine the factor to be updated, candidate updates need to be com-
puted for every one of them. Then the best update can be simply determined by eval-
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uating the non-constant parts of equation (5.39b). The improvement of the per-label
likelihood by an update fc is approximately

1
2

∑
i

T∑
t=1

(
Ê
[ ∇t[c, i]2
−Wt[c, i]

]
− Ê(−Wt[c,i])

[(
fc[i]−

∇t[c, i]
−Wt[c, i]

)2])
, (5.63)

where i ranges over all parameters of the factor template Ψc. (Again all summands with
Wt[c, i] = 0 should be omitted; cf. section 5.4.3 (i).) The first term can be interpreted
as the maximum improvement of the per-label likelihood for a factor, and by deducing
the fitting error we get the actual improvement. To summarize, only the additive update
for the factor template Ψc maximizing (5.63) is applied (see also an alternative in the
following section) and that concludes an iteration of VEB.

Apart from the reasons given above, the factor selection approach can be justified
from an optimization viewpoint. The quasi-Newton steps assume that each parameter
affects the optimization criterion in an uncorrelated manner. This is clearly an approxi-
mation, and so if the parameters have correlated effects, the quasi-Newton step may be
too large. Quasi-Newton and full Newton stepping are only equivalent if only a single
scalar parameter is optimized. Therefore quasi-Newton steps may be more accurate for
lower numbers of parameters. This is one side-effect of factor selection and hence may
contribute the algorithm’s stability.

5.4.5 Practical Considerations and Implementation

The training method virtual evidence boosting in the versions VEB with neighborhood-
based Newton steps and VEB with piecewise newton steps is listed in algorithm 5.1 on
the following pages.

Many practical consideration have already been discussed in the derivation in the
previous sections. However the actual implementation contains two notable modifications
of the vanilla algorithm to ensure the usability for a wide variety of applications.

Since the optimization process of VEB may diverge once a model with strong label
dependencies has been learned (see section 5.4.2), this case needs to be handled gracefully.
An approach which has been found to work well in practice is to monitor the classification
performance on the training set and keep a backup of all parameters from the iteration
that scored best on that measure. This comes at no significant extra cost: the marginal
probabilities are trivially determined from the belief propagation messages and we only
base the decision for the best labels on marginal probabilities (cf. section 5.3).
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Input: a CRF with the factor templates Ψc; the training data, an instantiation
(x,y∗) of all random variables; a function approximator; the number of
learning iterations M

Output: the trained CRF, i. e. the factor function ψc for each template Ψc

intialize model functions Fc,j ≡ 0 and model matrices Fc[j, k] = 01

define the functions of local and pairwise factors2

ψc(y,x) = exp{
J∑
j=1

1〈y=j〉Fc,j(x)} respectively ψc(y, y′) = exp{F [y, y′]}

for m = 1 to M do3

run loopy belief propagation on the CRF4

foreach factor template index c ∈ {1, . . . , C} do5

if Ψc is a pairwise factor template then6

(fc, gc) = pairwise_factor_step(c)7

else8

(fc, gc) = local_factor_step(c)9

end10

end11

select the factor template yielding the best improvement c∗ = arg maxc gc12

Fc∗ ← apply_update(c∗,Fc∗ ,fc∗)13

end14

Algorithm 5.1: Virtual evidence boosting for training conditional random fields.
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Function: local_factor_step
Input: index c of a local factor template; the current CRF; training data (x,y∗);

belief propagation messages from last run; a function approximator for
weighted least squares fitting

Output: the update fc to the model functions of template Ψc and its likelihood
gain gc

initialize gc = 01

foreach model function Fc,j do2

foreach node index t ∈ {1, . . . , T} do3

if the node Yt has a local factor ψB ∈ Ψc then4

compute the marginal probability for class j5

p =

∏
ψA∈nb(Yt)

mA→t[j]∑
k

∏
ψA∈nb(Yt)

mA→t[k]

compute weight and working response numerator

wt = p(1− p); dt = 1〈y∗t =j〉 − p

else6

set dt = 0, wt = 07

end8

end9

use the function approximator to fit the function fc,j(x) to the points10

{(xt, dt
wt

) | dt 6= 0} by weighted least squares with weights wt
accumulate the likelihood gain gc ← gc +

∑
t,dt 6=0

d2t
wt
− wt ·

(
fc,j(xt)− dt

wt

)2
11

end12

Function local_factor_step Finds best base function approximating a quasi-
Newton step for local factor functions.
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Function: pairwise_factor_step
Input: index c of a pairwise factor template; the current CRF; training data

(x,y∗); belief propagation messages from last run
Output: the model matrix update fc and its likelihood gain gc
initialize gc = 01

foreach model matrix parameter Fc[j, k] do2

foreach node index t ∈ {1, . . . , T} do3

compute the derivatives (5.56)–(5.57) or (5.61)–(5.62) and set4

dt = ∇t(y∗t ,x)[c, j, k]
wt = −Wt(y∗t ,x)[c, j, k]

if dt 6= 0 then apply step limit stabilization wt ← max{wt, 2
|dt|}5

end6

compute the parameter update fc[j, k] =
(∑T

t=1 dt
)
/
(∑T

t=1wt
)

7

accumulate the likelihood gain gc ← gc +
∑

t,dt 6=0
d2t
wt
− wt ·

(
fc[j, k]− dt

wt

)2
8

end9

Function pairwise_factor_step Stabilized quasi-Newton step for pairwise fac-
tors.

Function: apply_update
Input: a factor template index c; the current model parameters Fc for that

template; the update fc
Output: the updated model parameters Fc
if Ψc is a local factor template then1

foreach model function Fc,j do2

center and discount the update f ′c,j = J−1
J

(
fc,j − 1

J

∑J
j′=1 fc,j′

)
3

add the update Fc,j ← Fc,j + f ′c,j4

end5

else6

foreach model matrix component Fc[j, k] do7

center and discount f ′c[j, k] = JK−1
JK

(
f ′c[j, k]− 1

JK

∑J
j′=1

∑K
k′=1 fc[j

′, k′]
)

8

apply Fc[j, k]← Fc[j, k] + f ′c[j, k]9

end10

end11

Function apply_update Applies the update taking the parameterization restric-
tions into account (see section 5.4.1)
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The second modification concerns the factor selection strategy introduced in the pre-
ceding section. Updating only one factor per iteration may slow down the learning if
there are many different factor templates. Furthermore if the number of factors per tem-
plate have substantial differences, the ones with low counts may never be touched. So
to meet both these problems, multiple templates are updated so that for every “label
variable type” (the sets of variables which have identical domains and the same semantic
interpretation) this involves at least one factor template which connects to label nodes
of that type. The only exception to this rule is for label variable types which don’t have
a local factor because during the bootstrapping phase there may not yet be any pairwise
label correlations to learn. This ensures that the factors are updated more evenly and
quickly, while still applying the principle of feature selection.

5.4.6 Comparison with Liao’s Virtual Evidence Boosting

As aforementioned the ideas and principles of virtual evidence boosting have been pub-
lished by Liao et al. [2007]. They claim to generalize LogitBoost for training conditional
random fields, but their updates to pairwise factors are not equivalent to Newton steps,
the optimization method of LogitBoost. In this section we point out some details about
their derivation and compare the differences between Liao’s VEB and our versions of
VEB with Newton steps.

The difference between the methods can indeed be traced back to an error in the
derivation of Liao’s VEB, which was published in [Liao, 2006]. The methods still agree
on the criterion used to compute the update iterations: both optimize the log label
probabilities summed over all hidden nodes with each label probability term equivalent
to (5.31). In the following Newton step computations however, Liao does not distinguish
the differentiation with respect to the model functions of local factors and the model
matrix elements of pairwise factors. He differentiates the label probabilities (5.31) with
respect to a column fc[j, ·] of the model matrix, but fails to see that the column elements
are different parameters. Instead, he implicitly uses

∂fc[j, k′]
∂fc[j, k]

!= 1 for all k′ in its domain {1, . . . ,K}, K ≥ 2,

which is obviously false. This makes the resulting derivatives independent of the neigh-
boring label variables, and that dependency is reintroduced by taking an unjustified
additional weighted expectation over the neighbor labels in the weighted least squares
problem. This step is incorrect because despite their notation “P (yt |ve(xt))”,7 the

7The vector xt includes the labels y〈nbv(Yt)〉 of the neighboring variable nodes.
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formula with respect which the derivatives are taken does not stand for some condi-
tional distribution P(Yt | nbv(Yt),X), which may need to be multiplied by something like
P(nbv(Yt) |X), but is by their definitions eventually equivalent to the unrolled marginal
probability of the CRF (5.31).

Interestingly, we will see in chapter 6.3 that Liao’s VEB performs better than VEB
with Newton steps. Irrespective of the derivation the factor updates of Liao’s VEB have
similarities with one of our versions, namely VEB with piecewise Newton steps (cf section
5.4.3 (iv)). Their updates are defined as

fc[j, k] =

∑
ψ{Yt,Ys}∈Ψc

(1〈y∗t = j〉 − P(Yt = j |x)) ·ms→{Yt,Ys}[k]∑
ψ{Yt,Ys}∈Ψc

P(Yt = j |x)(1− P(Yt = j |x)) ·ms→{Yt,Ys}[k]
(5.64)

while the Newton step is

fc[j, k] =

∑
ψ{Yt,Ys}∈Ψc

(1〈y∗t = j〉 − P(Yt = j |x)) · P(Ys = k |Yt = j,x)∑
ψ{Yt,Ys}∈Ψc

−1〈y∗t = j〉[P(Ys = k |Yt = j,x)]∗ + [P(Yj = j, Ys = k |x)]∗
(5.65)

where [p]∗ abbreviates p (1− p).8 It is easy to see that the numerators in both formulae
bear a striking similarity. Taking into account the definition

P(Ys = k |Yt = j,x) ∝ exp{F{Yt,Ys}[j, k]} ·ms→{Yt,Ys}[k], (5.66)

they only differ in a single factor. Still, the relationship between the denominators
remains unclear. It has to be pointed out however that the Newton steps had to be
limited to stabilize the optimization procedure (see section 5.4.3 (iii)), which was done
by modifying the denominator of (5.65). This issue never occurs in Liao’s derivation
because his weights, which are the summands in the denominator of (5.64), are always
positive. In fact, it may be possible that — by coincidence — Liao [2006] has found a
stabilization heuristic which works particularly well in practice.

An only apparent difference is the criterion for selecting the factor whose update
yields the best improvement (cf. section 5.4.4). The improvement quantity (5.63) is
the difference of the maximum improvement and the fitting error. Liao et al. [2007]
omit the former term, which does not depend on the update f but is usually specific
to the variable node Yt and the factor template to be evaluated. However with their
mistake in the computation of the derivatives, the dependency on the factor template

8These formulae are simplified for better readability. Every summand should in fact be duplicated
with the roles of j and k as well as Yt and Ys switched (cf. example 5.4 on page 60). Also the factors
η from (5.61)–(5.62), which normalize the contribution of each label to the update criterion are omitted
in (5.65). The factors η are not relevant in many CRF topologies.
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is eliminated (where their derivatives ∇t(y∗,x)[c, i] and Wt(y∗,x)[c, i] are not zero, they
are a constant for all c and i). Furthermore the strategy of updating one neighboring
factor of every “node type” (see section 5.4.5) causes that those likelihood gains which
need to be compared sum over the same sets of hidden nodes Yt. Therefore omitting the
maximum improvement term in Liao’s VEB does not affect the selection criterion. The
versions agree on the principle, but the actually chosen factors naturally still differ due
to the different derivatives.

As a mean to make virtual evidence boosting computationally more efficient, Liao
et al. [2007] claim that it is sufficient to run only one iteration of loopy belief propagation
at the beginning of each VEB iteration (cf. algorithm 5.1, line 4). Apart from the lacking
theoretic justification, we have found that the reported performance during training may
be significantly different to the test performance on the training data (!). With the limited
inference during training, the algorithm reports a correct classification rate of 99% while
the exact inference (the CRF was a linear chain in that setup) on the same data yielded
only 93% correct classification. Therefore we decided to always run belief propagation
until convergence in all versions of VEB for the following experiments. The iterations of
VEB have a comparable runtime to other learning methods requiring inference, but by
performing an approximation to Newton steps the number of iterations is much smaller
that in other approaches.
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Chapter 6

Recognizing Spatial Context

This chapter describes the setup, execution, and results of the activity recognition task
pursued in this work. We recognize spatial context from data recorded with a wearable
sensor system. The main emphasis is placed on comparing the recognition performance
with different sensors and features. Furthermore the experiments are repeated for each of
three versions of virtual evidence boosting for an empirical comparison of the algorithms.
The setup and features extracted from the two sensor systems, a camera and a multi-
sensor integrated device are introduced in the first section. Then we give an overview
over the recorded data traces, followed by the experimental results.

6.1 Sensors and Features

The spatial context, the type of place a person is currently in, can be determined by sim-
ply measuring properties of the environment. Some of these properties are noise, ambient
light, temperature, or barometric pressure, and there are simple sensors to measure them.
For humans however the main source of information are the eyes. Still, the correspond-
ing artificial sensor, a digital video camera, has rarely been used in activity recognition
applications (cf. related work in section 2.3). This is because there are several issues that
are specific to that sensor. First of all, cameras are directed sensors (omnidirectional
cameras are hard to accommodate in a wearable setup), so they only show what’s right
in front of them, which might be quite uninformative. Secondly they produce rich but
also very variable data which poses the question of how to design features to extract
relevant information. Also the large amount of data may exceed the processing power of
a portable device, which is however not a problem in our offline evaluation approach.

Despite these issues, we will investigate the use of camera images for detecting spa-
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(a) (b) (c)

Figure 6.1: Wearable sensor system consisting of a web-cam (b) and the multi-sensor
board (c).

tial context and compare them to the results that can be achieved with other sensors,
including audio, light, and temperature sensors. To do this, we first need to identify
suitable image features. As a baseline, we will include the feature set used by Torralba
et al. [2003] to detect individual rooms as well as spatial context categories. A further
two feature sets are taken from scene classification research, which attempts to classify
photographs by the depicted scene or background (cf. section 2.5). After introducing the
hardware in the first subsection, the three image features will be presented in sections
two to four, followed by the features extracted from the other sensors modalities.

6.1.1 Sensor Hardware and Setup

The sensor system used for our experiments is very lightweight and puts little burden
on the wearer. It includes integrated devices that have been developed at the University
of Washington in cooperation with the Intel Research Lab in Seattle. In detail, the
components are a Logitech QuickCam For Notebooks Pro, which is connected via USB
to an Intel Mote (iMote), and a multi-sensor board (MSB) that integrates eight sensor
modalities on a tiny footprint of only 48mm × 36mm (cf. figure 6.1c). The MSB is sitting
on top of a further iMote, which runs the software for recording and saving the data to a
SD Card. The camera system produces a series of 24 bit color images with a resolution
of 640×480 pixels at a rate of 1 image per 1.3 seconds.

Both devices are attached to the strap of a shoulder bag, with the MSB clipped on
at the shoulder facing upwards and the camera attached at the chest facing forward (see
figure 6.1a). The iMote for recording the camera data is placed inside the bag in the back.
While this requires the USB cable to run alongside the bag’s strap, the camera and both

75



(a) (b) (c)

Figure 6.2: (a–b) Response of vertical and horizontal differential filters to an image
captured on campus. (c) All steerable pyramid features for that image. Scales are
arranged in rows, with the response from small structures at the bottom, and orientations
in columns. The first and fourth block in the second row from the bottom are the response
magnitudes of (a) and (b).

recording devices could also have been easily integrated in a single case and mounted
at the shoulder. The usability of a system strongly depends on the ease of wearing the
required devices, and a single device clearly surpasses a system where several devices
have to be mounted in different locations of the body [cf. Bao and Intille, 2004, Kern
et al., 2003]. However the camera and the light sensors on the MSB always have to be
carried visibly which may affect the acceptance of such a system in civil applications.

6.1.2 Steerable Pyramid Differential Filters

A potentially interesting feature is the variability of the light intensity in the image as
they result from edges, textures, and objects in the scene. These intensity changes can be
characterized by their scale (abrupt or gradual changes) and their orientation (direction
of the gradient). A further useful information is the location in the image where changes
occur.

In order to capture these properties in a set of feature values, Torralba et al. [2003] use
the steerable pyramid image decomposition [Simoncelli and Freeman, 1995]. This image
processing method decomposes the image into several images that each only contain a
certain structure scale and certain structure orientation by applying a set of image filters.
For each pixel and each filter this yields a response value indicating the presence of an
edge or texture of the respective scale and orientation around the pixel (see figure 6.2
a–b). To extract feature values from the set of filter response images, Torralba et al.
[2003] average the magnitudes of each of them over a total of 16 subblocks (4 rows by 4
columns), retaining some information about the location of structures in the image (see
figure 6.2c).

The decomposition performed by the steerable pyramid filters is best described in
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Figure 6.3: Idealized representation of the spectral decomposition performed by the
steerable pyramid in Fourier space. The shaded area corresponds to the frequency band
passed by the filter used for figure 6.2a. (Figure source: [Simoncelli and Freeman, 1995])

Figure 6.4: Differential filters for the six orientations 0◦, 30◦, 60◦, 90◦, 120◦, 150◦.

the Fourier domain. The scale subbands, rings around the origin, are divided into 2K
segments (K is the number of orientations), and each of the filters is a band-pass filter
for one of these ring segments and its point symmetric opposite (see figure 6.3).

The implementation approximates the ideal filters in the spatial domain in an iter-
ative manner. Similar to a multiscale decomposition like the Gauss-Laplace pyramid,
different scales of the image are produced by repeatedly downsampling the image from
the preceding iteration to half its resolution. Then, each of the scaled images is convo-
luted with a set of directional derivative filters that each respond to a distinct angular
range (see figure 6.4). These filters are simply rotated (“steered”) copies of each other.
Since the scaled images have variable sizes and the filters’ sizes are fixed (7×7 pixels),
this responds to structures at different granularity.

The number of orientations, scales, and averaging windows are parameters that need
to be chosen. Following Torralba et al. [2003], six orientations (0◦, 30◦, 60◦, 90◦, 120◦,
150◦) and 16 averaging windows are deemed reasonable. Since the images of Torralba
et al. have a quarter of our resolution (theirs is 160×120 pixels), we use six instead of
four scales so that the largest ratio of filter to image size is the same.
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Instead of using the resulting 384 (here 576) features directly, Torralba et al. [2003]
use the first 80 principal components. Principal component analysis (PCA) is a well-
known dimension reduction method which rotates the feature space so that the variation
within the data points occurs in the first dimensions of the rotated space (the “principal
components”) and hence the remaining dimension can be omitted. This also results in
some decorrelation of the input data, which is crucial for generative statistical models
which assume independent feature components. While this neither the case here nor in
[Torralba et al., 2003] the shorter and hence more concise feature vector — the PCA
reduces 576 values to 80 values — may still allow better results. This will be evaluated
through experiments (see section 6.3.1).

Motivated by the observation that the location of structures in the image may be
very variable, we also evaluate a new version of the steerable pyramid feature set which
adds the sums over rows and columns of the image subblocks as features. Recall that
the camera is fixed to the body of the wearer, and so the image shifts horizontally when
the person turns. With this extension the learning algorithm may for example choose to
use the filter response averaged over a horizontal strip of the images.

6.1.3 Histogram Features

Other than grayscale variations, the color distribution in the image should give very
strong clues about the spatial context. It has to be noted that the camera performs
white balance in an automatic and inaccessible way and hence some color information is
lost. However the common color features from scene classification, which work well on
automatically balanced photographs, can still be used. This section gives details about
the color histogram features used in the experiments, followed by color-spatial moments
in the next section.

Definition 6.1. Let an image be defined as an array im[i, j] of values from a color space
C. LetH = (Bn)1≤n≤N be a partition of the color space C. The histogram h = (hn)1≤n≤N
with respect to the partition H is then defined as

hn =
I∑
i=1

J∑
j=1

1〈im[i,j]∈Bn〉 ,

i. e. the number of pixels in each of the bins Bn.

In theory the choice of color space is irrelevant for the expressiveness of histograms.
In practice however the bins are conveniently chosen to be axially parallel cuboids, which
allows to describe them by two inequalities per color channel. Therefore a color space
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(a) (b)

Figure 6.5: (a) Partition by saturation and value. (b) Partition by hue.

should be chosen where the cross-product of channel ranges yields bins which actually
contain similar colors. A color space like the HSV (hue, saturation, value) space [Smith,
1987] is more suitable for this than other color spaces like RGB because the channels
capture meaningful concepts which are fairly stable under variations of the other channels.
The hue for example is an invariant aspect of color across different brightnesses and
saturations, given these are not too low (cf. figure 6.5a). HSV is not perceptually uniform,
i. e. the distance between colors in the color space are not proportional to the perceived
difference of the colors (even when using the Euclidean distance in the cone-shaped
embedding, cf. section 6.1.4). However this can be easily accounted for by using non-
uniform bin sizes.

For the bin partition of the HSV color space, we closely follow the approach by
Lei et al. [1999]. Regarding the saturation-value plains for fixed hues, three regions are
identified (see figure 6.5a): For V ≤ 0.2 the color is too dark to perceive hue or saturation,
so all these colors are put in a bin for black. Colors triples with a very low saturation
S ≤ 0.2 are considered grayscales. We split these into 4 ranges from dark gray to white,
yielding a total of 5 hue-independent bins. The remaining color space (V > 0.2, S > 0.2)
is the range where the hue is taken into account. It is split into color ranges that can
be easily named, which approximately yields a perceptually uniform split (figure 6.5b).
These colors are red, orange, yellow, green, cyan, blue and pink. Finally, each of the
colors is subdivided into four bins: by saturation with a threshold of S = 0.65 and by
value at V = 0.7 (figure 6.5a). The total number of bins is hence 5 + 7 × 4 = 33. See
figure 6.6c for an example histogram.

This partition has the desirable property of not having too many bins and should not
allow for significant overfitting. However it is not clear if the thresholds are chosen well
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Figure 6.6: (a) Original image. (b) Segmented image. (c) Histogram features. (d) Bin
center of mass features.

and so there may a lot of variation across a threshold in similar images. To account for
this, histograms with overlapping or fuzzy bins could be used. A simple alternative is to
add aggregates of neighboring bins to the feature vector, possibly eliminating the effects
of a badly chosen threshold and giving the learning algorithm more yet stable features to
choose from. The aggregates added span accross saturations, values, neighboring hues,
neighboring grayscales, all grayscales, or all light colors, totaling to 43 new features. This
addition will be evaluated empirically in section 6.3.1.

6.1.4 Color-Spatial Moments

Histograms do not capture any information about the spatial distribution, i. e. the posi-
tion in the image, of colors. This may also contain valuable information about the scene,
although, unlike in scene classification tasks [Vailaya et al., 2001, p. 121], our outdoor
images usually have a gray rather than blue sky at the top (see figure 6.6 a–b).

While it is thinkable to create a joint histogram over colors and positions, an excessive
number of bins would be required to cover the resulting five-dimensional space. So only
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some of the dimensions are discretized by a histogram and the marginal distribution
over positions or colors are described more concisely by its moments, i. e. mean and
(co)variance. Both approaches, spatial moments for histogram bins [Lei et al., 1999] and
color moments for subblocks of the image [Stricker and Orengo, 1995], are investigated
as features for our experiments.

6.1.4 (i) Bin Center of Mass Features

The mean image location (̄ın, ̄n) of the pixels in histogram bin Bn, commonly referred
to as center of mass, can be computed as follows:

ı̄n =
1
hn

I∑
i=1

J∑
j=1

i · 1〈im[i,j]∈Bn〉 and ̄n =
1
hn

I∑
i=1

J∑
j=1

j · 1〈im[i,j]∈Bn〉 ,

with the pixel counts hn defined as in definition 6.1. Examination of the formula reveals
that the center of mass is undefined in case that the bin is empty. Also, it is undesirable
that the center of mass may be fairly random in case of few pixels in a bin. An effective
way to stabilize the value in both cases is to assume that each bin contains a small, fixed
number of pixels at the center of the image. This pulls the the center of mass towards
the center of the image as the number of pixels in the bin approaches zero. In a nutshell,
the feature values are the stabilized and normalized offsets of the centers of mass to the
image center:

ı̄ ′n =
1

hn + γIJ

I∑
i=1

J∑
j=1

2i− I
I
· 1〈im[i,j]∈Bn〉 ,

and ̄ ′n defined accordingly. The stabilization coefficient is chosen to be γ = 0.0025. With
the image resolution of I = 480 and J = 640 this results to adding 768 pixels at the
center. For populated bins this has no noticeable effect on the center of mass, while
ensuring bound and well-defined values in case of empty or almost empty bins (cf. figure
6.6d).

6.1.4 (ii) Color Moments

The second set of color-spatial moment features is extracted by splitting the image into
subblocks and computing HSV color moments for each of them. No stabilization is
necessary for these features because each of the “bins” contains a fixed number of pixels.
From the design of the HSV color space, e. g. the hue is undefined at a saturation S = 0
and neither hue nor saturation are defined at a value V = 0, it is advisory to not compute
the moments on the HSV triples directly. Instead, the color space is embedded into the
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Figure 6.7: HSV color space embedded in R3 (image source: de.wikipedia.org/wiki/
Bild:HSV_cone.jpg)

R3, yielding the typical inverse color cone (figure 6.7).

Definition 6.2. The HSV color cone embedding φ(H,S, V ) in R3 is defined as

φ(H,S, V ) =

SV cosH
SV sinH

V

 .

Having computed the center of mass in the embedding space, its x and y coordinates
capture a property that could be called color dominance. Knowing that virtual evidence
boosting (with the chosen function approximator decision stump) only uses one feature
component at a time, having these two values directly as features may be limiting. It
would require two learning iterations to capture the dominance of green, while only one
would be required for red. To reduce the effects of the standard, but still arbitrary
choice of having red at H = 0◦, the center of mass is described by three “coordinates”
with respect to axes at 0◦, 120◦, and 240◦ angles to the x axis, instead of the two Cartesian
coordinates. The three feature values extracted from the (x, y) coordinates of the center
of mass hence are x, 1

2(y −
√

2x), and 1
2(−y −

√
2x).

Furthermore, the first and second moment of the V component are computed by the
standard formulae and used as features. And finally the average of the radius in the
projection S · V is added as a further feature with the idea to capture the effective color
saturation in the image block. With six color moment features for each subblock of and
an even 3 by 3 partition this totals in 54 feature values.
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sensor stream sample rate extracted features
acceleration 3× 256 Hz 4× 64 + 7
audio 16348 Hz 27 + 38
barometric pressure 14 Hz 8
visible light (high sampling rate) 128 Hz 25
visible light 3 Hz 14
infrared light 3 Hz 14
relative humidity 1 Hz 8
temperature (from barometer/temperature sensor) 14 Hz 8
temperature (from humidity/temperature sensor) 1 Hz 8

Table 6.1: Multi-sensor board data streams and number of extracted features

6.1.5 Multi-Sensor Board Features

The multi-sensor board combines sensors for audio, visible light, infrared light, tempera-
ture, barometric pressure, and humidity as well as a three-way accelerometer. It produces
several data streams at very different data rates, from 1/second to 16384/second. To ease
the integration into a temporal statistical model, features are extracted at a uniform data
rate of 4 Hz, spanning sensor- and feature-specific windows of the input data streams.
However all features only use data from the past, so that they would be suitable for an
online inference system (cf. section 1.1.1). The feature set is taken from Subramanya
et al. [2006] with only a single modification (see the audio features below), so only a brief
overview shall be given here. Also see the publication by Lester et al. [2005], who first
introduced most of the features.

Several features are based on the immediate values of the data streams, including the
mean, (co)variance, differential values, or the response to low-pass filters. For the sensors
that have high data rates — the microphone, accelerometers, and the high frequency
sampling visible light sensor — the temporal patterns are more interesting. They are
captured with several FFT-based features: mean response for frequency coefficient bands
with linear or logarithmic band widths, Mel-frequency cepstral coefficients (a feature
often used in speech recognition), and spectral entropy and energy. These allow for
example to recognize the regular acceleration patters from walking or the 50/60 Hz
frequency from fluorescent lamps. As for the accelerometer, the frequency features are
computed for the norm of the 3-dimensional acceleration vector and additionally for each
component. A further feature is created by integrating the acceleration over windows up
to 60 seconds, aiming to capture the gravity vector. The features are typically extracted
from longer windows if the data rate is low. This ranges from approximately 0.03 seconds
(repeated eight times so that it adds up to 0.25 seconds, the feature cycle time) for some
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dataset # of traces ‘inside’ ‘outside’ ‘on a bus’
day 18 60% 40% –
day/bus 18 56% 37% 6%
anytime 24 51% 49% –
anyt/bus 24 43% 41% 15%

Table 6.2: Name and statistics of datasets.

of the audio features up to 10 seconds for humidity and temperature. Unlike in previous
work, we don’t use the 8× 27 audio features from the 0.03 second data windows directly,
but average those vectors over the eight repetitions. A summary of the features can be
found in table 6.1.

6.2 Recorded Data

For evaluating sensors and features 24 data traces have been recorded with an average
length of 27 minutes, totaling to just under 11 hours. The recordings were made during
the daily movements of the author and span trips by bus and foot on the University
of Washington campus, between campus and home, in the nearby commercial area on
‘the Ave’, and other parts of the city. The indoor places include the Paul Allan Center
and the Husky Union Building on campus, restaurants and shops on the Ave, Northgate
Mall, and the home of the author. The recordings were annotated with the true labels
while the data was recorded by selecting the current state on a handheld computer. The
following state was captured:

Spatial context with the labels ‘indoor’, ‘outdoor’, and ‘on a bus’.

Mode of movement with the states ‘stationary’, ‘walking’, ‘going upstairs’, ‘going
downstairs’, ‘elevator up’, and ‘elevator down’. These low-level activity labels were
captured to get a more challenging task for the learning algorithms (see section
6.3.3). The motion state only refers to the movement performed by the individual,
so even on a bus the motion labels are ‘walking’ and ‘stationary’.

The data traces were recorded during different times of the day, most of which in normal
daylight (18), but also a few at dawn (2) and at night (4). Since detecting spatial context
is obviously harder if there are different lighting conditions in the ‘outside’ category, we
also run tests which only use the traces recorded during the day. Also, in a further
simplification, we run tests on data where all instances of the ‘in a bus’ spatial context
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class has been removed by cutting them from the traces. The datasets are summarized
in table 6.2.

6.3 Experiments and Results

To evaluate sensors, features, and methods, we train and test conditional random fields
on the sequences of feature values computed from the recorded data. The first subsection
focuses on comparing camera and multi-sensor board features, and therefore all experi-
ments in that section run the same learning method, namely Liao’s VEB. Then, for the
method comparison in subsection two, we also report and discuss the (average) accura-
cies which can be achieved with the other versions of VEB or LogitBoost on the feature
comparison experiments. Finally in the third subsection, we present further experiments
and results with all methods on more complicated CRF topologies.

Every experiment consist of several runs for leave-one-out cross-validation. For every
trace we train a CRF with all other traces, and then test how accurately the labels can be
predicted with that CRF on the one “unseen” trace. The average over these repetitions
is the reported accuracy. The label prediction is based on marginal probabilities (cf.
equation (5.6) on page 40), and the performance measure is the correct classification rate
(cf. definition in remark 3.2). The number of training iterations is limited to 15 for both
VEB and LogitBoost, and all methods use step functions as function approximators.

For the experiments which only infer spatial context (sections 6.3.1 and 6.3.2), the
statistical model is a linear chain conditional random field (cf. figure 5.1 on page 36).
We infer the spatial context at the rate of the images, i. e. there is one label variable Yt
for approximately every 1.3 seconds. Consequently we get 5–6 feature vectors from the
MSB for every time slice, i. e. pair (Yt,Xt). Instead of concatenating these vector and
then modeling an accordingly sized input variable Xt, we chose to average the vectors.
This may remove some information — transitions may be detected more accurately if
the the most recent values were available separately — but also avoids excessively large
numbers of features. The model for the joint recognition of activity and spatial context
will be presented later in section 6.3.3.

6.3.1 Feature Comparison

For the camera features introduced in section 6.1, there are different versions possible
which add or remove some of the feature values. We will first present the results for all
feature versions on the smallest subset of our recordings, the day dataset, to get an idea
which of them merit a further investigation. With the results on all datasets we will first
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feature set accuracy description #
hist 81.2% HSV color histogram (see section 6.1.3) 33
hist+agg 81.7% ditto with additional aggregate bins 76
hist+centers 89.6% histogram and bin centers of mass (section 6.1.4 (i)) 99
hist+vmean 82.6% ditto, but only with rows of centers 66
hist+agg+centers 88.0% histogram with aggregates and bin centers 228
hist+agg+vmean 83.5% analogously 152
moments mean 82.4% color moments (1st order moments only) 45
moments 80.6% color moments as described in section 6.1.4 (ii) 54
moments all 78.6% ditto with 2nd order color dominance and saturation 90
spyr(4) 75.7% steerable pyramid (section 6.1.2), 4 scales 384
spyr(4)+row sums 78.6% ditto with row sums 504
spyr(4)+agg 78.1% ditto with row and column sums 600
spyr(6) 80.6% steerable pyramid with all 6 scales 576
spyr(6)+row sums 81.0% ditto with row sums 756
spyr(6)+agg 81.3% ditto with row and column sums 900
spyr pca(4, 80) 78.3% PCA of spyr(4) 80
spyr pca(6, 80) 78.9% PCA of spyr(6) 80
all cam w/ raw spyr 86.0% hist+agg+centers, moments, spyr(6) 858
all cam w/ spyr agg 86.5% ditto, but only with sypr row and column sums 606
all cam w/ spyr pca 86.9% ditto, but only with PCA of spyr(6) 362

Table 6.3: Test performance for different camera features on the dataset day using Liao’s
VEB. (The last column states the length of the feature vector.)

compare camera features amongst each other, before discussing the question of the best
sensor system for recognizing spatial context.

Since virtual evidence boosting performs feature selection, learning should be the
more successful the more features the algorithm has to choose from. However, this
may be counteracted if overfitting occurs, i. e. the model includes dependencies between
features and labels which happen to be present in the training data but are not there in
general (cf. remark 3.4). Adding a particular set of features therefore may increase the
performance if these features have strong and principled correlations with the labels, but
also decrease the performance if they make the learner more susceptible to overfitting. On
this background we compare different versions of the camera features presented earlier.
Details about their composition and the resulting accuracies on the day dataset are shown
in table 6.3.

These experiments in particular allows us to draw conclusions about those features
which don’t belong to all versions of a feature set. For the steerable pyramid features
(non-PCA) we see that in particular adding two scales for small structures improves the
classification performance. Interestingly, this is not the case for the ‘spyr pca’ feature sets.
Also, the bin centers prove to be a successful addition to the color histograms, especially
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feature set day day/bus anytime anyt/bus
hist+agg 81.7% 75.5% 64.4% 60.8%
hist+centers 89.6% 82.0% 78.9% 77.5%
hist+agg+centers 88.0% 82.0% 82.0% 77.5%
moments mean 82.4% 74.7% 71.9% 66.1%
moments 80.6% 77.4% 72.4% 68.3%
spyr(6) 80.6% 76.7% 79.4% 68.1%
spyr(6)+agg 81.3% 78.3% 78.9% 70.2%
spyr pca(6, 80) 78.9% 74.1% 74.8% 67.1%
all cam w/ raw spyr 86.9% 81.9% 84.2% 84.0%
all cam w/ spyr agg 86.0% 82.7% 81.3% 79.5%
all cam w/ spyr pca 86.5% 81.3% 86.7% 80.4%
light 97.4% 92.0% 86.2% 83.1%
audio 95.0% 92.5% 92.6% 88.7%
accel 85.0% 82.0% 82.5% 79.5%
temperature 87.9% 83.4% 85.5% 74.4%
light, audio 97.8% 97.0% 91.0% 93.1%
all msb 97.8% 97.5% 93.7% 95.5%

Table 6.4: Accuracy in recognizing spatial context with camera and MSB features on all
datasets using Liao’s VEB.

and contrarily to expectations the horizontal alignment of the centers of mass. Whether
the accuracy benefits from the aggregate histogram bins is however rather questionable.
The second order color moments actually decrease the performance compared to only
using means in this data set. This is different for the following experiments where the
variance of the HSV value color channel (the only second order moment in the ‘moments’
feature set) has an overall positive effect.

For the comparison of the features amongst each other, we also run tests on the more
difficult tasks which include the recordings at night and/or the third spatial context label
‘on a bus’. The overall results are shown in table 6.4. Furthermore table 6.5 shows from
the same experiments the average accuracy on the dusk and night traces only. As for the
design of image features for spatial context, we can draw the following conclusions:

• From the color-spatial moment feature sets the histogram with bin center features
(‘hist+centers’) are clearly better than the color moments on image subblocks.
Their principal difference is the granularity at which the properties of the pixels —
their image position and color — are mapped to feature values (cf. section 6.1.4).
The histogram with bin centers uses a fine resolution for the color information (33
bins) and only the first moments for the position (2 values). This contrasts the color
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feature set anytime anyt/bus
hist+centers 71.3% 63.8%
hist+agg+centers 72.9% 63.3%
moments 58.0% 58.5%
spyr(6) 82.6% 66.2%
spyr(6)+agg 81.3% 65.4%
all cam w/ raw spyr 83.7% 76.2%
all msb 83.7% 91.2%

Table 6.5: Average test result for the traces recorded at dawn or night with model
trained on the full dataset (except the test trace). The omitted feature sets yielded lower
accuracies.

moment features with 9 bins for position and only 6 moments for color. Since the
former performs better, we can conclude the color distribution is more important
than the color’s positions in the image.1 Nevertheless, it has to be noted that
the position of colors in the image is relevant and that using color-spatial moments
instead of only histograms significantly improves the accuracy in recognizing spatial
context with a wearable camera.

• As for the direct comparison of steerable pyramid and color features, it is clear that
color features (namely both the feature sets ‘hist+centers’ and ‘hist+agg+centers’)
surpass the performance of only using the former on the daytime traces. This is also
true for the average accuracy with the traces recorded at dawn and night included.
In particular for these difficult traces however, the data in table 6.5 shows that
the steerable pyramid features better cope with the variable lighting conditions in
the ‘outside’ category. Comparing the ‘spyr’ accuracies for the anytime dataset in
tables 6.4 and 6.5 even implies that these features slightly benefit from dawn and
nighttime situations. While more data would be required to verify this, we can
generally agree with the conclusion of Torralba et al. [2003] who state that color
features are less suited for recognizing spatial context if the colors vary dramatically
within some of the categories. This is interesting insofar as our color features
are much more elaborate than the simple features (PCA on raw images) used by
Torralba et al.

• For the day dataset the best performance is achieved by exclusively using the feature
1The color moment features have a disadvantage in this comparison because they are lacking color

information which is independent of the image position. A color moment vector describing all pixels in
the image should have been included in the feature set for a better comparability. Despite this the given
conclusion should be valid.
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set ‘hist+centers’ although these features are also included in all of the combined
‘all cam’ sets. This shows that VEB may indeed overfit. Using other features than
the histogram and bin center features yielded a 1.3 to 2.4 percentage points better
training performance (data not shown) but decreased the test performance by to
2.7 to 3.6 points. This allows to draw the general conclusion that despite feature
selection there are cases where a manual reduction of the feature set to the most
relevant features increases the generalization performance. For the harder datasets
this problem is less prominent and the best accuracy (only using the camera sensor)
is in fact achieved with a combination of color and steerable pyramid features.

• While the principal component analysis (PCA) significantly reduces the number of
steerable pyramid features, it also appears to be removing significant information
(if used by themselves). PCA is chosen in the design of features to reduce the di-
mension of the input to the learning algorithm. However PCA may also counteract
the feature selection principle (cf. section 5.4.4). Commonly each principle com-
ponent combines all entries of the feature vector and so prevents that the learning
algorithm only picks those features which clearly have a strong correlation with
the spatial context label. A further negative effect of the PCA could be that it
reduces the discriminative power of the features since it is computed only based
on the variance in the features, ignoring the labels. This cannot be overcome by
increasing the number of principal components because VEB rarely even chooses
the 50th component or later ones.

The effect of applying PCA if the steerable pyramid features are used in combina-
tion with other camera features however remains inconclusive.

Even with the best camera features, the results in table 6.4 show as expected that
the multi-sensor board is generally more suitable for recognizing spatial context than a
wearable camera. Especially the light sensors (cf. table 6.1) and the microphone are for
obvious reasons very useful for distinguishing the situations inside, outside, and on a bus.
With all MSB sensors an enormous correct classification rate of 97.5% is archieved for
the daytime traces and a still very impressive 95.5% for all traces.

The feature set ‘all msb’ has also been used previously by Subramanya et al. [2006]
with a minor difference in the audio features (see section 6.1.5). Their best reported
accuracy in detecting spatial context without additional input from GPS is 89.4%. It
can be assumed that their learning problem was harder because even with identical
learning methods, namely LogitBoost, all our datasets can be learned with an accuracy
of at least 93.4% (data not shown) and theirs only with 83.8%. In a discussion with the
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feature set all traces dusk&night only
all cam w/ raw spyr 84.2% 83.7%
all msb 93.7% 83.7%
all msb, hist+agg+centers 94.3% 88.0%
all msb, spyr(6) 95.0% 91.8%
all msb, all cam w/ raw spyr 94.9% 91.7%

Table 6.6: Accuracy averaged over all traces and only traces recorded at dusk and at
night of the anytime dataset using Liao’s VEB.

authors it was concluded that this may have been due to their more general ‘vehicle’
category which was harder to detect than the bus context in our data.

An investigation of the accuracies on those traces of the anytime dataset which were
recorded at dawn or at night (see table 6.5) shows that the MSB features similar to
the color features don’t generalize particularly well across lighting conditions. This is
most prominent in the anytime dataset because the bus category is just as easy to
detect at night if the MSB’s audio sensor is available. While there is barely any room
for improvements on the day datasets, combining MSB and camera features can in fact
improve the performance on the datasets which include the difficult nighttime traces.2

Table 6.6 shows that the accuracy is increased by up to 1.3 percent points which can be
explained by the better performance on the six dusk and night traces.

To summarize, our experiments confirm that sensors which directly measure proper-
ties of the environment are more suitable for recognizing the spatial context categories
‘inside’, ‘outside’, and ‘on a bus’ than a wearable camera. This is not surprising because
some of the MSB measurements like high light intensities or diesel engine noises almost
directly imply some of the category labels. If however the dependencies get more complex,
like in case of the variable light in the outside category, the high-dimensional measure-
ments of the camera sensor turn out to be an advantage. Therefore it can be expected
that in a more complex task, e. g. with more spatial context categories, a rich feature set
of color-based and color-invariant camera features will be a valuable supplement to the
multi-sensor board.

6.3.2 Comparing the Versions of Virtual Evidence Boosting

In this section we present results for the empirical comparison of Liao’s virtual evidence
boosting and the versions developed in the context of our re-derivation of VEB (section

2The accuracies with combined MSB and camera features like in table 6.6 were +0.2% for day, −0.2%
to −0.4% for day/bus, and −0.5% to −0.8% for anyt/bus in comparison to “all msb”. Overfitting seems
to particularly affect camera features in the bus context.
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training method average accuracy difference
Liao’s VEB 83.06%
VEB with piecewise Newton steps 81.93% −1.14%
VEB with neighborhood-based Newton steps 81.93% −1.15%
LogitBoost 80.11% −2.96%

Table 6.7: Average accuracy of all experiments (except day/bus for which the LogitBoost
experiments are missing) in the previous section with different learning methods.

5.4). Each experiment for comparing features in the previous section was repeated with
all three versions of VEB, but so far only the results for Liao’s VEB have been shown. For
additional reference we also repeated most experiments (81 out of 100) with LogitBoost
as learning method. Note that VEB is equivalent to LogitBoost if the conditional random
field doesn’t contain any pairwise factors. Also, the VEB versions only differ in how the
pairwise factors are learned (see section 5.4.6), so the comparison with LogitBoost points
out the specific performance gain from learning label dependencies with each method.
We are not comparing VEB to any further learning methods (cf. section 2.2) but refer
the reader to the experiments by Liao et al. [2007].

The average accuracy on the same experiments is clearly better with Liao’s VEB than
with both versions of VEB with Newton steps (see table 6.7). In the direct comparison
by experiment, each of our versions only achieve a better performance than Liao’s VEB
in 13 respectively 14 out of 100 cases. There appears to be no principled pattern behind
these cases (see figure 6.8a), so we can conclude that for the linear chain CRFs used in
all preceding experiments Liao’s VEB is generally the best version of VEB. Our versions
still achieve results which are distinctively better than those of LogitBoost (see also
figure 6.8b), but with our formulae for learning the pairwise factors, only half of the
improvement of Liao’s VEB is gained.

As for the comparison of our versions ‘VEB with piecewise Newton steps’ and ‘VEB
with neighborhood-based Newton steps’ (see section 5.4.3 (iv)), there is no noticeable dif-
ference in the resulting accuracies. If the experiments with day/bus dataset are included
in the averages, the neighborhood-based version is better by 0.04%, but this still rather
supports the conclusion. In individual experiments each of them may be better in some
cases (see figure 6.8c), but this does not justify the higher computational complexity of
VEB with neighborhood-based Newton steps.

In the introduction of the optimization criterion of VEB (section 5.4.2), theoretic
analysis yielded that the optimization process for training a CRF may diverge due to
approximations. Since all versions of VEB agree on the optimization criterion, all of
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(c)

Figure 6.8: (a–b) Accuracy comparison of VEB with piecewise Newton steps to Liao’s
VEB and LogitBoost. The charts for VEB with neighborhood-based Newton steps (not
shown) are very similar. (c) Accuracy comparison of our versions of VEB.
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them could be affected by this. In practice this was however not observed on any of
the experiments for comparing features. There were only two situations in which the
model parameters from the last learning iteration were not chosen as the learning result
(cf. section 5.4.5). In some cases the last iteration(s) could not further improve the
accuracy on the training set, and so the updates of these were discarded by definition.
A slightly more alarming situation occurred when the first iteration which updated the
(only) pairwise factor template decreased the training performance and the following
iterations could not raise the accuracy rate over the high point again. In these cases, the
optimization doesn’t diverge but rather gets stuck at a suboptimal point in the parameter
space. This behavior however only occurred with very uninformative feature sets, like
only acceleration or humidity features, and so even if pairwise factors are not learned
(like by LogitBoost) no better result can be achieved. Since VEB significantly surpasses
LogitBoost in the feature comparison experiments (the latter was more successful than
Liao’s VEB in only 2 out of 81 experiments), it is clear that the theoretically possible
divergence is not an issue on linear chain CRFs.

Having read this conclusion, the reader may ask why the possibility that learning
diverges was still emphasized in the derivation of VEB? The analysis of the optimization
criterion was motivated by observations made on a preliminary recording (camera system
only, not included above) which only consists of a single 25 minute trace split into five
parts for cross-validation. Using Liao’s VEB and the feature set ‘hist+agg’, the learning
process eventually diverges with increasingly overcompensating updates. The reported
accuracy during training increases to approximately 97% around the 13th iteration before
decreasing an irregular downward spiral, reaching accuracies as low as 80%. Note that
those model parameters are used for testing which achieved the best training accuracy, so
just the fact that the algorithm did diverge eventually is not necessarily a problem. The
important question is whether the model instance learned before that is accurate and
generalizes well. The versions of VEB with Newton steps appear to be more resistant
to the divergence issue on that data trace — their accuracies deteriorate by at most 2
percent points after the high point — but the test performance of Liao’s VEB, 94.2%,
is still much better than the other versions’ 89.7% and 89.5% or LogitBoost’s 52.3% (!).
This implies that even if divergence occurs, it still may not have a significant negative
effect on the generally good performance of VEB, in particular Liao’s VEB.

6.3.3 Joint Activity Recognition

The experiments in the preceding sections all only inferred a single hidden state, the
spatial context, and therefore only required a linear chain CRF. In this section the
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(a)

(b)

Figure 6.9: CRFs for jointly estimating mode of movement and spatial context with
ladder topology (a) and asymmetric topology (b).

versions of VEB will be tested on more challenging topologies for joint estimation of
spatial context and mode of movement (cf. section 6.2). Since the motion state changes
more often than the spatial context, we investigated two different topologies: one which
has a label node each for every captured image (figure 6.9a), and one which estimates
the mode of movement at 4 Hz, the rate of the MSB, instead (figure 6.9b). Both CRFs
contain two local factor templates and three pairwise factor templates — one each for
the temporal relationships of the two state components, and one for connecting the state
nodes with each other to represent possible dependencies between activity and spatial
context. The observation for each state component is the feature set ‘all msb’.

The results for both topologies and all investigated learning methods are shown in
table 6.8. For the ladder-shaped CRF these confirm the advantage of Liao’s VEB over the
other versions. For the asymmetric topology however, our version VEB with piecewise
Newton steps achieves a better result than Liao’s VEB, yet both methods are surpassed
by LogitBoost. An investigation of the algorithms’ behavior during training reveals that
this is not a coincidence: In that topology, in particular Liao’s VEB appears to compute
updates to pairwise factors which are too large. After such an updates the accuracy
on the training data decreases and the maximum is not reached again in subsequent
iterations. Consequently the best iterations in each run are quite early (the median is
iteration 7 out of 15) and the best model instances often assumes the state nodes to be
independent, i. e. the model matrices of pairwise factors are zero. The training accuracy
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method state ladder topol. asym. topol.

Liao’s VEB
motion 96.1% 95.2%
context 96.6% 87.8%

total 96.3% 94.1%

VEB with piecewise
Newton steps

motion 95.3% 94.7%
context 95.2% 92.6%

total 95.2% 94.4%

VEB with neighborhood-
based Newton steps

motion 95.5%
context 95.3% infeasable

total 95.4%

LogitBoost
motion 95.4% 95.4%
context 93.8% 93.8%

total 94.6% 95.2%

Table 6.8: Accuracies for jointly estimating mode of movement and spatial context with
different learning methods and topologies for the complete anyt/bus dataset. (The model
learned by LogitBoost doesn’t include any pairwise dependencies.) The input for both
states is the feature set ‘all msb’.

of VEB with piecewise Newton steps is also not entirely monotonic, but when setbacks
occur the accuracy usually recovers (median best iteration is 14 out of 15). Still both
these versions of VEB also appear to be “wasting” iterations on learning the pairwise
relationships and hence are surpassed by LogitBoost. However it also has to be noted
that the good performance of LogitBoost is facilitated by very expressive features on
the one hand (the feature set ‘all msb’), and on the other hand dependencies between
mode of movement and spatial context which can be expected to be rather weak [cf.
experiments in Subramanya et al., 2006].

The described issue is unique to the asymmetric CRF shown in figure 6.9b. The key
difference of this topology to the other investigated topologies is that each spatial context
label node is connected to 5–6 factors with tied parameters, and so learning the parame-
ters for that template appears to be particularly challenging. A principled comparison of
VEB to other training methods on complex CRF topologies however requires more than
one experiment and remains a task for future research.

It would certainly be interesting to see if VEB with neighborhood-based Newton
steps performs better than the other versions of VEB on the asymmetric CRF, since the
piecewise approximation, which is used by both other versions, may have a particularly
large impact in that topology. However due to the complexity which is exponential in the
number of neighboring factors with tied parameters (see section 5.4.3 (iv)), each training
run (out of 24 for cross-validation) took more than a day and so the experiment was not
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completed. Even if the results were better, it is questionable if they justify the much
longer runtime of this version.

The results for the joint recognition of activity and spatial context are again better
than previously published accuracies with the same hardware and features and similar
or the same learning method [Subramanya et al., 2006, Liao et al., 2007]. This is again
due to the fact that we used different data in which not only the spatial context but also
the mode of movement appears to be easier to detect. In our recordings the mode of
movement is dominated by the categories ‘stationary’ and ‘walking’ (56% and 41% of all
labels) which are easy to distinguish with the acceleration sensor.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this work we provided a detailed introduction to virtual evidence boosting , a method for
training conditional random fields which has been recently proposed by Liao, Choudhury,
Fox, and Kautz [2007]. The introduction also comprises the foundations of VEB: The
optimization strategy to learn the parameters of the CRF is based on LogitBoost , so
we introduced and formally derived that method with a particular focus on steps which
remain unclear in the original publication by Friedman et al. [2000]. Key formulae in
VEB are taken from belief propagation, so we also gave a well-founded introduction to
this inference method.

Starting from and closely following the very promising principles of virtual evidence
boosting, we provided a completely new derivation of the method, including a close inves-
tigation of the underlying optimization criterion. We discovered that the exact updates
for pairwise factors computed by Newton’s method make the learning fail, but successfully
stabilized the optimization process with a heuristic limiting the step size. The original
derivation of VEB published in [Liao, 2006] contains an error in the computation of the
Newton steps which interestingly yields naturally stable update iterations. Following
our correct derivation, we developed two new versions of virtual evidence boosting: VEB
with neighborhood-based Newton steps and a computational simplification thereof called
VEB with piecewise Newton steps.

Empirical comparison shows that Liao’s VEB exhibits a performance superior to our
versions of VEB on linear-chain conditional random fields. Still, all versions of VEB
yield a clear performance improvement over LogitBoost by learning label dependencies.
A possible issue with using VEB for complex CRF topologies has been discovered but

97



not fully investigated.
Learning methods like VEB are an important component in human activity recog-

nition applications. We specifically investigated the task of recognizing spatial context
with a wearable sensor system, distinguishing the categories ‘inside’, ‘outside’, and ‘on
a bus’. Spatial context is a notion of location which has only rarely been considered in
previous work. For our task, we compared the use of a wearable camera with color-based
and color-independent features to a multi-sensor board which integrates acceleration,
audio, light, temperature, pressure, and humidity sensors. As expected the overall best
results are achieved with the MSB sensors. Still, the steerable pyramid camera features
are most robust to the enormous lighting difference between day and night within the
‘outside’ category, and so combining camera and MSB features yields the best results in
some of our recordings.

7.2 Future work

While our versions of VEB don’t achieve a better performance than the previously pub-
lished version of VEB, our thorough derivation provides a good basis for future devel-
opments. At the moment, we can identify several measures which may yield improved
versions of VEB.

• The only stabilization heuristic which has been investigated is the one described in
section 5.4.3 (iii). There may be other heuristics which are more suitable.

• Related to this question is the criterion for choosing the factor with the best update
(cf. section 5.4.4) because the current formula is based on the Taylor approximation
of the update criterion (5.28) and so is affected by heuristics like ours which directly
modify the derivatives. It is possible to evaluate the update criterion directly
without having to run inference again, so this may yield a better feature selection
approach.

• GentleBoost by Friedman et al. [2000] is claimed to be more stable than LogitBoost
so it may be worth investigating if the GentleBoost optimization criterion can also
be applied to training CRFs.

Furthermore there are a few open questions about the performance of VEB in practice.
Liao et al. [2007] claim that it is sufficient to run only one iteration of loopy belief
propagation in each iteration of VEB. Due to the issues described in section 5.4.6 we
always ran belief propagation until convergence, and so an empirical comparison is still
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missing. Also, in section 6.3.3 we found that VEB has problems with learning the
parameters of a CRFs with a certain complex topologies. We identified the large number
of factors with tied parameters connected to a single hidden node as possible reason for
this issue, but further experiments would be required to verify this.

Although we investigated several image features which have been successfully used
in previous approaches, our comparison did not include the recently very popular local
descriptors on salient points in the image (cf. section 2.5). Since these descriptors are
only based on grayscales and independent of the position in the image, they may in
fact be very suitable for detecting spatial context from a wearable camera and should
be investigated in future work. Also it is an interesting open question if a bag of words
representation can be directly used as feature vector for VEB or if clustering with Latent
Dirichlet Allocation [Blei et al., 2003] or similar methods is necessary.

A further interesting type of feature with regard to the changing daylight could be
values which depend on the current time. Special care has to be taken to prevent over-
fitting due to limited training data which does not repeatedly cover all times of the day
like in our case. Measures to achieve this could be to only provide discrete time informa-
tion or by only allowing smooth base functions if continuous time features are used. An
easy solution could also be to take the difference of the measured light intensity and a
reference value for the currently expected daylight and to use the result as feature value.
This also remains a task for future work.
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