
High Speed Eye Tracking Using
The Vision Chip

Master Thesis

by

Björn Werkmann

Submitted to the Department of Computer Science at the Technical
University of Darmstadt, Germany

written at the Ishikawa Namiki Komuro Laboratory,
Department of Information Physics and Computing, Graduate

School of Information Science and Technology

University of Tokyo, Japan

Tokyo, August 2005

Supervisor: Prof. Dr. O. v. Stryk

This work has been written by myself, independently, solely based on sources
available at the department and mentioned in the text. It is submitted to the Tech-
nical University of Darmstadt only.

Toyko, August 30, 2005

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Background . 4

1.3.1 The Eye, Eye Movements And Eye Tracking 4

1.3.2 Overview Of Eye Tracking Techniques 7

1.3.3 Health And Safety Considerations 9

1.4 Thesis Overview . 11

2 The Eye Tracking System 12

2.1 Tracking Eye Movements . 12

2.2 Precomputations For The Tracking Phase 15

2.3 Hardware For Tracking . 16

2.4 The Working System . 16

3 Hardware 18

3.1 Hardware Setup . 18

3.2 SR3300 Vision Chip . 18

3.3 Vision Chip Tracking Hardware . 20

3.4 Illumination . 27

4 Software 30

4.1 Microcontroller-Host Communication 30

4.2 Eye Tracker Host Library . 31

4.2.1 Communication . 31

4.2.2 User Interface . 31

4.2.3 Image Analysis . 33

4.2.4 Tracking Interface . 37

4.3 Microcontroller . 40

4.3.1 Calibration Component . 40

4.3.2 Tracking Component . 41

i

4.3.3 Moment Calculation . 43

5 Conclusion 49

5.1 Results . 49

5.2 Future Work . 55

5.2.1 Improving The Eye Tracking System 55

5.2.2 Improving The SR3300 . 56

A User’s Manual 61

B Maintenance Manual 63

B.1 Prerequisite System Setup . 64

B.1.1 Required Libraries . 64

B.1.2 Required Installs . 66

B.2 Building The Programs . 67

B.2.1 Building The Windows Applications 67

B.2.2 Building Microcontroller Programs 68

B.3 Making Changes To The Source Code 69

B.3.1 Use Matlab functionality from a C/C++ program 69

B.3.2 Things To Stay Away From 71

B.4 Testing . 71

ii

Abstract

This work demonstrates the implementation of a high speed eye tracking system
capable of tracking saccadic eye movement. Setting out to capture saccades with
velocities of up to 700o/sec and durations as short as 20ms, the current system
provides a frame rate of 100Hz. To achieve this frame rate, the system utilizes low
cost, small size tracking hardware: the Vision Chip.

The system tracks eye movements based on the pupil position. Segmentation
to isolate the pupil is mainly performed by binarization, and the position is de-
termined based on moments of the pupil area within the binary image. The main
problem solved in this work, is to avoid cluttering of the binary image due to bina-
rization artifacts, and to detect distortions of the pupil that affect the accuracy of
the positional information. A natural cause for distortions is the occurrence of eye
blinks, others are caused by the variation of the appropriate binarization threshold
for different eye positions.

To deal with these problems in realtime, the tracking is preceded by in depth
analysis of grayscale images of the eye, to locate the pupil and to determine a
pupil related feature vector, including a binarization threshold. This information is
acquired for several eye positions, where each threshold is ideal for the position, i.e.,
few binarization artifacts appear.

Using these thresholds, the binarization threshold can be dynamically adjusted
during tracking to reduce the amount of clutter. To detect distortions, the system
also computes a vector of pupil related features at runtime. Using the precomputed
features as constraints, distortions can be detected by comparison.

This is achieved with the required frame rate, by taking advantage of special
Vision Chip functions that support moment calculations. The thesis demonstrates
the calculation of moments up to the second order and gives area and eccentricity
as examples for features, the eye position is computed as the pupil centroid.

These positions are available in realtime or can be stored for off-line analysis.
They are provided as 2D positional information that can optionally be mapped into
screen coordinates to acquire Point Of Regard information. The positional resolution
has been estimated to be between <0.14o and <2.3o over a range of 45o.

Chapter 1

Introduction

This master thesis describes the implementation of a high speed eye tracking system
based on special purpose tracking hardware, the Vision Chip.

The following section explains the need for an eye tracking system with higher
than usual video frame rates. Section 1.2 describes eye tracking systems that already
provide such frame rates and related research in general. Next, a background section
provides information that is relevant for the understanding of the presented system.
The final section gives an overview of the remaining thesis.

1.1 Motivation

In general, the purpose of an eye tracking system is, simply stated, to monitor eye
movements and report the state of the eye as accurately as it is necessary for an
application. The purpose of this thesis is to demonstrate the application of the
SR3300 Vision Chip to the task of tracking eye movements, taking advantage of its
high frame rates.

A possibly reported information is the point of regard (POR), i.e., 2D posi-
tional information as to what the user is regarding in a given plane such as the
computer screen. The presented system provides an approximation to the POR
based on the position of the pupil in the image plane of the Vision Chip.

The high speed requirement as it is stated in the thesis title, is justified by the
fact that eye movements are by no means as smooth as they appear to us from our
viewing experience. Large parts of the movement are determined by saccades, high
velocity changes of our visual focus, with durations of few tens of milliseconds [1, 2]
and velocities of up to 700o/sec [2]. Because of the resulting high speed changes of the
pupil position, high speed eye tracking is necessary in order to accurately capture the
position and in particular to capture the occurrence of saccades. Timely accuracy
of such scale is demanded by existing, diagnostic [3] and interactive applications
[4, 5]. Many applications analyzing visual and cognitive processes, do not require
the exact trajectory during a saccade, as little visual processing is performed at this
time. Nevertheless, awareness of saccades is still important, to, e.g., reduce the size
and complexity of eye movement protocols [6].

Although sufficient for many applications, eye tracking systems that capture

1

the image of the eye with normal video frame rates around 50Hz, cannot capture
saccadic eye movement. For purposes where the eye movement has to be monitored
accurately during the performance of a saccade, or when the beginning of a saccade
has to be detected and reported as soon as possible, such systems are not sufficient,
as large parts of the eye movement are missed between consecutive frames. Also, For
gaze-contingent displays [4] or innovative display techniques [5], where saccades are
used to trigger the update of a display, the delay between occurrence and reporting
of a saccade is crucial and affects overall system performance. For gaze-contingent
displays in particular, shorter delays have been shown to be advantageous and allow
for greater flexibility in choosing system parameters [4].

Existing high speed tracking systems provide saccadic eye tracking at rather
high expense, e.g. [7, 8], which makes them unavailable for some applications. While
these systems usually provide features that justify the cost of several $10,000, some
applications might suffice with a simpler system. For example high accuracy and
a wider variety of tracked parameters, as well as a suite of software tools for data
analysis might not be needed. For applications that do not require maximum spatial
accuracy but require a high frame rate, the presented system provides an alternative
at lower cost.

Furthermore, the presented system does not require any changes to the host
workstation beside the installation of a Universal Serial Bus (USB) device. Other
systems usually require integration of special hardware extensions into the work-
station. While this is also a reason for their increased accuracy and larger set of
features, some applications such as wearable computer systems that integrate eye
tracking [6], might be able to take advantage of a tracking system available as USB
device.

The use of the Vision Chip, with matchbox size dimensions, also recommends
the system for applications with tight requirements regarding size and weight. Fur-
ther miniaturization is rather a question of improving the production process of the
chip and does not require principle changes. Unobtrusive integration into normal eye
glass frames would be possible. The tracking system has been designed with such
applications in mind and the use of additional hardware, e.g. a half transparent mir-
ror for better illumination, has been avoided. The current system closely resembles
such attempts for integration.

1.2 Related Work

As described in Section 1.3.2 there are many different techniques for tracking eye
movements and just as many different systems. In the past, the developments of eye
tracking system was directly inspired by the need coming out of research projects
that require information about eye movements [9, 10]. Today, companies provide
ready solutions, and many different companies provide varieties of systems for dif-
ferent applications. A listing [11] from August 2001 that is still quite accurate, gives a
total of 27 vendors of eye tracking systems. A variety of tracking techniques are used
by these systems. The different techniques are described in detail in Section 1.3.2.

Regarding the achieved frame rates, Dual Purkinje eye tracking systems mark

2

the top of the field with 4000Hz. While these system are leading in most aspects,
the second purkinje image is of low intensity and can be problematic to capture,
especially under difficult lighting conditions. This is one of the reasons why the
presented system does not use this technique. Search coil based systems provide
frame rates up to 1000Hz but cause substantial inconvenience that is only acceptable
in laboratory settings. IROG based systems provide frame rates up to 360Hz but do
not cope well with eye blinks.

Most of the system, as well as the presented work, are based on video images
of the eye. An interesting approach is presented by [12] that uses images that have
a similar resolution as the images used by the presented systems, but that uses
artificial neural networks and achieves a frame rate of 15Hz. The accuracy is limited
to 1.5-2o. A very robust way of locating the pupil is implemented in the system
presented by [13]. Two infrared light sources, one located close to the optical axis of
the eye, are used in turn to illuminate the eye. The system takes advantage of the
retro-reflectivity of the eye, that causes a very bright pupil for the image illuminated
with the on-axis source. Subtraction of both images yields an image containing
only the pupil area. Tracking the position of the pupil, the system provides eye
movement data with normal video frame rates. The system presented by [14] focuses
on the hardware that is necessary to build eye tracking headgear and gives valuable
instructions regarding safety and usability.

Concerning video based, or VOG (Video Oculography), systems that provided
frame rates as they are aspired by the presented work, the listing from 2001 gave
the Alphabio Eyeputer with 480Hz [15] as the fastest system. Today, this system
is surpassed by the EyeLinkII with 500Hz [16]. The Chronos Eye Tracker [17, 18]
provides a frame rate of 400Hz.

All these systems have been made possible by the advent of programmable
CMOS image sensors. Only these sensors made saccadic eye tracking achievable
using video based methods. Facilitating such special purpose hardware, parts or all
of the image analysis can be performed by the image sensor at the required frame
rate. This way, the data load can be largely decreased as only relevant data has to
be processed by the workstation. A common approach is to have the CMOS sensor
identify a region of interest (ROI), e.g., a small area containing the eye or pupil,
that is subsequently transferred to the host workstation for further analysis. As the
data load is decreased the frame rate can be increased accordingly.

These VOG systems are capable of tracking 3D eye coordinates, including the
torsional component around the pupil visual axis in addition to the translational
components. The translational components are given in degrees of rotation around
the remaining two axes of the eye. As all systems are video based, the rotational
angles have to be determined using 2D features extracted from the image of the eye.
The x and y position of the pupil center as it is reported by the Vision Chip Eye
Tracker can be used for this purpose.

The torsional component is commonly computed based on the grayscale sig-
nature of a circular strip within the iris. As this feature could not be extracted in
high enough speed and quality using the Vision Chip, the torsional component is
not reported by the presented system.

Table 1.1 gives the core performance values for the mentioned systems in com-

3

parison to the Vision Chip Eye Tracker. The column Mobility summarizes size and
power consumption of the eye tracking device. All systems but the presented work
are intended to be used solely in a stationary environment. The range for the VC
resolution is explained in Section 5.1.

System Frame rate Resolution Price Mobility

EyeLinkII 500Hz <0.01o $80,000 stationary
Eyeputer 480Hz <0.016o $36,000 stationary

Chronos Eye Tracker 400Hz <0.1o $17,000 stationary
Vision Chip Eye Tracker 100Hz between <0.14o $1,000 mobile

and <2.3o

Table 1.1: Comparison of the Vision Chip Eye Tracker to the leading high speed eye
tracking systems.

Although the presented system is no competition in these areas, price and the
possibility for miniaturization can make it an alternative.

All mentioned systems require the installation of PCI (Peripheral Component
Interconnect) extensions into the host workstation to achieve real time availability
of the tracking data. Due to the system architecture of the used Windows system,
the presented work is currently limited in this respect. This is addressed in more
detail in Section 4.1

1.3 Background

1.3.1 The Eye, Eye Movements And Eye Tracking

”If we were to order a moveable electronic eye from an engineer, we
might think it a little odd if its lens turned out not to be lined up with
its primary axis, if it wobbled as it rotated, and if the mechanism for
elevating its gaze also made it twist to one side. Yet all of these are
features of the eyes that nature has given us.” [2]

Such are the features of the eye that affect the task of tracking eye movements,
determining the position of the eye and inferring the point or object regarded. In
building a system for this task, it is necessary to simplify and use workable models
of the eye. It is important to judge these simplifications and the performance of a
system for a given application, and regard every measured characteristics separately
[2].

Different applications may differ in how closely the tracking system has to
adhere to the actual model of the eye or its movements. Some information might
not even be available if the most precise model available is considered. For example,
neurological effects bias the relation between monitored eye position and regarded
object [2]. These effects cannot easily be accounted for by means of measurement
made by common tracking device without monitoring neural activity as well.

An example that can be personally verified is the spotlight metaphor [19]. These
findings show that, very similar to the sweep of a spotlight, we are able to move

4

Retina

Lens
Pupil

Iris Limbus

Cornea

Sclera

Fovea

Figure 1.1: Eye anatomy [20].

our attention within our field of view, while constantly focusing on a fixed location.
Hence, with a fixed eye position, we are regarding different objects.

Luckily, many of these effects are usually small and can be neglected for many
applications [2].

Eye Terminology. To talk about the eye, it is necessary to introduce some
common terms [21] to refer to different parts of its anatomy. Figure 1.1 depicts a
cross-section and a frontal view of the object of interest.

The sensing part of the eye is the retina. It lines the back of the eye and
contains photoreceptors that relay information about incident light to the brain. A
particular area of the retina is the fovea. It is of about 2mm diameter and is the
most sensitive area that provides most acute vision.

From the anterior (front) of the eye, incident light first passes through the
cornea, the first refracting surface on the way to the retina. In the cross-section it is
visible as a slight bulge with a greater curvature than the rest of the eye. The light
then passes through the pupil, a circular hole whose size can change to regulate the
intensity of incident light. The area surrounding the pupil is the iris.

The white area that makes up the most of the visible surface of the eye ball is
the sclera. In the front view, a thin area has been marked that connects the cornea
to the sclera, the limbus.

Viewing. When we are reading, viewing the symbols on a computer screen or
regard any other scene, our eyes are constantly moving. Similarly, our eyes move
when we are fixating on a point while we are moving our head. The purpose of this
movement is to position the image of the object we are regarding on the fovea.

Eye Movements. These movements are brought about by the muscles that are
attached to the eye ball as depicted in Figure 1.2. These rotate the eyes and thus
determine the nature of the rotation. While a technical system would usually prefer
a fixed center of rotation for the eye ball, the actual center moves along a line in
space, the space centrode. Over, e.g., the whole range of horizontal movements, the
center has been measured to move about 2mm [2].

5

Figure 1.2: Eye muscles responsible for the movements of the eyes [2].

Saccades. From our own viewing experience it seems that our eyes are rather
smoothly scanning our environment. This is by no means the case. An important
aspect of our eye movements are saccades, which are movements of short duration
and very high velocity. These movements are ballistic, i.e. cannot be changed while
they are performed. Their purpose is to make the image of the regarded object
fall on the fovea. This is usually achieved by a larger movement and subsequent
correctional saccades, that position the image more accurately.

A saccade can reach velocities of up to 700o/sec and be as short as 20ms in
duration [2]. Both velocity and duration vary with the rotational angle, or amplitude
of the saccade. The peak velocity of a saccade increases exponentially with the
amplitude, while the duration increases linearly with the amplitude.

A saccade of large amplitude can have a duration above 200ms while the
noted majority has a duration below 75ms. The highest velocities are only found in
saccades with the largest amplitude. A large saccade has an amplitude of about 90o,
while 85% of all saccades are rather below 15o [2].

Speed Profile. Figure 1.3 shows the speed and position of the eye over the course
of a saccade. The visible symmetry can be found with all saccades. It is particularly
relevant that the maximum velocity is reached half way through the saccade. This
fact can be exploited by an eye tracker to detect saccades by monitoring the speed
profile.

Frequency Of Saccades. Before further evaluating the impact of saccades for
tracking devices, a short note should be given on saccades in a larger context, i.e.,
as part of a sequence of several saccades. Here, two characteristics of saccades are
important. The latency and the refractoriness. These can be seen as delays before
and after the saccade, respectively. The latency is the delay between the, or entrance
pupil stimulus that triggers the saccade and the actual onset of the saccade [2]. The
refractoriness gives the minimum time by which saccades can follow each other.
These times are rather long in comparison to the short duration of saccades. As a
consequence, about 3 saccades per second is a common value [1], which is a very low
frequency or long period of approximately 300ms.

6

position

speed

Figure 1.3: Eye position and speed over time. During saccades the speed shows the
depicted symmetrical profile. The positional information is on logarithmic scale,
hence linear despite the linear increase and decrease in speed [1].

Impact Of Saccades. When building an eye tracking device, the impact of
saccades has to be considered. In tracking devices that use contact lenses for tracking,
the lens might even slip due to the quick acceleration of the saccade [2].

While image based systems do not have this kind of problem, saccadic eye
movements have to be accounted for in respect to the sampling rate. Depending
on the application of the eye tracker, the velocity of saccades is of more or less
importance. Because of the mentioned latencies of saccades for example, the eye
position hardly changes for a long time between saccades. Therefore it is quite
possible to acquire usable results with normal video frame rates below 50Hz.

If the application requires detection of saccades or positional information even
during the course of a saccade, normal video frame rates are not sufficient. To detect
“most saccades” a system with 250Hz should be used [3].

1.3.2 Overview Of Eye Tracking Techniques

Recordings of eye movements have been made as early as 1936 [22], but the technique
used for the recordings only gradually improved. In particular since the availability of
video cameras, the non-intrusiveness of tracking systems has substantially improved.

Since the beginning, a great variety of systems have been developed. According
to [23] there are four broad categories to classify measurement methodologies for eye
movements:

1. Electro-oculography (EOG):
Involves measurement of electrical potential at the skin around the eye.

2. Scleral contact lens/search coil methods:
Involves measurement of the position of a special contact lens inserted into
the user’s eye. The measurement can be mechanical, electromagnetic or visual.
This is the most precise method, allowing a precision as fine as 10 arcseconds.

7

3. Photo-oculography (POG) or video-oculography (VOG):
Involves photo or video image analysis for ”the measurement of distinguishable
features of the eye under rotation/translation, e.g., the apparent shape of the
pupil, the position of the limbus (iris-sclera boundary), and corneal reflections
of closely situated directed light sources.”

4. Video-based combined pupil and corneal reflection methods:
Involves video image analysis to detect two points of reference, e.g., pupil
center and the corneal reflection of a stationary light source. The eye position
is determined based on the difference between these points. As the difference
remains relatively constant with ”minor head movements” but changes with
eye movements, the eye position can be measured relative to the source or a
computer screen, respectively. The position within the screen is called POR
(Point of Regard).

As wearing contact lenses is quite inconvenient, few current eye tracking sys-
tems belong to category two. Most current eye tracking systems are less invasive
by relying only on video image. The majority of these systems belongs to category
four [23]. The main advantage in comparison to systems in category three is the
increased convenience when measuring the POR.

VOG techniques require the user’s head to be fixed at a certain location or
involve additional measurements, to determine the head position and orientation.
For the presented system, the user’s head is expected to be at a fixed location. For
this reason, and because it does not use any corneal reflection it belongs to the VOG
systems in category three.

The following gives a more detailed description of video based tracking tech-
niques [22]:

Limbus Tracking. This technique determines the eye position based on the
position and shape of the limbus relative to the head. As the contrast between
the white sclera and the dark iris is usually large, this feature is easy to detect. A
disadvantage is the rather large size of the iris which leads to frequent occlusion
by the eye lids. This is in particular problematic for the tracking of vertical eye
movements. The user’s head has to be fixed in a position.

Pupil Tracking. Very similar to the previous technique in most other respects,
this technique copes better with vertical eye movements due to the smaller size of
the pupil. A disadvantage is the lower contrast between pupil and surrounding iris.

Corneal and Pupil Reflection Relationship. This technique uses the reflec-
tion of an infrared light source from the cornea, the glint, and the retro-reflectivity of
the eye. The latter causes the retina, which is visible through the pupil, to appear as
a bright disk in a captured video image. The relative position of the pupil in respect
to the highlight is used for measuring eye movements. As already explained this
technique allows good usability due to free head movements. Naturally this is also
a restriction as the image of the eye cannot be captured if larger head movements
occur that leave the field of view of the camera. An additional problem is caused

8

Figure 1.4: Purkinje images [24]. Four refracting surfaces of the eye cause reflections:
front and backside of cornea and lens.

by the eye movements themselves. If the glint is not reflected from the cornea but
the surrounding eye, the mathematical computations to infer the eye position are
complicated.

Purkinje Image Tracking. The previously mentioned glint is only the first
reflection that a ray of light causes on its way into the eye. Further reflections
are cause by the internal structure of the eye. Figure 1.4 shows all four occuring
reflections, the Purkinje images. This technique uses the relative positions of the
glint and the fourth image, that is caused by the back of the lens. It is generally
more accurate than other techniques and allows very high sampling rates up to
4000Hz. One problem is the rather dim fourth image, that is difficult to capture.

Infra Red Oculography (IROG). This technique is also based on the reflection
of infrared light, but rather on the amount of light than video images. If the eye
is illuminated with IR light, the amount of light that is registered by a sensor,
varies with the orientation of the eye. This way, the eye position can be determined.
One advantage of using IR light is the low sensitivity to changes in environmental
lighting. As no semantic analysis is performed, eye blinks can be problematic with
this technique.

Corneal Reflection And Eye Image Using An Artificial Neural Network
(ANN). This technique uses an ANN to determine the eye position based on
video images. The network requires a rather lengthy calibration procedures for train-
ing of more than 30 minutes. With 1.5-2o, the accuracy is not very good, but this
technique offers a high head mobility for the user [12].

1.3.3 Health And Safety Considerations

Eye tracking systems commonly use IRLED (Infrared Light Emitting Diodes) to
illuminate the eye. Using a light source that is invisible to the user has the advantage
that no disturbing light is in the field of view that might blind the user. Exactly this
advantage is also one of the greatest risks when using invisible light sources: we do
not have any natural aversion to over exposure [25]. For this reason, the user can
not naturally protect himself or herself from possibly harmful effects, hence great

9

care has to be taken to assure that the use of the eye tracking system does not cause
harm to the user.

The ICNIRP (International Commission on Non-Ionizing Radiation Protec-
tion) guidelines chosen for this thesis are described in [25]. These guidelines have
been chosen as they provide a good safety measure while not making unreasonable
worst-case assumptions that do not apply to the tracking system and the used near
infrared illumination.

The main focus for the hazard assessment is the eye itself, the surrounding
skin is not likely to be affected [25]. Although the mere energy incident to the eye is
the basis for the assessment, the effect on the eye is highly dependant on biological
effects. There are two main interaction mechanisms by which the eye can be affected,
and that are taken into account by the guidelines. Photochemical interaction and
thermal interaction. The guidelines provide a compact set of factors and limits that
are relevant for the assessment, but that still reflect such biological characteristics
that are relevant for safety.

When assessing the risk posed by IRLED illumination the following factors are
relevant:

1. Distance of the light source to the eye

2. The size of the light source

3. The brightness of the light source

4. Exposure time (chronic or acute)

A factor that is also important but that is already determined by choosing an
infrared light source is the wavelength of the source, as the effects on the eye are
highly wavelength dependant [25].

An important aspect that can be derived from the listed factors is the retinal
image size of the light source, i.e., the size of the source after it passed through the
refracting surfaces of the eye. This is in particular relevant as the cooling efficiency
of the retinal tissue depends on the size of the heated area. Small areas are more
efficiently cooled than larger ones [25].

Another effect that influences the retinal image size is the blurring of the image
at the near point of accommodation. If the light source is closer than this point, the
eye cannot focus on it anymore and the blurring additionally enlarges the retinal
image. Under normal conditions this point is about 10-20cm from the eye. As the eye
tracking system places the light source at 5cm from the eye, the standards limit for
the maximum source size is used to provide a worst case assessment for the retinal
exposure limit.

Overall the standard provides two different limits. For cornea and lens, and for
retinal exposure. Taking the wavelength and the maximum source size into account,
the limits are as follows:

Cornea and lens : EIR ≤ 10 mW/cm2

Retina : EIR ≤ 6 mW/cm2

10

with EIR as the irradiance caused by the IR light source.

At the distance of the eye one of the used LEDs was measured1 to provide with
1.5 mW/cm2. This yields a sum of 3 mW/cm2 for the irradiance of both LEDs. With the
common use of the device at the stage of development, no negative side effects were
experienced over the last 6 months.

1.4 Thesis Overview

The remainder of the thesis is structured as follows:

Chapter 2 describes the most important aspects of the implemented system,
the implemented functionality and the relevant aspects of the hardware from a bird’s
eye perspective. Chapter 3 and Chapter 4 give a detailed description of all involved
hardware and software components, respectively. Chapter 5 summarizes the achieved
results, describes limiting factors and gives and outlook on future improvements.

1The Measurement was performed using a Hewlett Packard 8153A Lightwave Multimeter with
a range from 800 to 900nm.

11

Chapter 2

The Eye Tracking System

This chapter gives an overview over the presented eye tracking system and highlights
the most significant aspects that are taken up in more detail in the following chap-
ters. Section 2.1 describes how the eye tracking is performed and which steps were
taken to make the tracking possible. Section 2.2 describes the precomputations that
provide the data that is necessary for the tracking at runtime. Section 2.3 describes
how the SR3300 Vision Chip is used for tracking. The SR3300 is connected to a host
workstation via USB. Section 2.4 describes a Windows application that runs on the
workstation and demonstrates the use of the eye tracking system.

2.1 Tracking Eye Movements

The presented work implements a high speed eye tracking system capable of tracking
eye movements with a frame rate of 100Hz. Such frame rates are required if the
system is to be aware of saccadic eye movement, as described in Section 1.3.1.

The Used Eye Tracking Technique. The system tracks eye movements based
on the position of the pupil, or more accurately, the position of the center of mass,
the centroid. To be able to determine this point, the pixels that are covered by the
pupil area have to be determined from a grayscale image of the eye. This is done by
performing the segmentation of the image into background and into the foreground
that contains the pupil area.

At runtime, i.e. during tracking, the segmentation is performed using binariza-
tion followed by region growing using the Self Fill algorithm described in Section 3.3.
The centroid is then computed as the center of mass of the area of the pupil within
the binary image. Using binarization for segmentation is based on the fact that the
pupil is darker than the rest of the image, which is called a dark pupil approach in
eye tracking terminology.

To perform region growing, a starting point has to be provided. The first point
is provided by the host workstation and the pupil area is covered by growing from
this point. The centroid determined for this area is then used as starting a point in
the next frame. Ideally, the growing only covers the pupil and possible binarization
artifacts are eliminated. The pupil centroid is continuously tracked for every frame.

12

Problems. At runtime, no sophisticated image analysis is readily available, and it
is not possible to perform any semantic analysis to identify the area of the pupil. The
tracking algorithm cannot distinguish between pupil area and undesired binarization
artifacts, or clutter, around the pupil. Also, the Self Fill algorithm would fail in
performing the segmentation if clutter is connected to the pupil. It would be desirable
that binarization should yield binary images that only contain the area of the pupil,
and no clutter.

Due to the general color distribution within the image of the eye, the possibly
dark pigmentation of the iris, and the characteristics of the used camera system,
this optimal result is not to achieve. Large amounts of clutter appear if the image
of the eye is binarized with an inappropriate threshold. Together with the fact that
the threshold varies for different eye positions, this comprises a serious obstacle
to successfully tracking the eye position. Clutter frequently connects with the pupil
area. Not being able to perform semantic image analysis to circumvent this obstacle,
or to cope with natural problems such as eye blinks at runtime, contributes to the
problem.

Dynamic Threshold Adjustment. The presented system does not completely
solve the problem, but succeeds in keeping the amount of clutter at a low level.
In particular, the clutter does not connect with the pupil area and Self Fill can
successfully perform the second segmentation step to eliminate clutter.

To solve the problem, grayscale images were taken for different eye positions.
Inspection of these images, showed rather large changes in the color values that
were associated with the pupil area. Due to the continuous nature of the changes,
they can most likely be attributed to the effects of the lens distortion described in
Section 3.3 and to non-uniform illumination. Compensating these effects keeps the
binary image of the pupil relatively stable and reduces clutter.

The microcontroller component described in Section 4.3.2 achieves the com-
pensation by dynamically adjusting the binarization threshold as the eye moves and
the pupil changes its position.

It does so by performing bilinear interpolation between threshold values that
are determined before tracking is started. Each threshold is associated with a spe-
cific position within the image space, and the value is chosen to provide a good
binarization result if the pupil center is located at that position. Using these ideal
threshold values to interpolate threshold values for other positions, segmentation
can be performed with good results for all pupil positions.

Result. Figure 5.6 compares a tracking session without adjusting the threshold
to the presented system. It is visible that the tracking fails if the threshold is not
adjusted.

Another consequence of the small amount of clutter in the binary image is of
advantage when the pupil is lost during eye blinks. As the pupil makes up a large
part of the overall number of set pixels, the center of mass of the whole binary image
is very likely to be located within the area of the pupil. Due to the working of the
region growing the pupil can be correctly recaptured for the next frame, by starting
the growing from this center.

13

Figure 2.1: Binary image showing sudden increase in clutter during eye blink.

Naturally this is only the case if the pupil stays in the vicinity of the last
position that was used to interpolate the binarization threshold. However, the short
duration of eye blinks and the high frame rate make this a very likely case. Whether
the pupil was actually recaptured can be verified by the general capability of the
system to detect distortions.

Detecting Distortions. A simple way to detect distortions is again based on
having a known amount of clutter in the binary image. This makes it possible to
detect distortions, based on the amount of clutter present in the binary image. This is
in particular true for the most common distortion, an eye blink. In this case, another
kind of distortion besides the pupil loss, has been found. During the blink, the binary
image shows a sudden increase of clutter as depicted in Figure 2.1. Comparing the
actual amount of clutter to an expected value, the tracking component can detect
the blink and report the distortion.

Another way to detect the distortions caused by an eye blink, is to monitor the
area of the target, i.e. of the pupil. If clutter connects as it is shown in the figure,
the pupil area is also drastically increased. However, if the clutter does not connect
with the pupil, the tracking results remain valid even though the overall amount
of clutter might be quite large. Therefore this approach is in general to favor, as it
copes better with other kinds of distortions. In these cases that cannot be completely
avoided, clutter can appear without distorting the pupil.

The loss of the pupil target, is reflected by the target area being zero, hence
the distortion is easily detected. After the mentioned recapturing of the target,
it is checked for distortions, and rejected if distortions are present. Otherwise the
coordinates of the target are regarded as valid.

The implementation of a more sophisticated method to detect distortions is
demonstrated in Section 4.3.3. In general, any feature based on the described mo-
ments can be computed for the target, and compared to a constraint vector com-
puted before tracking. If appropriate, the precomputed values can be included in
the bilinear interpolation. This way, a more robust detection of distortions can be
implemented. Due to memory size limitations of the SR3300 microcontroller, these
methods could not be included into the presented system.

14

2.2 Precomputations For The Tracking Phase

Besides the calibration steps that are commonly encountered in eye tracking systems,
using the Vision Chip requires additional precomputations. These are performed not
during tracking, but are performed by the host workstation before tracking is started,
and are the basis for the overall solution presented in this work. Both the dynamic
threshold adjustment and the detection of distortions performed at runtime rely on
these precomputations.

A crucial point of the precomputations is the image analysis that identifies
the pupil using a modified Hough Transform. All subsequent steps rely on this
information to determine features associated with the pupil.

Image Features. One step to the solution was to identify such image features
that are available at runtime, but can be associated with the pupil before tracking
is started. The area of the pupil for example, can easily be computed by the work-
station, as the location of the pupil is known. At runtime on the other hand, the
location is not known, but the area can be computed from the binary image.

This way elaborate image analysis is not necessary at runtime, but the validity
of the tracking results can be guaranteed by runtime comparison to the precomputed
features. Distortions can be detected as previously described.

While this comparison is a means to detect the failure to perform successful
segmentation, i.e., that clutter affects the tracking results, it is in turn made possible
by adjusting the threshold, to keep clutter generally at a low level.

To make these runtime steps possible, the precomputation extracts at least
the following features from grayscale images of the eye:

1. Pupil area

2. Ideal binarization threshold

Other moment based features, e.g. the mentioned eccentricity, can easily be
computed using the information about the pupil location. Having these features
available for different eye positions, the tracking system can successfully track the
position at runtime. Section 4.2.3 describes the component that performs the pre-
computations to extract the features.

Point Of Regard Computation. Another step performed before tracking is
started, is the calibration of the eye tracking system. It allows the mapping of eye
positions into the screen space of the workstation to indicate the position the user is
currently looking at. During this phase, different position on the screen are associated
with eye positions. This information is used at runtime to approximate a Point of
Regard by mapping the pupil position into screen space. The actual mapping from
the eye tracking systems frame of reference, is performed by the host workstation
after the pupil position has been received. The mapping is described in Section 4.2.4.

15

2.3 Hardware For Tracking

The core component of the system that makes the high frame rates possible is the
Vision Chip (VC). It is mounted in front of the user’s eye using a pair of safety
glasses and fulfills the job of a camera and also performs the actual tracking and
moment computations with the given frame rate.

Vision Chip Functions. The Vision Chip is controlled by a microcontroller
(MC) that executes the previously described algorithms. The MC uses VC functions
to perform the following tasks:

1. Tracking of a selected target

2. Centroid calculation

3. Grayscale and binary pixel acquisition

The first two items are related to binary images only, as tracking and calcula-
tion of the target position access only binary information to be able to achieve the
required frame rates.

Using the VC functions, the MC determines the pupil position as the cen-
troid of the tracked target and uses the USB connection to transfer it to the host
workstation. If no distortions are present, the pupil position is continuously tracked.

VC functions are described in more detail in Section 3.3.

2.4 The Working System

The use of the eye tracking system is demonstrated by a Windows application that
performs the calibration and offers different kinds of visual stimuli that can be traced
by the user. The tracked eye position is indicated on the screen and written to a file.

Before the calibration begins, the program displays a video of the images cur-
rently captured by the eye tracking system. The corresponding dialog is depicted in
Figure 4.1. The blue dot within the pupil indicates the center of the pupil as it is
determined by the host image analysis. This step is necessary to adjust the safety
glasses to position the pupil so that it can be located successfully.

During the next step, the eye tracking system is calibrated by displaying a set
of visual stimuli on screen. As the stimuli appear on screen, the user is required
to focus on each stimulus in turn and trigger the calibration for this eye position.
Figure 4.3 depicts a calibration screen with five stimuli. The surrounding rectangle
indicates the extent over which the stimuli are displayed and defines the area in
which the eye movements are tracked. Figure 4.6 shows a set of grayscale images
acquired during the calibration phase. These pictures are processed by the host
image analysis. Figure 4.7 shows the corresponding binary images created using the
computed threshold.

Once the calibration was performed, tracking is started. The program displays
some visual stimuli to demonstrate the tracking. The current POR is indicated by a

16

Figure 2.2: Vision Chip Eye Tracker demonstration application. The user was looking
at the black circle, the blue square indicates the POR reported by the eye tracking
system.

small blue marker as shown in Figure 2.2. The image was taken while the black circle
was traced by the user. For the given stimulus the circle moved along a rectangle.
Figure 5.5 shows the tracked eye position and the POR as it was mapped into screen
space to display the marker. In both images the corner points of the traced rectangle
have been indicated. While tracking is performed, the user can inject a marker by
pressing the space bar. The marker is injected into the stream of tracking data and
can be used to identify certain screen positions in the tracking data file.

17

Chapter 3

Hardware

This chapter describes the hardware that is used for the eye tracking system. First,
the experimental setup involving all components is described. In subsequent sections
each component is described in detail.

3.1 Hardware Setup

Figure 3.1 shows the experimental setup of the eye tracking system, and Figure 3.2
gives a schematic overview of the setup. The main component is the SR3300 Vision
Chip that captures the image of the eye and performs the tracking. For simplicity,
the SR3300 is directly attached to a pair of safety glasses, occluding large parts of
the user’s field of view. The safety glasses in turn, are mounted in front of a computer
screen to fix the head position.

To illuminate the user’s eye, two infrared LEDs are used. For the experimental
setup the LEDs are powered by an external source, but the SR3300 provides a 5
Volt power supply.

A USB cable connects the SR3300 to the host workstation controlling the
computer screen.

3.2 SR3300 Vision Chip

Figure 3.3 shows the main component of the setup, the SR3300 Vision Chip. The
depicted circuit board integrates the Cypress AN2131SC chip and the actual Vision
Chip (VC) component. The Cypress chip contains a 8051 compatible microcontroller
and circuits necessary to connect to the chip via USB. The MC is connected to the
VC component and controls its operation as well as the USB connection to the host
workstation.

The connection to the tracking component is established using port pins. The
MC program uses regular port commands to control the VC via these connections.
The SR3300 also integrates an ADC (Analog Digital Converter) external to the
Vision Chip component. This converter is used to acquire grayscale values from the
analog values provided by the VC.

18

IR
LEDs

Vision
Chip

Figure 3.1: Hardware setup for the eye tracking device.

Vision Chip IR
LED

PC
Power

USB

5cm
3cm

at
ta

ch
ed

 to
sa

fe
ty

 g
la

ss
es

Figure 3.2: Schematic of the hardware setup for the eye tracking device.

19

Figure 3.3: SR3300 Vision Chip.

The lens visible in the figure has a focal length of 3.0mm. The image is pro-
jected onto a sensor array of 1.568mm by 2.352mm, with a pixel size of 49µm.

The facilitated VC component is described in Section 3.3. It also mentions
some of the problems that revealed itself during development.

The SR3300 was chosen for the following reasons:

• The VC component makes frame rates of up to 1000Hz possible which is ideal
for saccadic eye tracking.

• The offered functionality for high speed calculation of the centroid position
seems ideal for pupil tracking.

• The sensitivity to infrared illumination is almost a requirement in respect to
non-intrusive eye tracking.

• The low price is an important advantage in comparison to other high speed
eye tracking systems.

• Due to its USB connection, the SR3300 is easily integrated into a computer
system.

• The small size make it attractive for applications that require high mobility.
The same is true for USB connection.

• The integrated MC and the available ports, suggest the use of the eye tracker
as a stand alone system, without a direct connection to a PC.

3.3 Vision Chip Tracking Hardware

The Vision Chip [26] is special purpose tracking hardware that enables the eye
tracking system to track the movements of the eye with the required frame rates.
In the simplest sense the VC is a camera system with integrated image processing
capabilities.

This section describes how the images of the eye are taken, how the tracking
of a target is performed and how its position is calculated. In particular the func-
tionality that is used to perform segmentation by binarization and region growing
is addressed.

20

summation
output

column decoder

row
 decoder

PEPD

Figure 3.4: Array of Processing Elements.

Relevant Vision Chip Functions. The relevant functions performed using the
VC are the following:

1. Tracking of a selected target

2. Binarization of analog intensity levels

3. Area calculation

4. X Moment calculation

5. Y Moment calculation

6. Centroid calculation

7. Grayscale and binary pixel acquisition

The tracking and all calculations are based on the binary image that results
from the binarization. The binarization is performed by the chip itself with sufficient
speed to provide tracking frame rates of up to 1000Hz. The acquisition of binary
image data, for example for external use by a MC program on the other hand, is by
magnitudes slower. The analog to digital conversion necessary for grayscale image
acquisition is performed by an ADC (Analog Digital Converter) external to the VC
and consequently takes even longer time.

Internal Structure. To understand these functions it is necessary to take a
closer look at the internal structure of the VC. Figure 3.4 depicts the array of
processing elements (PE) that is responsible for acquiring and processing the image.
Each PE corresponds to a pixel of the image. The VC has a pixel resolution of 48 by
32. The photo detector (PD) that actually measures light intensity is also depicted as
a small black square. The analog value of a PD can be binarized and is available for
processing within the PE. The entirety of this array of binary values from the PD,
is referred to as the image f. Seen from a higher level of image analysis, f represents
the result of the first segmentation step, the foreground of the image, i.e., the target.

Each PE also contains memory to store 1 bit. The entirety of the array of bit
values is called target window as this memory represents the target that is used for

21

X

(a) Starting point.

1

1X1

1

(b) Step 1.

2

212

21X12

212

2

(c) Step 2.

2

212

21X123

212

2

(d) Step 3.

Figure 3.5: Self Fill algorithm. The grid of the target window has been overlayed
over binary image f that contains the pupil area as black pixels. The pixel initially
set in the target window is marked with “x”. The pixels set in subsequent iterations
are marked with the number of the iteration. The pixel set in the last iteration is
an indication for the presence of clutter.

all subsequent calculations during tracking. A pixel of the target window is set if it
is part of the target, or not set otherwise. It is to be noted that, although related,
f and the target window will generally be different. This will become clear when
looking at how the second segmentation step, the region growing, can be applied to
f, or more specifically, how the target is created in the target window.

Target Creation using Self Fill. The approach used by the eye tracking system
is the Self Fill region growing algorithm [26]. The algorithm is implemented in
hardware and partially in MC code. Figure 3.5 illustrates the steps of the algorithm
for the area of the pupil. For every frame it starts out with an initially empty target
window, and assumes that the centroid coordinates of the target from the previous
frame are known. The target window at this location is then set as the starting point
for the filling. In the next step, all 4-neighbors of this pixel are set, but only if the
image f is also set at that location. These steps are implemented in hardware and
are iteratively invoked by the MC.

In subsequent iterations the 4-neighbors of already set pixels are set in the
same manner and the region of set pixels keeps growing. As the setting of pixels is

22

Figure 3.6: Clutter in binary image. To the lower left of the pupil area, appear
binarization artifacts in the binary image of the eye.

bounded by the image f that represents the current location of the target, this can
be seen as the filling of the target. The meaning of the last iteration depicted in the
figure will be explained shortly.

The working of this algorithm is based on the high frame rates of the VC.
Because the target cannot move more than one pixel between consecutive frames,
it is guaranteed that the centroid from the previous frame is still enclosed by the
target area at the new position. Therefore, the area filled using Self Fill will normally
represent the new location of the target. It is also clear that the initial centroid
coordinate has to be provided to the VC and, in general, cannot be computed by
the chip itself.

As previously noted, the resulting target window is not necessarily equal to f.
In fact, for the eye tracking system, it is an important requirement that they differ.
This becomes clear when looking at Figure 3.6 that represents an image f during
tracking. Although it is desirable that the result of the segmentation performed by
binarization contains only the target, this cannot always be guaranteed. The specks
to the lower left of the large circular area are undesired clutter that is not to be
visible in the target window. Hence, applying region growing by means of the Self
Fill algorithm is another image processing step required for segmentation.

A crucial assumption of this algorithm is that the target does not connect with
any of the clutter. If this is still the case, the tracking proceeds just the same, but
yields wrong results as the filling will proceed beyond the boundary of the actual
target. Whether the assumption is true, largely depends on the tracking task and the
color distribution of the involved images. The case of connected clutter is indicated
in Figure 3.5(d) by a single clutter pixel marked with 3.

Having created the target within the target window, the binary information is
used to compute the required tracking data.

Calculating The Target Position. The target position is calculated as the
center point of the target area, its center of mass, or centroid according to the

23

following formula:

x = m10/m00

y = m01/m00

where x and y are the centroid coordinates within the target window that are com-
puted from different order moments. The most simple moment, m00 or the area of
the target, is calculated using the internal circuits of each PE and their intercon-
nections along a row.

Conceptually, the sum is first calculated over each row, and another summation
unit provides the sum of all rows as a serial bit string that can be retrieved from the
summation output marked in Figure 3.4. The actual circuits perform the summations
in parallel to gain speed and to reduce the need for memory to store intermediate
results.

As calculating the area is actually only a special case of calculating a moment,
these steps have to be preceded by a step required by the general function to calculate
moments. For the area, the row and column decoders indicated in Figure 3.4 simply
have to be programmed to include the whole target window into the summation.

This is necessary as the higher order moments required to perform summa-
tion over only certain columns or rows of the window. The exact algorithm for the
computation of higher order moments is described in Section 4.3.3.

Table 3.1 gives the performances for the basic VC functions relevant for track-
ing.

Function Computation time

0th moment 2.75µs
1st moment 12.5µs

centroid 27.75µs
Self Fill Area dependant. Dominated by the MC iterations (4Mhz clock).

Table 3.1: Performance of Vision Chip functions

As previously mentioned, f and the target window usually differ. If it is nec-
essary to calculate moments for the whole image, the VC can be programmed to
take all values of f into the target window and the necessary calculations can be
performed as before.

Grayscale And Binary Image Acquisition. Grayscale and binary image ac-
quisition is performed by the MC by iteratively querying the VC for the pixel values.
To provide grayscale information, the analog value provided by a PE is converted
to a byte value by an external ADC. For binary images the MC uses a VC function
to check if a pixel is set and packs 8 bits into one byte. The grayscale values are
simply stored as one byte, the way they are provided by the ADC.

Both types of acquisition are affected by the underlying hardware implementa-
tion of the photo detectors. The PDs are implemented as CMOS Photo Diode Active
Pixel Sensors (APS). The analog voltage level that represents the light intensity, as

24

�

��

��

��

��

���

���

��� ��� ��� ��� ��� ���

	
��

�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��

����������������
 �!����"���#�

$%&���'
'��()�*�+��#,-

�����

.������/0
'��()�*�+��#,-

�����

Figure 3.7: Spectral sensitivity graph for Vision Chip photo detectors.

determined by the APS, is stored in a capacitor. Both grayscale and binary image
acquisition are based on this voltage level. Because of a leak current of the capacitor,
the stored voltage degrades over time and it is not possible to capture the whole
image at once. To provide a stable image, it is necessary to refresh the voltage after
one line of the image, and consequently it takes several frames to capture the images.

It is to be emphasized that in the two cases, the quantization of the voltage level
is performed in different places. In the case of binary image, it is performed internally
by the VC, and in the case of grayscale images, by ADC. Due to variations between
the reference voltages for both operations, problems can occur. This is described in
more detail in Section 4.2.3 as part of the threshold color calibration.

Spectral Sensitivity. The APS also determines the general brightness of the
captured image by its spectral sensitivity. Figure 3.7 shows the sensitivity for the
SR3300 Vision Chip as well as the range of infrared light and the peak wavelength
for some near infrared LEDs. It is visible that the sensitivity is best for wavelength
close to the visible spectrum of light and degrading for wavelength closer to the in-
frared spectrum. The implications of this fact and the mentioned LEDs are described
together with the facilitated light sources in Section 3.4.

25

Color v
alues

diffe
r b

y la
rge

amounts

130

80

Figure 3.8: Lens distortion: A black rectangle on white computer screen. It is visible
that corner areas are darkened. This appears due to the lens used by the SR3300.
The grayscale image was captured at 100 frames per second.

26

Lens Distortion. Another factor that affects image quality is the distortion in-
troduced by the lens. Figure 3.8 shows a grayscale image captured using the SR3300.
Although the captured screen was completely white, the image shows a radial color
gradient with brighter pixels at the center and darker pixels in the corners. As
indicated, the color values can differ by 50 between the center and the corner.

If target and background are far apart on the color spectrum, such as it is the
case for a black target in front of a white background, this is not a serious problem.
For the presented system however, pupil and the surrounding background are not
as clearly separated.

As part of Figure 4.4, the histogram of an image of the eye is depicted. Al-
though the histogram is bimodal and a binarization threshold can be found for
segmentation, problems occur during tracking. If one of the darker areas, such as
the iris, would move into an area of the image that is affected by lens distortion,
binarization can not be performed successfully. The color values of the iris would be
shifted across the binarization threshold and would be part of the target window.

3.4 Illumination

The choice for the illumination was influenced by the following points:

1. Obtrusiveness

2. Safety

3. Image quality

• Contrast

• Homogeneity of Illumination

• Disturbance caused by light source

• Disturbance caused by other light sources

While the first two items are related to the usability of the system and the
impact on the user, the remaining items are related to the impact on the image
analysis that has to be performed for the tracking.

Obtrusiveness and Safety. As the overall goal is to design a system that is least
obtrusive, irritating effects of light sources that are constantly in the field of view
of the user have to be avoided. Therefore, light sources with wavelength invisible
to the user are a good choice. As the Vision Chip is sensitive in the near infrared
range and safety is more easily achieved with longer wavelengths, near infrared LEDs
are recommended and frequently used by eye tracking systems in general. For the
presented system in particular, the proximity of the light sources to the eye would
make visible light an inconvenient choice for the user.

27

Contrast. To be able to perform the binarization to separate the pupil from the
rest of the image, a threshold has to be found. The higher the contrast of the images
is in general, the more reliable the threshold can be found, and the less sensitive
the binarization is to other effects such as the distortion caused by the lens, that is
described in Section 3.3.

Two aspects of the system can affect the contrast in a negative way. The first
is inherent to the task of high speed tracking that requires very short exposure times
to achieve the required frame rates. During the short exposure time only little light
can be integrated by the photo diodes. As a consequence, the color spectrum is
compressed as the frame rate increases. The second aspect is the degrading spectral
sensitivity of the VC for wavelengths close to the infrared part of the spectrum.
Choosing these wavelengths for illumination also impairs the contrast.

As the latter aspect is a matter of choice, it would be natural to choose the
wavelength as low as possible to be able to take advantage of the higher sensitivity
in this range. The spectral sensitivity is depicted in Figure 3.7 together with the
peak wavelengths of two tested LEDs. Unfortunately, the LED in the range with
the highest sensitivity is clearly visible.

Homogeneity of Illumination. In the presented system the light sources have
to be placed at close proximity to the eye. Under these conditions first attempts with
narrow beam LEDs showed negative effects due to inhomogeneous illumination. For
this reason LEDs with a wide beam angle are more suitable and also avoid the need
to realign the LED fixture for different user’s.

Disturbance caused by light source. Another effect of narrow beam LEDs
was the occurence of over exposure in the center of the image, while areas in corners
where hardly illuminated. Moving the source further away did not solve the problem.
Even with increased intensity the necessary brightness of the image could not be
achieved. This is naturally affected by the close attachment of the SR3300 that
shields the eye from illumination, if it is placed at a distance from the eye, behind
the circuit board.

Experiments with narrow beam LEDs and infrared diffuser did not yield the
required results either. Wide beam LEDs gave the best results.

Disturbance caused by other light sources. Environment light can be a ma-
jor obstacle to successful image processing [27]. Changing light conditions can for
example affect the brightness of the processed images or cast shadows. In most sit-
uations it is not possible to control environment light such as overhead illumination
in an office surrounding. An approach that copes well with many situations is to use
infrared illumination of a distinct peak wavelength and employ filters to filter out
all but the used wavelength range.

The Selected Light Source. For the presented system the Osram infrared LED
SFH485P (Table 3.2) is used. Two of these LEDs are connected as it is depicted
in Figure 3.9. The corresponding circuit board is attached to the SR3300 circuit

28

SFH485P Infrared LED

Package 5mm
Peak Wavelength 880nm
Beam Angle 80o

IF(max) 100mA
Radiant Intensity at IF(A) 3.15 - 6.3mW/Sr

Table 3.2: SFH485P technical specification.

R1

D1

R2

D2

−
5V

+

Figure 3.9: Extension board circuit for attaching infrared LEDs.

board. For the experimental setup an external power source is used, but the SR3300
provides a 5V output. The external power source is set to 3.1 Volt and the resistors
have 36Ω each.

29

Chapter 4

Software

Conceptually, the system consists of two software components, running on a Win-
dows 2000 workstation and a microcontroller (MC), respectively. The workstation
component downloads the MC component to the SR3300 microcontroller and starts
execution. Because of memory size limitations of the SR3300, the MC part is imple-
mented in several distinct programs that are downloaded and executed separately.
This is transparently handled by the Windows library to access the eye tracking
system.

The eye tracker is controlled and accessed using the interface provided by
this library. The library implements all necessary functions to make the tracking
hardware go through the necessary phases of calibration and initialization until
tracking. Once tracking is started, tracking data is stored on harddisk and is available
at runtime.

The most relevant tracking data provided by the library is the pupil centroid.
The x and y position of the centroid are available in tracker image coordinates or can
optionally be mapped into screen space to provide POR information to the using
application.

The following sections describe the communication between microcontroller
and host, the host library and the microcontroller programs. The latter are imple-
mented in C, while the host library uses C++ and compiled Matlab code as well as
few portions in Assembler. Matlab is used for image analysis to simplify the task.

4.1 Microcontroller-Host Communication

For the host to be able to exchange data with the eye tracking hardware, a common
communication protocol was implemented on top of the available USB protocol.
The host component uses the available operating system calls while the microcon-
troller relies on the framework provided by the EZUSB library that is used with the
AN2131SC.

The design of the protocol was largely determined by the limitations of the
microcontroller, i.e., simplicity for the implementation of the MC program has been
favored where possible. The aim was not only to reduce code size, but also to keep
the portion of communication code as low as possible to avoid any impact on the

30

tracking code, whose execution is suspended during USB-transfers.

One restriction that is opposed by the underlying USB protocol is the neces-
sity for periodically polling the SR3300 to receive its data. As a consequence, the
frequency with which the host can poll for data is a limiting factor for the real
time availability of tracking data. To some extent arising problems can be solved by
customizing the thread priority for the polling thread, but the final limit is the op-
erating system scheduler and the used time slices. In the case of the used Windows
2000 systems the shortest time slice possible is 20ms [28].

A faster system cannot solve this problem, only changing to a real time, or sin-
gle task operating system allows to take advantage of the full real time performance
of the eye tracker.

Nevertheless, the tracking data is continuously available, due to buffering per-
formed by the MC program. This is one reason that makes more complicated variable
length messages necessary.

4.2 Eye Tracker Host Library

The host library consists of several components whose functionality is available via a
single interface provided by shared libraries. These components provide the following
functionality:

1. Communication

2. User Interface

3. Image Analysis

4. Tracking Interface

4.2.1 Communication

The first component is described as a part of Section 4.1, it is responsible for com-
munication with the SR3300 USB device.

4.2.2 User Interface

The second component provides user interface components that are useful or neces-
sary to integrate the eye tracker into an application. It provides dialogs for showing
a video stream of grayscale images of the eye, streams of the binary image that
the tracker uses for tracking, and components to perform the calibration of the eye
tracker.

31

Figure 4.1: Video stream of grayscale images captured by the SR3000 Vision Chip.
The pupil center is is indicated by by blue pixel.

Figure 4.2: Binary image stream captured by the SR300 Vision Chip.

32

Figure 4.3: Visual stimuli presented during calibration.

Video Streams. Figure 4.1 shows the dialog that displays a video stream of the
image of the eye. The blue dot marks the center of the pupil as it is determined by the
host image analysis. The analysis is continuously performed to aid the adjustment
of the glasses. Using the video stream the user has to adjust the glasses until the
pupil is roughly centered and the pupil can be successfully located as indicated by
the dot. The binary image stream shown in Figure 4.2 can be used to verify that
binarization is performed as required.

Calibration. The calibration component displays a grid of visual stimuli on the
screen as it is depicted in Figure 4.3. As each stimulus is displayed and the user
focuses on the stimulus, the eye tracker interface is used to invoke the necessary
calibration procedures as described in Section 4.2.4.

4.2.3 Image Analysis

The third component provides image analysis functionality that is needed to deter-
mine a set of features from the grayscale images during calibration. The functions
are performed for different images of the eye as the user focuses on the stimuli on
the calibration screen. The performed functions are:

1. Locating the pupil

2. Determine features associated with pupil

3. Determining an ideal threshold

Locating The Pupil. To locate the pupil, a modified Hough Transform is
implemented that takes advantage of known properties of the analyzed images. The
original algorithm to detect circles is described, e.g., in [29]. The implemented image
analysis determines the same features, the pupil center and the pupil radius, but
also uses these results to determine other properties of the pupil.

33

Accumulated Hough
Transforms with peaks at

circle centers

Image and
superimposed

edges used for
Hough transform

False recognition
rejected based on

histogram

colors around this
location are
outside
range,

whereas
the actual

pupil
pixels are

black

range
of possible
pupil colors Lower 25% of

histogram color
range are taken

to be pupil colors

Figure 4.4: Rejecting false recognitions.

34

The Hough Transform is applied to a binary image containing the edges found
in the grayscale image. To stay more flexible in respect to pupil diameters, the
algorithm is relatively tolerant and accepts a wider range of radii for the circle
detection. For this reason it is possible that a circle different from the pupil is
identified as the pupil. Figure 4.4 illustrates the problem and the taken solution.

Generally the pupil is identified as the highest peak within the accumulator
map created by the Hough Transform. In the depicted case however the pupil does
not create the highest peak. For this reason the vicinity of the peak, as defined by the
radius of the circle candidate, is inspected. If the average color in the vicinity does
not fall into the range of possible pupil colors, the candidate is rejected. The range
is simply defined as the darkest 25 percent of the histogram of the grayscale image.
This way many false identifications can be rejected while staying more flexible.

To be able to take advantage of the sub-pixel resolution of the VC and to base
the position on the binary image that is actually used by the VC, the determined
pupil position is further optimized as described in Section 4.3.1.

paragraphPupil Features Having pupil center and radius available, many dif-
ferent pupil features can be computed. The most simple feature being the pupil
area, as it is acquired by this library. Currently this is the only feature that can
be used by the microcontroller components. As this is only due to a memory size
limitation of the SR3300, this is not a principle limitation. If the problem is solved,
other features, such as the eccentricity of the pupil can be included into the set of
calculated features, to make them available to the microcontroller.

Ideal Threshold. To be able to perform the segmentation at runtime, a threshold
for binarization has to be determined. This is done by first locating the pupil and
then finding the ideal threshold for binarization. In this context, ideal means a
threshold that successfully performs the segmentation of the image of the eye to
show as much of the pupil as possible, while reducing the amount of clutter from
the background of the image.

Using the information which part of the image is background and which part
belongs to the pupil area, different binarization thresholds are tested. The threshold
is varied so as to include as many pixels from within the pupil area in the binary
image. Maximizing this criteria, the threshold is chosen that still keeps the amount
of clutter in the background below a limit.

Threshold Color Calibration. For technical reasons this threshold that is de-
termined by the host, based on grayscale images from the SR3300, cannot directly
be used for the binarization that is performed at runtime.

To illustrate why this is the case, Figure 4.5 compares the thresholds found by
the host, to the actual threshold of the VC, or more precisely, to a range of thresholds
that reflect the quantization noise of the VC. The line fitted to the median of each
threshold range shows the variation of the offset between the two measured values.
As mentioned in Section 3.3, the offset occurs due to the fact that grayscale images
are created using an ADC external to the VC, while the binarization performed
during tracking is performed internally. For this reason the binarization performed
by the host workstation yields different results.

35

120 140 160 180 200 220 240
0

50

100

150

200

Host threshold

V
is

io
n

C
hi

p
th

re
sh

ol
d

ra
ng

e Slope of 1 (constant offset)
Least square fitted y=1.58x−191.07

Threshold ranges (mean range of 12)

Figure 4.5: Comparison of binarization thresholds of host and Vision Chip. Due to
noise a range of thresholds is measured.

Data Acquisition For Threshold Calibration. The data depicted in the
figure has been acquired by capturing several grayscale images with values spanning
the relevant range used during tracking. For each image the SR3300 performed
binarization with all 256 possible binarization thresholds. The depicted threshold
ranges were then determined by checking the binary images for each pixel in the
grayscale images. For a given pixel and its grayscale value, a threshold was included
in the range, if the pixel was set in the binary image for this threshold, in other
words, if the grayscale value would be visible with that threshold. The check was
performed beginning with the threshold value that yields no set pixel at all, and
only the first threshold that yielded a set pixel at the checked pixel position was
included in the range. By having several pixels with the same grayscale value, noise
was still taken into account.

Threshold Optimization. Due to the noise, compensating the offset by apply-
ing the function defined by the fitted line does not yield the required results. To much
clutter appears in the resulting binary images used for tracking. As the amount of
clutter, and therefore the threshold, is crucial for the tracking result, further steps
are taken to optimize the threshold, that should now more appropriately be called
estimated threshold.

To bypass negative effects of noise, the optimization is performed at the SR3300
by the calibration component. For this purpose the Image Analysis component per-
forms the binarization based on the grayscale image using the estimate, and de-
termines the corresponding number of pixels set in the binary image. This value,
together with the estimated threshold is transferred to the tracking hardware for
optimization.

The microcontroller code for optimization starts with the estimate, and simply
changes the binarization threshold until the binary image has the required number
of pixels. This way, the optimization is based on a global image property, that is less
sensitive to noise and that is similar for the grayscale images, and the analog image
values that are used for binarization at runtime. Taking advantage of this fact, the

36

(a) Upper left. (b) Top center. (c) Upper right.

(d) Lower left. (e) Bottom center. (f) lower right.

Figure 4.6: Grayscale images acquired during calibration. The bright spots are
caused by reflection of the infrared light sources. The Resolution is 48 x 32 pix-
els.

microcontroller program is kept as simple as possible while the more complicated
image analysis can be performed by the host, despite the noise.

4.2.4 Tracking Interface

The fourth component is the actual interface that an application uses to access the
eye tracking hardware. It relies on all other components. The following functionality
and data is provided by the tracking interface:

1. Calibration of the eye tracker

2. Pupil position

3. Point of Regard information

4. Storage of realtime data

Before the tracking can begin, the necessary precomputation and calibration
steps have to be performed, that are required by the MC tracking component de-
scribed in Section 4.3.2.

Calibration. During the calibration phase the user interface component displays
a set of visual stimuli on screen. The user is asked to focus on each one in turn. Each
eye position is captured and image analysis is performed as described in Section 4.2.3.
Figure 4.6 depicts examples for the captured images. Figure 4.7 shows the binary
image for each position, that was created using the threshold determined by the
image analysis. For each position the image analysis yields a calibration point that
is later transferred to the MC.

37

(a) Upper left. (b) Top center. (c) Upper right.

(d) Lower left. (e) Bottom center. (f) lower right.

Figure 4.7: Binary images acquired during calibration. Resolution is 48 x 32 pixels.

One information contained in a calibration point is the pupil center location
in VC image space. For each position this information is associated with the x
and y position of the stimulus on screen. During tracking this association is used for
mapping eye tracker image space coordinates into the screen space of the application.

Screen Mapping. The mapping is performed to provide Point of Regard (POR)
information to the application. Mapping VC image space coordinates into screen
space is performed as follows:

On the screen, the calibration stimuli form a rectangular grid as depicted in
Figure 4.3. Assuming that the images of the stimuli form a similarly rectangular
grid in VC image space, a coordinate t of a tracked position can be mapped into
screen space using the following formula (see, e.g., [23]):

screen = c +
(t− a)(d− c)

(b− a)

If the mapped coordinate t is the x coordinate, b− a, and d− c, are the width
of the grid in VC image space and screen space, respectively. The values of a and c
give the left bound of the grid in the respective space. Coordinates along the y axis
are mapped accordingly.

This way the mapping can be performed with the assumed rectangular grid in
VC image space. In reality however the rectangular grid on the screen is distorted
in VC image space. This is partially due to the fact that the tracker image plane is
not necessarily absolutely in parallel to the screen nor to the face plane. Figure 4.8
depicts the nature of this distortion. For visual simplicity, the depicted tracker image
plane is only tilted along one of its axes, while in reality both axes might be affected.

To compensate the distortion, the VC mapping range b − a is computed for
every mapped point. In the figure this is illustrated for the y range, which is inter-
polated based on the x position.

38

Stimulus

Workstation
screen space

Eye tracker
image space

Not parallel

Pupil center
captured for
Stimulus

Mapping
range for
y-coordinate

Interpolation

along x

Eye

Figure 4.8: Perspective distortion of the calibration grid.

39

Figure 4.9: Grayscale Image 48 x 32 pixels.

As the tilt is affected by the user’s head position, this part of the library could
be modified to incorporate head tracker information. Currently, the head is fixed
and corner points of the depicted quadrilateral are assumed to be fixed.

Any rotational component around the straightforward direction, is not in par-
ticular compensated. Also, the perspective distortion that is caused by the projection
of the eye onto the VC image space [30] is neglected.

4.3 Microcontroller

4.3.1 Calibration Component

The calibration program is the first binary downloaded into the SR3300. While it is
running it performs the following tasks relevant for the host library:

1. Streaming grayscale and binary image video

2. Capturing grayscale and binary images

3. Optimizing binarization threshold

4. Optimizing positional information of calibration points

Streaming grayscale images is important just before calibration is started, to
properly adjust the glasses, so that the pupil is clearly visible. The binary image
video can be used to verify the thresholds that are automatically calculated. The
function to capture single grayscale and binary images, is used during calibration
while the host displays visual stimuli on screen, and requests the corresponding
image of the eye for analysis. Figure 4.9 shows a typical grayscale image as it is
captured during calibration. Figure 4.10 shows a binarization of the grayscale image.

Both streaming and single image capturing are based on Vision Chip functions
to evaluate a single pixel of the tracker image space, to get a grayscale or binary
value, respectively.

40

Figure 4.10: Binary Image 48 x 32 pixels.

Optimizing Binarization Threshold. The function to optimize a given bina-
rization threshold is also important during calibration, when the threshold estimated
by host image analysis is improved. From the host, the microcontroller receives the
estimated threshold along with the number of set pixels that is expected in the
resulting binary image.

After that, the MC sets the given threshold for the next exposure. Then, using
a Vision Chip function, it determines the number of set pixels after binarization.
If this number is still larger than the expected value, the binarization threshold is
changed and the procedure repeated.

Optimizing Positional Information. The optimization of the positional in-
formation for each calibration point is also based on an estimate determined by the
host image analysis. This analysis provides the coordinates of the pupil in pixel res-
olution. These coordinates are received by the calibration component, which selects
the area at the given position as target. As this is performed while the user is focus-
ing on the on screen stimulus for the respective calibration point, the pupil centroid
can be computed in sub-pixel resolution the same way it is done during tracking.

4.3.2 Tracking Component

This program is downloaded into the SR3300 after calibration and is active during
the rest of the tracking. It is supplied with an initial position that lies within the
pupil area and continues to track the selected area. The greatest difficulties that
this program has to solve, arise from the limited computational capabilities that are
available at runtime. It is not possible to perform any semantic image analysis. The
only means of image analysis is the segmentation performed using binarization, and
region growing using the Self Fill algorithm. The means of segmentation internally
used by the Vision Chip.

While the eye position is continuously tracked, the binarization threshold is
adjusted and the tracked pupil checked for distortions.

Tracking Algorithm. Although the actual implementation details of the pro-
gram are complicated by the underlying system, the general working of the algorithm
is summarized by the pseudo code given in Listing 4.1. The given code is executed

41

1 i f (! D i s t o r t i on)
2 {
3 // recapture pup i l
4 f . Ca l cu la t eFeature s () ;
5 i f (f . S a t i s f i e sC on s t r a i n t s ())
6 {
7 D i s t o r t i on = NONE;
8 Centroid = f . GetCentroid () ;
9 }

10 e l s e
11 {
12 // try again in next frame
13 }
14 }
15 e l s e
16 {
17 tw . S e l f F i l l (c en t r o id) ;
18 tw . Ca l cu la teFeature s () ;

20 i f (tw . S a t i s f i e sC on s t r a i n t s ())
21 {
22 D i s t o r t i on = NONE;
23 }
24 e l s e
25 {
26 D i s t o r t i on = tw . GetDis tor t ion () ;
27 }

30 i f (! D i s t o r t i on)
31 {
32 Centroid = tw . GetCentroid () ;
33 Threshold = Bi le rpThresho ld (Centroid) ;
34 }
35 e l s e
36 {
37 // try to recapture in next frame
38 }
39 }

42 ReportToHost (Centroid , D i s t o r t i on) ;

Listing 4.1: Tracking pseudo code

42

for each frame, i.e., after each exposure, after capturing an image of the eye.

Besides global variables to save data between consecutive frames, the code uses
two pseudo object variables, f and tw. These objects represent the binary image f
and the binary image of the target window that were described in Section 3.3. They
provide the following methods:

CalculateFeatures() Calculates the image features such as area, centroid and ec-
centricity. This function takes advantage of the high speed of the VC function
to calculate moments.

SatisfiesConstraints() Compares the image features to the constraints provided
by the host precomputations and returns true if the current features satisfy
the constraints, i.e. the target is the pupil without recognizable distortions.
False is returned if distortions are found.

GetDistortion() Returns a code for the found distortion to be able to report eye
blinks to the host.

GetCentroid() Returns the centroid of the image, usually the x and y coordinates
of the pupil center.

The object representing the target window also provides the method SelfFill()
to execute the corresponding VC function. The function takes a parameter to define
the starting point for the filling. The following global variables and functions are
available:

Distortion Represents the distortion found in the frame, if any exists.

Centroid The x and y coordinates of the center of mass.

Threshold The binarization threshold, adjusted for each frame based on the de-
termined centroid.

BilerpThreshold(Centroid) Performs bilinear interpolation for the current pixel
position of the pupil and returns the computed binarization threshold.

ReportToHost(Centroid, Distortion) Timestamps the data, assigns a frame
number and injects markers before the tracking data is reported to the host
workstation.

The Code assumes initialization with a centroid from the host before tracking
is started.

4.3.3 Moment Calculation

The calculation of moments is of great importance for the eye tracking system. The
MC components take advantage of the VC functions that allow the computation of
moments within the time of a single frame. Only using these functions is it possible
to compute the pupil centroid with the required frame rate. This section explains

43

how moments up to the second order can be computed using these functions. The
computation of the pupil eccentricity will be given as an example using second order
moments.

First, some definitions are necessary. For a binary image g(x, y), the geometric
moments of 0th, 1st and 2nd (p + q = 2 for mp,q) order, can be defined as follows:

m0,0 =
∑

x

∑
y

g(x, y)

m1,0 =
∑

x

∑
y

xg(x, y)

m0,1 =
∑

x

∑
y

yg(x, y)

m1,1 =
∑

x

∑
y

xyg(x, y)

m2,0 =
∑

x

∑
y

x2g(x, y)

m0,2 =
∑

x

∑
y

y2g(x, y)

The 0th order moment m0,0 is simply the area. It is equal to the number of all pixels
with value 1.

Using these moments, the centroid, or center of mass coordinates can be com-
puted:

x = m10/m00

y = m01/m00

These values define the pupil position as it is reported by the VC. Furthermore,
they can be used to define central moments, of which only the second order moments
will be relevant:

µ1,1 =
∑

x

∑
y

(x− x)(y − y)g(x, y)

µ2,0 =
∑

x

∑
y

(x− x)2g(x, y)

µ0,2 =
∑

x

∑
y

(y − y)2g(x, y)

These moments in turn can be calculated using the geometric moments and
the centroid coordinates. For example:

44

µ1,1 = m1,1 − ym1,0 − xm0,1 + x ym0,0

µ2,0 = m2,0 −m2
1,0 + m2

1,0m0,0

This is important, as the VC supports only the calculation of geometric mo-
ments. But as central moments can be expressed as above, this does not pose a
problem. The central moments can be computed by the microcontroller.

Using central moments, eccentricity can be defined [31]:

ε =
µ2,0 + µ0,2 +

√
(µ2,0 − µ0,2)2 + 4µ2

1,1

µ2,0 + µ0,2 −
√

(µ2,0 − µ0,2)2 + 4µ2
1,1

The eccentricity is the ratio of longest and shortest line that span the region.
Consequently, for the circular shape of the pupil, ε would be 1.

Implementation. Moment calculation is performed partially by the VC and
partially by microcontroller routines that take advantage of special VC functionality.
The relevant functions are:

• Area(): Computes the area, i.e., counts set pixels, over the area of the binary
image.

• SetRow(): Selects all pixels of a given row or set of rows, to be included into
the computation performed by Area()

• SetColumn(): Selects all pixels of a given column or set of columns, to be
included into the computation performed by Area()

• SetAnd(): Affects the selection performed using SetRow() and SetColumn()
as explained below.

As mentioned in Section 3.3, the VC column and row decoders can be used
to select certain columns and rows of the VC image. Selecting, e.g., a certain row,
includes this row into the area computation that is performed in hardware. All
binary image pixels in this row, that have value 1, will provide to the sum that the
VC computes. Using this functionality it is possible to select a certain set of rows
at once. This is performed by the function SetRow(), or SetColumn(), respectively.

As previously mentioned, to compute m0,0, these function are simply used to
include all rows into the area computation. For the computation of higher order
moments, it is relevant, in which ways, e.g., a set of rows can be specified. Which
rows are contained in the set depends on the bit pattern of the row number.

The binary representation for a row x can be defined as xnxn−1 · · ·x1 and

x = xn2n−1 + xn−12
n−2 + · · ·+ x12

0

=
∑

k

xk2
k−1

45

with k as the index of the binary string.

For the moment calculation, the VC offers the possibility to select all rows
that have a bit set at position k of their binary representation. Why this is relevant
will be explained shortly shortly.

Keeping the notion of a set of rows, it is also possible to select rows that
correspond to the intersection of two sets. Hence, it is possible to select only rows
that have a bit set at two positions k AND l. It is furthermore possible, to use
the same functionality to intersect sets or rows and columns, which will yield a
pattern of selected pixels that are part of a row AND a column from the sets. This
is performed by calling the function SetAnd() before selecting the respective rows
and columns.

Having selected the required pixels, the VC can perform the area computation.
To see how this is of advantage for the calculation of higher order moments, a
different set of formulas has to be derived from the original formulas for moment
calculation.

By replacing the coordinates x and y with their binary representation, the
following formulas can be defined:

m1,0 =
∑

k

2k−1
∑

x

∑
y

xkg(x, y)

m0,1 =
∑

k

2k−1
∑

x

∑
y

ykg(x, y)

m1,1 =
∑

k

2k−1
∑

x

∑
y

xkykg(x, y)

m2,0 =
∑

k

∑

l

2k+l−2
∑

x

∑
y

xkxlg(x, y)

The formula for m1,0 was originally proposed by [26].

These functions are more closely related to the way the moment can be com-
puted using the VC. Using the formula for m1,0 as an example, it is visible that
the rightmost summations over the x and y is performed for a fixed position k of
the binary representation of x. As xk is either 0 or 1, it selects the pixels that are
included in the summation. In other words, pixels in all rows x are included in the
summation, if x has a bit set at position k of its binary representation.

This is where the particular way the VC can select rows based on their binary
representation becomes relevant. In iteration k of the leftmost summation, when
selecting all rows that have a bit set at position k, the following is equivalent to the
rightmost summation:

∑
x

∑
y

g(x, y)

The selection of the rows being performed by calling SetRow(), the rightmost
summation can be performed very efficiently by the VC Area() function. Conse-

46

x = 20dec = 00010100bin
g(x) = 1
0 0 0 1 0 1 0 0 *g(x)

 g(x)

 g(x)
0 0 0 g(x) 0 g(x) 0 0 bin

Result = 00010100bin

Figure 4.11: Binary multiplication.

quently, moment calculation can mostly be delegated to the VC, the MC only has
to perform the remaining left part of the equation.

The computation for m0,1 is performed in the same way. To compute m1,1 the
VC SetAnd() function is called before calling SetRow() and SetColumn() to select
the rows and columns as defined by k. This is necessary, as the rightmost summation
includes only pixels that have a bit set at row xk and column yk.

The computation of m2,0 is performed in a similar way, only SetRow() and
SetColumn() are invoked with different values, k and l, respectively.

This way, the moments can be calculated in log(N) iterations, with N being
the maximum of the number of rows and columns.

Validity. To show that the calculated results are valid, it is now only to show
that the used formulas are valid, i.e., for example, that the following equality holds
for the formulas of m1,0:

∑
x

∑
y

xg(x, y) =
∑

k

2k−1
∑

x

∑
y

xkg(x, y)

By simply substituting x by its binary representation the following formula is derived
from the left part:

∑
x

∑
y

[∑

k

2k−1xk

]
g(x, y)

where the part marked with square brackets, calculates the value of x from its binary
representation. This formula is equal to

∑
x

∑
y

∑

k

2k−1 [xkg(x, y)]

with the definition of the binary multiplication explained in Figure 4.11. The variable
xk has the purpose of selecting g(x, y) and 2k−1 performs the shift. Therefore, each
iteration over k corresponds to a new line in the depicted summation. The final
formula follows with commutativity:

∑

k

2k−1
∑

x

∑
y

xkg(x, y)

47

All other formulas can be derived in a similar fashion.

48

Chapter 5

Conclusion

This thesis demonstrated the implementation of a high speed eye tracking system
using the Vision Chip. Section 5.1 summarizes the results acquired with the system
and illustrates the problems that were solved. Section 5.2 gives an outlook on possible
improvements of the system itself and the SR3300 Vision Chip.

5.1 Results

In respect to assessing the value of the eye tracking system, two properties are of
particular interest:

1. Time resolution

2. Spatial resolution or precision

The time resolution is determined by the frame rate. The system provides a
frame rate of 100Hz, that is sufficient to capture the occurrence of most saccadic eye
movements. The lack of a measuring device as it is described in [17] does not allow
to objectively assess the accuracy of the system. Instead the precision is given, the
smallest change that the system is able to detect. The precision has been estimated
to <2.3o over a range of 45o, which is a rather conservative estimate.

Time Resolution. Figure 5.1 shows tracking data recorded while the user was
tracing a wave curve with his eyes. The time resolution is visible from Figure 5.2 that
shows only the y position over time. The occurrence of saccades is visible in areas
with almost vertical slope and very few sample points. This illustrates the need for
fast eye-tracking and the inadequacy of smaller frame rates, in respect to saccadic
eye movements. Also, the importance of saccades for accurate positional information
is visible, as most positional changes are brought about by saccadic movements.

The area marked within Figure 5.2 is shown again in Figure 5.3. This enlarged
subsection shows the achieved time resolution of 10ms between consecutive frames,
or a frame rate of 100Hz.

49

14 16 18 20 22 24 26
5

6

7

8

9

10

11

12

13

Pupil x position [sub pixel]

P
up

il
y

po
si

tio
n

[s
ub

 p
ix

el
]

Figure 5.1: Trajectory of pupil xy-position.

0 1 2 3 4 5 6 7

x 10
6

5

6

7

8

9

10

11

12

13

Time [µs]

P
up

il
y

po
si

tio
n

[s
ub

 p
ix

el
]

Figure 5.2: Trajectory of pupil y-position over time.

50

3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5

x 10
6

8.5

9

9.5

10

10.5

Time [µs]

P
up

il
y

po
si

tio
n

[s
ub

 p
ix

el
]

Figure 5.3: Zoomed in trajectory of pupil y-position over time.

7 pixels

19 pixels

Figure 5.4: Grayscale image captured during calibration. The shape is formed by
the four corner calibration points.

51

Spatial Resolution. Figure 5.4 shows a grayscale image as it is acquired during
the calibration, while the user looks at a far corner of the computer screen. The over-
layed polygon indicates the maximum extent to which the eye can move into the far
corners of the image, as determined by additional calibration images. As mentioned
before, the calibration points do not form a rectangle due to misalignments that
cannot be generally avoided.

The width and height of the bounding rectangle are given in pixel. Although
sub-pixel resolution is used for tracking and mapping into screen space, this indi-
cates the resolution of the tracking device. The depicted polygon with edges of about
19 and 7 pixels length, is mapped onto a computer screen rectangle of about 850
by 450 pixels (25 by 14 centimeters) at a distance of 30 centimeters. Consequently
a change by 1 pixel in tracker space corresponds to about 45 pixels in horizontal
and 64 pixels in vertical direction in screen space. While the actual positional infor-
mation in tracker space is provided in sub-pixel resolution, the small extent of the
polygon severely limits the resolution of the device. Based on the pixel resolution,
the precision can be estimated to <2.3o.

To take the sub-pixel resolution into account is not as straightforward as it may
seem. Although the fixed point decimals returned by the VC suggest a precision of
1/256 = 0.004 with 8 fractional bits, this precision is not achieved.

As the centroid is calculated using area and first order moments, the precision
of the calculation depends on the area and shape of the pupil. The degree to which
the shape is affected by binarization noise cannot easily be assessed. Ignoring the
influence of binarization and assuming a perfectly round shape, the precision can
be estimated to 1/4r using the double of the number of pixels along the edge of a
bounding rectangle. With a radius r = 4 this yields a precision of 1/16 = 0.0625.
The resulting estimate for the eye tracking accuracy would be <0.14o which is a
very optimistic value. The actual value will be closer to the conservative estimate.

This is also visible in Figure 5.5. It shows tracking data that was taken while
the user was tracing the calibration rectangle on screen. The corner calibration points
are indicated and connected with lines. Figure 5.5(a) shows the x and y position
in VC image space while Figure 5.5(b) shows the mapping into screen coordinates.
The size of a VC pixel is indicated in both figures.

Threshold Adjustment. Figure 5.6 compares the tracking application that
dynamically adjusts the binarization threshold to one with a fixed threshold. The
tracking session is the same as depicted in Figure 5.5. The user injected a marker
into the stream of tracking data when his gaze swept across the corner points. Both
figures show the measured area of the pupil and the area of the whole binary image.
The difference between these two measurements is the amount of clutter contained
in the binary image besides the pupil.

While both versions cannot avoid undesired clutter completely, the version
with adjustment shown in Figure 5.6(b), can keep it at a reasonable low level. Over
large parts of the tracking there is no clutter present in the image, and the pupil
area makes up the whole area. In particular, the clutter surrounding the pupil never
merged with the pupil area, so that the tracking results remain valid.

52

0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

x

y

position
calibration rectangle
1 Pixel

(a) Coordinates in Vision Chip image space.

200 300 400 500 600 700 800 900 1000 1100

100

200

300

400

500

600

700

x

y

position
calibration rectangle
1 VC Pixel

(b) Coordinates in screen space.

Figure 5.5: Tracking data captured while user was tracing rectangle on screen.

53

0 200 400 600 800 1000 1200 1400 1600
−50

0

50

100

150

200

Frame Number

A
re

a

Pupil Area
Whole Area
Difference

Distortion
Marker

(a) Tracking without threshold adjustment.

0 200 400 600 800 1000 1200 1400 1600
−20

0

20

40

60

80

100

120

Frame Number

A
re

a

Pupil Area
Whole Area
Difference

Distortion
Marker

(b) Tracking with threshold adjustment.

Figure 5.6: Measurement of the pupil area and whole area of the binary image.
The samples were taken while the user traced a rectangle. Figure 5.6(a) shows a
failed tracking attempt when the threshold is not adjusted. Figure 5.6(b) shows a
successful tracking session with dynamic adjustment of the binarization threshold.

54

Figure 5.6(a) on the other hand, shows an attempt to track the same rectan-
gular movement without adjusting the binarization threshold. Here, the tracking
begins successfully, but soon the amount of clutter increases, and half way to the
second marker, the pupil is distorted by the clutter and the tracker appropriately
reports the distortion.

5.2 Future Work

5.2.1 Improving The Eye Tracking System

Many things remain to be done, some interesting solutions remain to be evaluated.
Some of the following points would require hardware changes as they are described in
the next section. Generally it is likely that increased pixel resolution is a requirement
to justify any further work. Increased MC memory is a definite precondition. The
next section gives more details in that respect.

Presuming some of the asked for hardware changes, the following would be
worthwhile to pursue:

1. Increase accuracy by improving calibration. Use more calibration points. Re-
quires speed improvement for host image analysis.

2. Increase accuracy by compensating effects of sphere like shape of the eye [30].

3. Reduce load on host workstation by reporting only detected saccades. In the
current system, the host polls the USB connection ”in a tight loop” to keep
up with the MC that transfers frames at 100Hz. This is necessary to make the
host aware of saccades, that can occur at any time. Detecting saccades on the
MC would allow for substantially lower transfer rates. Only during saccades
the high frame rate is necessary to capture the movement, otherwise a lower
frame rate can be chosen. As saccades occur only about 3 times per second,
the overall load on the host workstation could be largely reduced.

4. Use higher grid resolution for bilinear threshold interpolation and evaluate
impact on robustness, e.g. in relation to increased frame rate.

5. Increase frame rate. More research is needed to analyze reasons for failed
tracking with higher frame rates. Necessarily requires larger programs, e.g. to
acquire grayscale images from within tracking component.

6. Reduce sensitivity to choice of binarization threshold by evaluating other ap-
proaches than dark pupil. For example the Blueeyes approach [13] could be
interesting but requires grayscale image analysis.

7. Change tracking technique to use first Purkinje image. Simply capturing the
highlight every other frame would be a solution but cuts frame rate in half.
More sophisticated solutions might be able to keep the frame rate. Making this
improvement, it might be possible to fix VC at screen and gain more usability
without the need to fix the user’s head position.

55

8. Compensate the effect of the LED highlights on the moment calculation. Cur-
rently the area of the LED is missing in the binary image and distorts the
shape of the pupil. Compensation might be possible by taking advantage of
the separability of moment calculation. The moments of the highlights could be
precomputed and included in the bilinear interpolation to adjust the moment
at runtime.

5.2.2 Improving The SR3300

Using the SR3300 for the implementation of the presented eye tracking system has
revealed certain disadvantages but also showed that high speed eye tracking is pos-
sible with hardware that was not specifically designed for the task. Although the
sale of the SR3300 has been suspended, development and improvement of the under-
lying concept continues, and new chips are being designed by the Ishikawa Namiki
Komuro Laboratory.

The experience made during the development of the eye tracking system sug-
gest improvements in the following area:

1. Pixel resolution

2. Memory available for program code

3. Lens distortion

4. Grayscale image access

5. Development board

6. Spectral sensitivity

For the presented system, and similar tracking tasks in general, improvements
in these area would be beneficial.

Pixel Resolution. The pixel resolution of 48 x 32 pixels that is available from
the SR3300 was the most limiting factor in respect to providing a competitive eye
tracking system. Experiments have been done to work around this problem by re-
placing the lens with an optical zoom, but the problem remains, as the extent of
the eye movements within the image limits the zooming factor. Only increasing the
pixel resolution can make the system competitive in comparison to other systems
that use resolutions of 640 by 480 pixels [16].

Memory. The factor that most severely limited robustness and implemented
features is the small memory size available to the microcontroller program. The
limitation is partially due to the fact that the USB framework, VC library and
application code share the available memory of 8KB. Nevertheless, if the eye tracking
system is to be improved, increasing the size of the memory is inevitable. Although
the microcontroller code is implemented in separate programs that are exchanged

56

at runtime, even these programs do not allow for further code addition due to the
size limitation.

Lens Distortion. Only tracking tasks like tracking a black target on a white
background are not affected by the lens distortion. If the VC is to be used for
applications that are rather ”grayscale” in nature, the lens distortions complicates
the software and therefore reduces the number of possible features. Reducing the
distortion would be of great value.

Development Board. A Development board integrates the hardware with de-
bugging and simulation applications on the host. The availability of such a board
would speed up development and would also aid in tracking problems in the hard-
ware itself. Even if the sold product does not include more microcontroller memory,
the development board should. The low level nature of the tracking task makes it
difficult to theoretically develop algorithms without putting them to the test. Once
a solution is verified, an attempt to optimize the code and reduce code size is more
likely to be successful.

Grayscale Image Access. With the current system, grayscale images can not
be used for time critical aspects. The pixel access is by magnitudes to slow and the
tracking is restricted to use only binary images. Speeding up grayscale image access
to a level that makes the microcontroller speed the limitation, would already be
an improvement. Escalation procedures such as recapturing the pupil could imple-
ment more sophisticated image analysis. Also, occasional checks with more elaborate
computations could increase robustness while tracking is performed at higher speed.

Illumination and Spectral Sensitivity. Safety standards and usability limit
the illumination and the high frame rates limit its effect. Increasing the spectral
sensitivity would enable the system to use higher frame rates while leaving other
parameters unchanged.

57

Bibliography

[1] Paul C. Knox. The parameters of eye movement. http://www.liv.ac.uk/
∼pcknox/teaching/Eymovs/params.htm [Last Accessed Aug. 12, 2005].

[2] R.H.S. Carpenter. Movement Of The Eyes (2nd edition). Pion Limited, 1988.

[3] Keith S. Karn. “saccade pickers” vs. “fixation pickers”: the effect of eye tracking
instrumentation on research. In ETRA, pages 87–88, 2000.

[4] Stavri G. Nikolov, Timothy D. Newman, David R. Bull, Cedric Nishan Cana-
garajah, Michael G. Jones, and Iain D. Gilchrist. Gaze-contingent display using
texture mapping and openGL: system and applications. In ETRA, pages 11–18,
2004.

[5] Junji Watanabe, Hideyuki Ando, Taro Madea, and Susumu Tachi. Gaze-
triggered selective information display. In Proceedings of International Confer-
ence on Advances in Computer Entertainment Technology ACE, pages 10–17,
2004.

[6] Asim Smailagic and Daniel Siewiorek. Application design for wearable and
context-aware computers, 2002.

[7] Monte System Corporation. Price list on file.

[8] Staff. Sales presentation of 100 Hz eye tracking system.

[9] D.F. Nodine, L. Toto Kundel, and E.A. Krupinski. Recording and analyz-
ing eye-position data using a microcomputer workstation. Behavior Research
Methods, 24(3):475–584, 1992.

[10] H. Collewijn, F. van der Mark, and T.C. Jansen. Precise recording of human
eye movements. Vision Research, 15(3):447–450, March 1975.

[11] Sohel Merchant. Eye movement research in aviation and commercially available
eye trackers today. http://66.102.7.104/search?q=cache:cck0ySFXivQJ:

arrow.win.ecn.uiowa.edu/56245/FinalEyeTrackingReportAug17.pdf+

eye+tracking+companies&hl=en [Last Accessed Aug. 12, 2005], August 2001.

[12] Shumeet Baluja and Dean Pomerleau. Non-intrusive gaze tracking using arti-
ficial neural networks. Technical Report CMU-CS-94-102, Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA, January 1994.

58

[13] C.H. Morimoto, D. Koons, A. Amir, and M. Flickner. Frame-rate pupil detec-
tor and gaze tracker. http://www.ime.usp.br/∼hitoshi/framerate/node1.
html [Last Accessed Aug. 12, 2005].

[14] Jason S. Babcock and Jeff B. Pelz. Building a lightweight eyetracking headgear.
In ETRA, pages 109–114, 2004.

[15] Alphabio. Alphabio’s eyeputer technical details. http://www.electronica.

fr/alphabio/page1.html#prin [Last Accessed Aug. 12, 2005].

[16] SR Research. EyeLink II technical specification. http://www.eyelinkinfo.

com/mount tech spec.php [Last Accessed Aug. 12, 2005].

[17] Clarke A.H., Ditterich J., Drüen K., Schönfeld U., and Steineke C. Using high
frame rate CMOS sensors for three-dimensional eye tracking. Behavior Research
Methods, Instruments, & Computers, 34(4):549–560, November 2002.

[18] Chronos Vision GmbH. Eyetracking. http://www.chronos-vision.

de/eyetracking/default start eyetracking.htm [Last Accessed Aug. 12,
2005].

[19] M. I. Posner, C. R. R. Snyder, and B. J. Davidson. Attention and the detection
of signals. Journal of Experimental Psychology: General, 109:160–174, 1980.

[20] EnchantedLearning. Eye diagram. http://www.enchantedlearning.com/

subjects/anatomy/eye/label/labeleye.shtml [Last Accessed Aug. 12,
2005].

[21] George Mather. The eye. http://www.lifesci.sussex.ac.uk/home/George
Mather/Linked%20Pages/Physiol/The%20Eye.html [Last Accessed Aug. 12,
2005].

[22] Arne John Glenstrup and Theo Engell-Nielsen. Eye controlled media: Present
and future state. http://www.diku.dk/∼panic/eyegaze/article.html [Last
Accessed Aug. 12, 2005].

[23] Andrew T. Duchowski. Eye Tracking Methodology. Theory and Practice.
Springer-Verlag, 2003.

[24] Fourward Technologies Inc. Dual-purkinje-image concept. http://www.

fourward.com/dconcept.htm [Last Accessed Aug. 12, 2005].

[25] Guidelines on limits of exposure to broad-band incoherent optical radiation
(0.38 to 3m). Health Physics, 73(3):539–554, 1997.

[26] Takashi Komuro, Idaku Ishii, Masatoshi Ishikawa, and Atsushi Yoshida. A
digital vision chip specialized for high-speed target tracking. IEEE transaction
on Electron Devices, 50:191–199, 2003.

[27] Bernd Jähne. Digital Image Processing: Concepts, Algorithms, and Scientific
Applications. Springer-Verlag, 4th edition, 1997.

59

[28] Mark Russinovich. Windows 2000 quantums. http://www.sysinternals.com/
Information/Windows2000Quantums.html [Last Accessed Aug. 12, 2005].

[29] Linda G. Shapiro and George C. Stockmann. Computer Vision. Prentice Hall,
2001.

[30] Kai Schreiber and Thomas Haslwanter. Improving calibration of 3-d video
oculography systems. IEEE Transactions on Biomedical Engineering, 51(4),
April 2004.

[31] David Marshall. Statistical region description. http://www.cs.cf.ac.uk/

Dave/Vision lecture/node36.html [Last Accessed Aug. 12, 2005], 1997.

60

Appendix A

User’s Manual

This appendix explains how to use the demonstration program that demonstrates
the eye tracking system. The program is compiled from the EyeTrackerTest project.
For system requirements see Appendix B.1.

The SR3300 Eye Tracker has to be connected before the program is started.
Once the program is started, all options are available from the Test menu:

• Mockup Test

• Rectangle Trace

The Mockup Test was used during development and can be used to verify
the tracker if problems occur while tracking a human eye. It simulates the pupil
on screen for a tracker mounted in front of the screen. See Appendix B.4 for more
information.

If a demonstration is started, first a video image of the eye is shown in a dialog.
The user has to adjust the glasses until the pupil is centered in the image and a
blue dot within the area of the pupil indicates that image analysis is performed
successfully. If everything is alright, a click on OK will start the calibration.

During this phase, 5 black circles, the stimuli, are shown on screen. For each
circle, calibration has to be performed. Once the user focuses on the displayed stim-
ulus, the calibration is performed by pressing the space bar. The user has to keep
focusing on the stimulus until the next stimulus is displayed.

After calibration, a dialog with a binary image video is shown. To start track-
ing, the user has to focus on the last displayed stimulus and press space again.

If the option ”Rectangle Trace” has been chosen, the black circle will move
along the edge of a rectangle.

During tracking, the tracked eye positions is indicated by a small blue square
on the screen. A marker can be injected into the stream of tracking data by pressing
the key ”m”. This can be used to identify a certain screen position in the tracking
data file. The data is written to the file tracking.log. The following shows several
lines from this file, followed by an description of each field:

120: (18) 134037, 4.5, 24.7695, 10315, pA44, wA44, nA28, dis0, t131, 7992,

61

121: (18) 144357, 4.5, 24.7695, 10320, pA44, wA44, nA28, dis0, t131, 12017,

122: (18) 154648, 4.5, 24.7695, 10291, pA44, wA44, nA28, dis0, t131, 7970,

123: (18) 165064, 4.5, 24.7695, 10416, pA44, wA44, nA28, dis0, t131, 12009,

124: (18) 175269, 4.5, 24.7695, 10205, pA44, wA44, nA28, dis0, t131, 11998,

frame number: (message length) timestamp, x, y, time since last frame

The message length is in bytes, the timestamp in microseconds.

The coordinates x and y are given in sub-pixel resolution.

The time since last frame is given in microseconds.

The meaning of the remaining fields is as follows:

pA: Pupil area.

wA: Whole area. The number of all set pixels in the binary image.

nA: Normal area. An expected value for the pupil area.

dis: Distortion. 0 indicates no distortion, 1 and 2 indicate blink

t: Threshold that was used for the frame

The last value gives a time measure performed by the host.

It gives the time in microseconds since the last polling of data.

The demonstration displays the following information on screen:

==Calibration data==

x and y: The centroid coordinates in VC image space

threshold: The ideal threshold that was computed for this position

==Tracker status==

frame: The current frame number (not updated with 100Hz)

binThresh: The binarization threshold that is currently used

distortion: The distortion that was detected

62

Appendix B

Maintenance Manual

This Appendix is for developers who want to compile and execute the source code.
On the Release CD the source code is located in directory Source. For convenience
the source is expected to be located on drive S:/ on the development system. There
are the following directories with source code:

host/

EyeTrackerTest: The demonstration program.

EyeTrackerLib: Library Encapsulating the access to the tracker.

ImageAnalysis: Library for host image analysis.

CustomControls: Library for user interface functionality.

common: Source commonly used in all windows programs.

AlgorithmTest: Project for testing microcontroller source.

mlfTest: Project to test matlab functions of

ImageAnalysis library.

target/

Tracking: The component performing the actual tracking.

Calibration: The calibration component.

shared: Files shared by host and target applications.

The Windows code is located in directory host, all microcontroller code is
located in directory target. Code that is shared by Windows and microcontroller
applications is located in the directory shared.

A release version is not provided. The following instructions refer to build-
ing and executing the Windows programs from MS Visual Studio as debug ver-
sions. The microcontroller programs are built using Keil uVision2. The resulting
microcontroller binaries with the ending bix have to be located in the directory
S:/EyeTrackerTest, from where they are read by the Windows application to be
downloaded into the SR3300. There are two such files:

• Calibration.bix

• Tracking.bix

For convenience the following drives are expected to be present in the system:

63

S:/ Contains the source code as described above L:/ Contains all libraries M:/
Contains the project matlab image analysis

Because of a bug in the matlab mcc compiler the drive M:/ has to refer to
S:/host/ImageAnalysis. This is described in Section B.2.1.1.

The remaining sections describe the following:

• Section B.1: Required system setup.

• Section B.2: How the source code is built.

• Section B.3: How the source can be modified and extended.

• Section B.4: How the system can be tested.

B.1 Prerequisite System Setup

To be able to compile, but also to execute the programs, the system has to be set up
appropriately. This section describes all necessary steps. First all required libraries
are described and where they should be placed. Next, all required installations are
described, including the libraries. This gives information where the needed tools and
libraries are available.

B.1.1 Required Libraries

The development system requires certain libraries. Where the required libraries can
be found is described in the next section. This section gives details about libraries
that might require some attention and describes to which locations the library should
be installed.

The following list indicates where the paths are hardcoded ([MC]: microcon-
troller project, [WIN]: Windows project, [PATH]: system environment path):

[MC] L:/Keil/C51/BIN/

[MC] L:/Keil/C51/INC/

[MC] L:/Keil/C51/LIB/

[MC] L:/Cypress/Target/Lib/ {for Ezusb/Ezusb.lib and USBJmpTb.OBJ}

[MC] L:/Cypress/Target/Inc/

[WIN] L:/libs/GraphicsMagick-1.1.4

[WIN] L:/libs/GraphicsMagick-1.1.4/Magick++/lib

[WIN] L:/libs/GraphicsMagick-1.1.4/VisualMagick/lib

[PATH] L:/libs/GraphicsMagick-1.1.4/VisualMagick/bin/

[WIN] L:/Matlab/extern/include

[WIN] L:/Matlab/simulink/include

[WIN] L:/Matlab/extern/lib/win32/microsoft/msvc60/

64

[WIN] T:/Debug/dlls

[WIN] T:/Debug/libs

[WIN] T:/Debug/includes

The last three directories have to be created before compilation. The others
are created when the library or software is installed. The respective libraries are
described in the following sections.

B.1.1.1 Graphics Magick

The Windows applications need the magick library. A compiled version is already
included on the Release CD in directory Misc/Libs, but the latest version can be
downloaded from http://www.graphicsmagick.org/www/download.html. It is ex-
pected in the directory L:/libs/GraphicsMagick-1.1.4. You have to add the following
to the systems environment path:

L:/libs/GraphicsMagick-1.1.4/VisualMagick/bin/. The following dlls are rele-
vant:

CORE_DB_magick_.dll

CORE_DB_Magick++_.dll

CORE_DB_zlib_.dll

CORE_DB_bzlib_.dll

CORE_DB_lcms_.dll

CORE_DB_ttf_.dll

DB refers to the debugging libraries, RL refers to the respective release libraries.

Compiling The Magick Source. If recompilation is necessary, Visual Studio
6.0 Service Pack 5 has to be installed to avoid the internal compiler error C1001.

To compile the library, do the following or look at L:/libs/GraphicsMagick-
1.1.4/INSTALL-windows.txt:

Configuration. Go to L:/libs/GraphicsMagick-1.1.4/VisualMagick/configure/
open the configure.dsw file, build release (AND DEBUG) and execute. That starts
the configuration wizard you just built. Select checkboxes

• Include all demo and test programs

• Generate all utility projects with full paths rather then relative paths

paragraphCompilation After finishing the configuration, add the line

#define snprintf _snprintf

to the file L:/GraphicsMagick-1.1.4/magick/magick config.h To avoid the link error

65

module.obj : error LNK2001: unresolved external symbol _snprintf

when compiling the Core magick project. Now open the file L:/libs/GraphicsMagick-
1.1.4/VisualMagick/VisualDynamicMT.dsw, and Select the ”All” project, Clean,
and build as Release.

Testing. For testing the build, go to L:/libs/GraphicsMagick-1.1.4/VisualMagick/bin/,
and look at

• GraphicsMagick/Magick++/demo

• GraphicsMagick/Magick++/tests

B.1.1.2 Keil Libraries

The Keil libraries are required by the MC code. The compiler libraries are installed
together with the Keil uVision2 IDE. They are expected to be located at L:/Keil.

B.1.1.3 Cypress EZUSB

This library is required by the MC code. The library is expected to be located at
L:/Cypress.

B.1.1.4 Matlab libraries for mcc

This library is required by the image analysis component of the windows application.
The files are installed as part of Matlab. Matlab version 6.5 is required with toolboxes
for image analysis, and the matlab C compiler mcc. It is expected to be located at
L:/Matlab.

B.1.2 Required Installs

The following tools, drivers and libraries have to be installed to the system:

Microsoft Visual Studio 6.0 It is required for the compilation of the source code
located in the host directory.

Keil uVision2 For binaries larger than 4KB, the trial version supplied with the
EZUSB development kit, cannot be used. It is necessary to purchase the version
available from http://www.keil.com/c51/ca51kit.htm.

EZUSB SDK This sdk is required by the MC code. It can be found on the Release
CD in directory the Misc/Tools.

SR3300 USB driver To be able to access the tracking hardware, the USB driver
has to be installed from the directory Misc/SR3300/Driver on the Release

CD.

66

Cygwin It is required as the projects execute some post-build commands that
are not available on a standard Windows system. It can be found at http:

//www.cygwin.com/

Perl It is required by some Matlab scripts to extract data from the tracking data
file. This is only required if the tracking data is to be visualized, but not
for the demonstration of the tracking system. The version installed on the
development system is available from http://aspn.activestate.com/ASPN/

Downloads/ActivePerl/.

Graphics Magick This library is required by the Windows application. It can be
found on the Release CD in directory Misc/Libs. The previous section gives
some more details if the library has to be rebuilt.

B.2 Building The Programs

B.2.1 Building The Windows Applications

If all libraries are installed in the previously described locations, the Windows source
can be built using the provided Visual Studio project files. The remaining warnings
during compilation are due to a Visual Studio bug (http://support.microsoft.
com/default.aspx?scid=kb;EN-US;q167355).

First the libraries have to be built:

1. ImageAnalysis

2. EyeTrackerLib

3. CustomControls

Each library copies certain files to the following directories that have to be
created beforehand:

T:/Debug/dlls

T:/Debug/includes

T:/Debug/libs

The libraries have to be built in the given order. Please refer to Section B.2.1.1
for instructions on building the ImageAnalysis library.

When all libraries have been built successfully, the EyeTrackerTest project can
be built.

B.2.1.1 ImageAnalysis library

The image analysis library is implemented in matlab code that is compiled into a
shared dll using the Matlab compiler mcc. Once the build process finished success-
fully, the image analysis functionality is accessed simply by using the created header
and lib files.

67

Unfortunately, it is not as easy as it should be to reach that point. There are
quite a few problems, one of them being a mcc bug that causes the compiler to
crash if the parameter list is too long. The parameter list is automatically created
by the Matlab Visual Studio plugin. Unfortunately, the plugin includes the source
directory many times into the parameter list, which can cause the compiler to crash.

The simple workaround is to access the ImageAnalysis project via the drive
M:/ and add new files only from this directory. This way the project files can be
used but the parameter list is shorter. It also works around the problem that the
tool used for creating the project adds absolute pathnames to the project.

Section B.3.1 describes the steps that are necessary to create such a Visual
Studio project to compile matlab code. It also describes what changes are necessary
to the source files in case new matlab files are added.

Before building the project, execute the following in your matlab environment:

movefile([matlabroot

’/toolbox/images/images/private/check*’],[matlabroot

’/toolbox/images/images/’])

rehash toolbox

Otherwise the check* functions produce runtime errors and compile warnings.
See This has to be done only once. Otherwise the files in the ImageAnalysis directory
can be compiled as is. Simply go to M:/ and open the project file and build. Because
the plugin does ”things” when the project is cleaned, it is recommended to change
one of the c source files, just to make the compiler rebuild the library, instead of
performing a clean step.

B.2.2 Building Microcontroller Programs

The microcontroller binaries are created using the respective uVision2 project with
the ending Uv2. If the libraries where installed to the required locations, the projects
can be used directly.

If changes have to be made to these settings, they can be found at the inter-
esting location ”Project-¿Components, Environments, Books-¿Folders/Extensions”
in the Keil uVision2 IDE.

Changing MC Memory Model. If the memory model (SMALL, LARGE,
TINY) of the MC programs has to be changed, the cypress library has to be rebuilt.
The file buildCypressLib.bat located in the target directory does just that. It is used
to build the cypress library for different memory models (SMALL, LARGE, TINY).
The file is currently set to compile SMALL model files.

Installing Cypress to a different location. If you chose to install to a dif-
ferent folder, the Keil .uV2 build files will not function correctly since the path is
hardcoded in the .uV2 files as mentioned above. Also, you need to modify the file
buildCypressLib.bat located in the target directory for the same reason. It might be
necessary to take a look at L:/Cypress/Bin/setenv.bat.

68

B.3 Making Changes To The Source Code

B.3.1 Use Matlab functionality from a C/C++ program

The ImageAnalysis uses compiled matlab code. The matlab functionality is imple-
mented in m files that are compiled into header files, a lib and dll file that can be
used from a C/C++ program. The Matlab Visual Studio Plugin has to be installed
for this purpose. The installation is described at http://www-rohan.sdsu.edu/

doc/matlab/toolbox/compiler/ch04st18.html and a little help can be found at
http://www.codeproject.com/macro/using matlab add in.asp.

While theoretically a great idea, the whole approach offers many opportunities
for problems.

The following sections proceed from the least invasive, changing the existing
project, to adding new files, to creating a new project and describe the involved
problems.

B.3.1.1 Making Changes to the m files

If the image analysis functionality is changed by modifying the m files, problems can
occur although the m code has been successfully tested in the matlab environment.
One cause for trouble is the fact that the using C++ program will just exit in many
error cases. One reason might be that the changed require some function call that is
not available. This is not visible at compile time, but only at runtime, ”indicated”
by the applications sudden shutdown.

Therefore when making changes, the according functionality should be tested
using a console program to find out about missing dlls and other issues that cause
the application to exit. mlfTest is intended for that purpose.

Compile Time Changes. In addition, after the m files have been modified, new
versions of the c files are created and added to the project. These files have to be
altered. Search for mclCExecMexFunction(...). The parameters to this function use
a path that causes shutdowns. Simply perform the following replacement:

’images/private/imfilter_mex.dll’

-> ’imfilter_mex.dll’

B.3.1.2 Adding A New m File To The Project

It is easily described: Just press the m++ button of the Matlab Visual Studio Plugin
and select the new file. If it does not work and DevStudio crashes, well, just hang
in there. Sometimes it helps to create a new project and add all files at once, which
will take a long time.

B.3.1.3 Creating A New Matlab Project

Before creating a project it is important to execute the following statements from
Matlab shell:

69

movefile([matlabroot

’/toolbox/images/images/private/check*’],[matlabroot

’/toolbox/images/images/’])

rehash toolbox

Otherwise the check* functions produce runtime errors and compile warnings. See
http://www.mathworks.com/support/solutions/data/1-19VC8.html?solution=

1-19VC8. This has to be done only once for all projects.

Now the project can be created. For each Dll there is a VS project created
using the matlab plugin:

File->New project->Matlab project->Dll

This project creates dll, lib and h file for other programs. In this project the path
L:/Matlab/bin/win32, should be added using the menu

Visual Studio->Tools->Options->Directories->Executable Files

The Matlab plugin uses Custom Build functionality, to create c files from m
files. These files are then compiled by Visual Studio. In addition, it creates a ”driver”
c file that contains the hooks necessary for the dll to work. The relevant files that
are created are for example:

ImageAnalysis.h

ImageAnalysis.lib

ImageAnalysis.dll

These have to be included in order to use the image analysis functionality from
another project.

Errors. If Building brings unresolved errors because of global matlab variables,
the problem can be fixed by adding a c file to the project. For example

// file matr.c

#include "matrix.h"

mxArray * GETPTS_AX;

mxArray * GETPTS_FIG;

mxArray * GETPTS_H1;

mxArray * GETPTS_H2;

mxArray * GETPTS_PT1;

The following warning can be ignored:

Warning: File: stem Line: 78 Column: 6

References to ”graph2d” will produce a run-time error because it is an undefined
function or variable. But stem is a plot function and unless you plot anything, this
is not a problem.

70

Deployment. To make all matlab dlls available on a system without matlab,
the matlab Add-in packager can create a zip file, that contains an installation pro-
gram for the required matlab runtime dlls. Unfortunately the installed dlls are not
sufficient. The following dlls have to be added to the runtime directory:

L:/matlab/

toolbox/images/images/applylut.dll

toolbox/matlab/iofun/dataread.dll

toolbox/images/images/private/imfilter_mex.dll

toolbox/images/images/private/imhistc.dll

toolbox/images/images/private/imlincombc.dll

toolbox/images/images/private/iptregistry.dll

toolbox/images/images/imreconstruct.dll

B.3.2 Things To Stay Away From

Changes to EZUSB lib. In the EZUSB header files (EzRegs.h:197) are some
sbit macros that are commented out. These should not be touched because using
these defines crashes the MC application. The reason is explained at http://www.

keil.com/support/man/docs/c51/c51 le sbittype.htm

Matlab files on samba network drive. Just don’t do it. Matlab misses all file
changes and uses the cached functions. I tried all solutions suggested under http://
math.carleton.ca/∼help/matlab/MathWorks R13Doc/techdoc/matlab prog/ch8

pr12.html but none did consistently work.

B.4 Testing

Developing for the SR3300 can be difficult. The lack of debugging functionality, little
available memory, complications introduced by the USB transfer, problems with the
chip itself, and last but not least, the low level nature of the tracking task, pose
problems. An important aid in developing the eye tracking system was the mockup
test. Simulating the pupil on screen, this test provides a repeatable way to validate
the functionality of the eye tracking system.

The test goes through all phases that are usually encountered during tracking.
It calibrates the system, moves the mockup pupil along defined trajectories and
simulates distortions.

To use the test, the SR3300 has to be fixed in front of the screen as it is depicted
in Figure B.1. The distance used during development was 5cm, but will vary with
screen size and resolution. Therefore, the initially shown rectangle should be used
to adjust the SR3300 until it is centered in the image. This can be verified using the
grayscale video. The class CStiResTest1 encapsulates all “stimulus response” test
functionality.

71

Figure B.1: Mockup Pupil captured by SR3000.

As a final note it should be mentioned that during development, a LCD display
was used. It is quite possible that problems will occur with CRT displays. With these
displays and the low refresh rate of 50Hz, the pupil might be lost if the Vision Chip
image is captured in between refreshs.

72

